A communication workload estimation model based on relationships among
shared works for software development projects

Noriko Hanakawa
Hannan University
5-4-33 Amami Higashi
Matsubara, Osaka
580-8502 Japan
hanakawa@hannan-u.ac.jp

Abstract

Software development project managers have already
known that adding manpower to a late software project
makes it later. This is a famous sentence in "Mythical
man-month" written by Brooks. The managers also
recognize that even if two man-month workloads are
assigned to two developers, the development period is not
one month. However, the managers want to see when the
two developers finish the two man-months workload. Of
course, the managers don't think that the development
period reduces from two months to one month. If the
development period in the two developers is shorter than
two months, the managers will decide to add the new
developer to the work. Therefore, we propose a new
workload estimation model based on communications
among shared works. The model includes Concept Model
of UML of a software development project. The classes
and relationships in the Concept Model present the kinds
of works and relationships among the works, respectively.
Sharing works causes increments of communication
workload. The communication workload is derived from
the relationships among the classes in the Concept Model.
In case studies using the model, we were able to
reconfirm quantitatively the famous sentence of “Mythical
man-month”.

1. Introduction

“Adding manpower to a late software project makes it
later”. This is a famous sentence of “Mythical man-
month” written by Brooks [2]. Everyone in large-scale
software development projects has already experienced it
many times. That is beginning to be common sense in
software development projects. In addition, project
managers don’t think that two developers finish two man-
month workloads within one month. The development
period should be more than one month at least; sometimes
it will be more than two months.

However, even if the managers recognize that the
adding manpower is not an efficient way of reducing the
development period, the managers will be pressed for
decision of adding the manpower to their project. For

1530-1362/02 $17.00 © 2002 IEEE

Ken-ichi Matsumoto
Nara Institute Science and
Technology
8916-5 Takayama, Ikoma, Nara
630-0101 Japan
matumoto@aist-nara.ac.jp

571

Koji Torii
Nara Institute Science and
Technology
8916-5 Takayama, Ikoma, Nara
630-0101 Japan
torii@aist-nara.ac.jp

example, it assumes that a developer takes two months to
complete a work, that is, the work is two man-month
workloads. But the developer can not meet the deadline of
the work. Because the work must be finished as soon as
possible; the deadline of the work cannot be set after two
months. A manager wants to reduce the execution period
of the work by even a little time. If the period of the work
can reduce to less than two months, the manager will
decide to add a new developer to the work. In the case,
what the manager wants to know most is when the two
developers complete the two man-month workload [1]. Of
course, the manager never dreams that the two developers
will complete the work within one month. He wants to see
if the two developers will complete the work within less
than two months. If the execution period of the work is
over two months, the manager will not add a new
developer to the work. If the execution period is less than
two months, the manager will decide to add a new
developer. The quantitative workload estimation under
the sharing work is important for the project manager.

Therefore we propose a new workload estimation
model for shared works. The model includes Concept
Model of UML (Unified Modeling Language)[10]. In the
Concept Model, kinds of works are described as “classes”,
relationships between the works are described as
“associations”. In addition, the number of the association
between the classes means strength of the relationship
between the kinds of the works, a multiplicity of the
association means the strength of the relationship among
instances of the class. Values of the two strengths are
bases of calculation of the communication workloads that
are caused by sharing works. Total workload is the sum of
the original workload and the communication workload.
The development period is derived from the total
workload divided by developer’s productivity taking the
concurrent executable works [5] into account.

In this paper, section2 describes a Relationship
Diagram of Works using the Concept Model, section3
shows the new estimation model for the communication
workload, section 4 explains a formula of development
period taking concurrent executable works into account
using case studies. Section 5 shows related works and
section 6 shows a summary and future researches.

Mulftiplicity 1:1

Multiplicity 1:N

Multiplicity M:N

: 11 : 1 4 2 3
gzsclf;cn t Program stclf:]e nt Program gf,scif:,em Program
ﬂ' Instance Instance . ﬂ Instance
Design Design Design
| Document l<— Pngl'am’ Document‘;<— Program Document,

Design Program
‘ Document e
Design
|_Document ,J Program J

Design
Document

Iy
2 J

Figure 2 Outline of the independence of the instances

2. Relationships among works

Sharing a work to two
communications between the developers. The
communication workload depends on relationships
between the shared works. For example, the relationship
between a program designing work and a programming
work is very strong. A program design document
describes flow-charts, algorithms and interfaces of a
program. A programmer should be in much
communication with a designer who made the program
design document. The programmer must understand what
the designer wants to do. If the designing program work
and the programming work are assigned to two different
developers, the communication workload will be very
much. In contrast, the relationship between a making use-
case work and a programming work is weak. The
developer who makes use-cases does not need to
communicate with the programmer. Even if the works are
shared to two different developers, the communication
workload does not occur.

To clarify the relationships among the works, we make
a relationship diagram of works using Concept Model of
UML (Unified Modeling Language)[10]. Figure 1(refer to
the last page) shows a relationship diagram of a software
development project in an object-oriented development
methodology. The classes of the Concept Model of
Figurel mean the works’ documents; use-cases, design
documents, programs and specifications of test. The
associations among the classes mean the relationships
among the works’ documents. To be clear the quantities
of the communications among the documents, multi-
associations are set to two classes. In addition, a
multiplicity is set to the association between the classes. If
we make the distinction of the multiplicity clear, all
multiplicities of Figure 1 will be 1:N or M:N. But the
value of the multiplicity is an important factor when the
workload is estimated in our proposed model. The values
of multiplicities (M:N) are determined by using the

developers causes

572

experiential values in real projects [4]. The values of the
multiplicities of Figure 1 are set the rough values that are
derived from the real projects.

3. Workload Estimation Model

An estimation model for workload (INCyrhi0aa) using
the relationship diagram of works is shown as formula (1).

W num
INCwnrklmul = Z (COMI, +COM2,)

i=l

INC,,oru10aa :Increment workload caused by sharing work

Woum :Total number of kinds of works

COM1I; :Communication workload caused by dividing
works according to the kind of the i-th work.
(Assigning the developers to the different works.)
COM1 = COM1,n X COM e

comz; :Communication workload caused by sharing

the i-th work among developers.
(Assigning the developers to the same work.)
COM2 =COM2,,, X COM ;.

coml,,,,, COM2,,, and COM,;,. are shown as
formula (2), (3), (4) in the following section.

3.1. Two types of works’ sharing

There are two types for sharing works in software
development projects. The first is that developers are
assigned to the different kinds of works. We call it
“COM1” type. In this paper, we use “divide” as the first
type’s verb, “division” as the first type’s noun. The
second is that the developers are assigned to parts of the
same work. We call it “COM2” type. Similarly, we use
“share” as the second type’s verb, “sharing” as the second
type’s noun. In the COMI type, for example, a developer
who has sufficient domain knowledge is assigned to the
work of making “‘use-cases”, a developer who is a good
engineer of “object-oriented methodology” is assigned to
the work of making the concept model of UML. The

reason of dividing works in COMI is for rather “right
person in right place” than for reducing the execution
period of the work. The division of works in COMI1 is
based on a judgment of whether the developer's ability is
sufficient to do it or not. In the relationship diagram of
works (Figurel), each developer who has good experience
for executing the work of the “class” is assigned to each
the “class” of the Concept Model of Figurel. However,
important cuttings between the works occur in the
COM1’s division. The work division based on “the right
person in the right place” cuts “associations” between the
“classes™ that are assigned to two different developers.
That is, the developer has to communicate with the other
developer about the “associations™ that are cut by the
work division. The number of times of the
communications between the developers depends on the
number of the associations that are cut by the work
division. The number of times of the communication in
COM I is calculated as follows:

COMI,,um = Rnum X Inum

COM1,,,,"Number of times of the communication
by work division. (COM1)

R, :Number of the associations that are cut by
the work division.
Lium :Number of instances that are created from

a class.

In the second type (COM2), a main purpose is that an
execution period of the work reduces by sharing too much
work with developers. The too much work is a same kind
of work. When a manager predicts that the deadline of the
work may be not met, the manager will decide to share
the too much work. The number of times of the
communication in COM2 is calculated as follows:

Ruam

COM2,,,, =H x Z (Muly X Ly (I-1/D)Y+ C -++(3)

j=0

COM2,,, :Number of times of the communication
by work sharing. (COM2)

Lium :Number of instances that are created
from a class.

D,y :Number of sharing the instances that are
created from the class.

Roum :Number of the association of the class.

C :Number of times of the communication
for standardization of the work

H :Increment ratio of the workload with the
sharing work [2]. Dpum (Dpum-1)/2

Mul; :Variable based on the multiplicity of the

Jj-th association of the class that is shared.
if Multiplicity is 1:1 or M:1 then Mul=1,
else is Mul=NXM

In a case of programming work, even a developer who
has sufficient knowledge and skill cannot meet the

573

deadline of work because the programming work’s
quantity is too much. In the case, the developer will share
the programming work with another developer, and the
new developer will be assigned to a half of the
programming work. Let me explain in the relationship
diagram of Figurel. When some instances are created
from a class (program), a developer is requested to
complete all instances by a deadline of the programming
work. However, the developer cannot complete all
instances of the programming work by the deadline, the
instances of the programming should be shared out two or
three developers. Each cluster of the shared instances will
be assigned to two or three developers, respectively.

Two kinds of communication occur from the work
sharing in COM2. The first kind of communication is for
standardization of the shared work, e.g., coding rule,
design templates. The standardization is important to
create the unified documents of the works. The variable C
of the formula (3) means the number of times of
communication for the standardization. The value of the
C is determined by using experiential values in real
projects [4].

The second kind of communication that occurs from
the work sharing in COM2 is based on independence
among the instances that are created from the class of the
Concept Model. An outline of the independence of the
instances is shown in Figure2. The independence of the
instances is measured by the multiplicities of the
associations that are set between classes of the Concept
Model. The multiplicity is set to 1:1 or M:1 or I:N or
M:N. If we put the multiplicity in order of high
independence, the order of the multiplicity will be 1:1,
M:1, 1:N and M:M. If the independence of the instances
is high, the number of times of the communication in
COM2 is a little. In contrast, the independence is low; the
number of times of the communication is a lot.

We explain the independence of each multiplicity; 1:1,
I:N and M:N. It assumes that there are work “A” and
work “B”. The work “A” and work “B” are identified as
class “A” and class “B” of the relationship diagram of
works. If the association that is set between class “A” and
class “B” has “1:1” multiplicity, the independence of the
instances of the class “B” is high. For example, if the
class “A” is a program design document and the class “B”
is a program, the multiplicity will be “1:1”. A program
design document indicates algorithms and flow-charts of
a program. There are ten program design documents with
ten programs. In this case, a developer who makes a
program is required to understand only a program design
document. He does not need to understand the other
program because the program design document includes
all information that is needed to make the program.

In contrast, it assumes that the multiplicity between the
program design document and the program is 1:N. That is,
the program design document indicates algorithms,
interfaces and flow-charts of some programs. The

developer needs to understand the other programs because
the design document shows a common concept and
interfaces among the ten programs. And a program’s
algorithm may be described as a part of an algorithm in
the design document, a program’s flow-chart may be
shown as a section of a flow chart in the design document.
In such design document, if the ten programs are shared
out the ten developers, the developers will have to
understand all programs. The understanding of all
programs requires the communication among the
developers who are assigned the different programs. In
addition, if the multiplicity between the program design
document and the program is M:N, the understanding
among developers will be more complicated. A developer
who makes a program should understand the contents of
M deign documents, moreover he should understand the
contents of N programs per a design document, that is, he
must understand the contents of N X M programs (See
Figure2).

Therefore the developer does not need to communicate
with the other developers when the multiplicity between
the programming and the designing programs is 1:1. He
should communicate with the other developers who are
assigned to the other programs when the multiplicity is
1:N. Moreover, the developer must hold developers’
meetings many times when the multiplicity is M:N. That
is, the multiplicity between the classes of the relationship
diagram of work is an important measure for calculating
the number of times of the communication among
developers in COM2.

3.2 Communication time by communication
way

The ways of the communications among developers
are various. Tablel shows communication ranks that are
determined by the communication ways and the
communication’s efficiency. If the communication ranks
is high, it takes little time to communicate with the
developers. If the rank is low, it takes much time to

Table 1 Rank of the communication

Rank Communi- |Communication [Communication Attendant
cation type |way time time
. . . . Travelin
A meeting with | Execution time | . aveling .
1 5 . time of
face to face of the meeting
developers
Interacti Execution time Erepmn|1g
- A time of the
2 -ve Teleconference | of the .
5 teleconference
teleconference
system
3 Telephone Time of talking 0
by telephone
Sending Reading the
documents by 0
Non- o documents
4 interacti- |-<-mail
Sending . Time of sending
ve Reading the
documents by document by
. documents ;
mail mail

574

communication among the developers. “Standard time”
H,,..(See formula (4)) is a basis of the calculation of the
communication time. The standard time means the
average of time in once communication. The standard
time is derived from the experiential communications of
real projects.

The communication ways among the developers are
classified into two types. The first communication type is
“interactive communication™; a meeting with face to face,
a teleconference and talking by telephone. The second
communication type is “non-interactive communication”
like a notification by documents. Of course, the
interactive communication is more efficient than the non-
interactive communication. In the interactive
communication, if the communication ways are put in
order of high efficiency, the order of the interactive
communication will be a meeting with face-to-face,
teleconference and talking by telephone. The non-
interactive communication is basically a communication
with documents. There are two ways of sending the
document; by e-mail and by mail. Of course the sending
by e-mail is more efficient than the sending by mail.

Here, let me explain the “attendant time” Addy,, of
formula (4). The attendant time is important in discussion
of the communication time. Although the meeting with
face-to-face is most efficient communication way, it takes
the traveling time of the developers. If the developers who
work on same place have a meeting with face-to-face, the
traveling time of the developers will be very a little, that
is no problem in the communication time. In contrast, if
the developers who work on the distant places have a
meeting with face-to-face, the traveling time of the
developers will be very large. The efficiency of
communication should be calculated in consideration of
the attendant time like the traveling time. Similarly, the
attendant time of the non-interactive communication are
discussed. If the document of the non-interactive
communication is sent by e-mail, the attendant time is
almost 0 because the sending time of the document is a
few seconds. If the document is sent by mail, the
attendant time is one day or two days. The attendant times
such as traveling time or sending time are shown in
Tablel. The once communication time COM,,. are
calculated as follows:

oM, lime:H time X Rank + Addn‘me

COM,,,. : Total time of once communication

H,.. :Average time of once communication
Rank : Efficiency rank of the communication
Addy,,. : Attendant time like the developers’ moving

or the documents’ sending

Him. is an average time of once communication in
which developers discuss about a problem or information.
It will be derived from experiential values of real projects.

The value of Hyn,. in COM1 (work division, that is, the
works are divided by the kinds of works) is larger than the
value of Hyne in COM2 (work sharing, that is, the same
works are shared out developers). If we observe
developers’ behavior of a software development project,
we will be able to measure the communication time that is
a basis of Hn.. The communication Rank of formula(4)
and Add,. of formula(4) are shown as “Rank” and
“Attendant time” of Tablel.

4. Case studies

In this section, two case studies are shown using the
proposed model. The development periods are calculated

as follows:
2num
DEVime= Z (Worky ID gt COM2 /Dy)
g=l
W loum
+ Z CcoM1,/2
g=1

DEV,,. :Total development period.

W2,.n :Total number of classes that is shared in
COM2
Work, :The g-th work’s development period.

workload/(productivity X the number of developers)
D, Number of sharing the g-th work.
Wl,.. :Total number of classes that is divided in
COMI1.
COM1, : COMI(see formula(2)) of the g-th work.
CcoM2, : COM2(see formula(3)) of the g-th work.

Casel shows the workload estimation in a case that
developers are assigned to different works (work division
in COM1) in the upper process of a software development
project. Case2 shows workload estimation in a case that
new developers are added to same works (work sharing in
COM2) near the close of the project because the deadline
of the project may be not met. Table2 shows the common

values of the both cases. The “Class” of Table2 means the
class of the Concept Model in the object-oriented
development project as Figurel. The “Num. of instance”
of Table2 is calculated using the multiplicities that are set
to the associations between the classes of the Concept
Model of Figurel. Assuming that the number of the
“domain document” of the Concept Model of Figurel is
set to 10, all numbers of the instances that are created
from the classes were calculated as Table 2. For example,
four associations are set between a “domain document”
class and “use-case” class. The associations are named
“Extracting use-case”, “Extracting actor”, “Extracting
actor’s behavior” and “Extracting response of system”.
When the number of the use-case is generated from the
number of the domain document, the most important
association is “Extracting use-case”. Therefore, the
number of the instance of the class “use-case” is
determined as 100 using the multiplicity 7:10 that is set to
the association “Extracting use-case”. The value of N(10)
multiplied by the number(10) of the instance of the class
“domain document” is 100. The 100 means the number of
the instances of the class “use-case’.

In addition, the productivity of the each class was set
(See Table 2). The values of the productivities were
derived from experiential values of real projects. The
value of C (the number of times of communication for
standardization of work sharing) of formula (3) was set to
same value of D,,,,,(the number of sharing the work). The
value of Hy,, (average time of once communication) in
work division of COM1 was set 2 hours (0.0125 months),
the value of H,,. in work sharing of COM2 was set 20
minutes (0.002085months). And assuming that
developers work on same place, the developers
communicate on meetings with face-to-face. The value of
COM ;. of COMI is 0.0125, COM,;,,. of COM?2 is
0.002085. The total workload of Table2 is 24.95 man-
months, that is, the development period in working a
developer is 24.95 months.

Table 2 Common values of case studies

Class Num. of Productivity Class Num. of Productivity
instance instance

Domain document 104 - Message of collaboration 50 | 100 messages/months
Use-case diagram 100 | 50 diagrams /month Instance of collaboration 25 | 100 instances/month
Concept model 1]- Class design 25125 designs/month
Class of concept model 2525 classes/month Program 25(-
Association of concept model 50|20 associations /month | Attribute of program 125 | 250 attributes/month
State diagram 50 [25 diagrams /month Methods of program 250 | 50 methods/month
Contract 25| 25 contracts/month Specification of system test 100 | 100 specifications/month
Sequence diagram of system 1]- Specification of combination test 125 | 100 specifications/month
Actor of sequence diagram of 5| 100 actors/month Specification of unit test 250 | 125 specifications/month
system
Event of sequence diagram of 251100 events/month Execution of system test 1251250 tests/month
system
Real use case diagram 25 [S0diagrams /month Execution of combination test 250 | 125 tests/month
Collaboration diagram 25]- Execution of unit test 100 | 50 tests/month

575

Sub-case 1 nlmmh 2 mlomh 3 Tomh 4 nlmmh 5m|0nth
(1) no division 2 months 3 months
and no sharing Creation of use-ca Creation of concept model S mon ths
.78 monthg
2) work division
@ Creation of use-case COM 1 3 months
COM | Creation of concept model 5.78 months
(3) work division .78 months 0,52 mqnths
and work sharing Creation of use-case COM 1 (OTITVT T COM2IVITTIIE 4.8 months
two developers COM | Concent Model
(4) work division 52‘78 months. 1.39 months
and work sharing Creation of use-case COM | Com2
three developers COM 1 COM2 5.17 months
COM2
o 0.78 monthg 2 35 manths

(3) work dms'.on Creation of use-case COM | COM2 Model
and work sharing
four developers COM | COM2 Model 5.88 months

COM2 Model

COM2 Model

Figure 3 Project plans of casel

4.1 Case 1

We estimated the workload of the upper process that is
from creating use-cases to creating a concept model (See
Figurel). In sub-case (1), a developer is assigned to all
works from the creation of the use-cases to the creation of
the concept model. In sub-case (2), a developer is
assigned to the creation of the use-cases, the other
developer is assigned to the creation of the concept model,
that is the work division in COMI. In sub-case (3), two
developers are assigned to the creation of the concept
model. In sub-case (4), three developers are assigned to
the creation of the concept model, in sub-case (5) four
developers are assigned to the creation of the concept
model. In sub-case (3), (4) and (5), the uses-cases are
created by a developer. That is, work division between the
creation of the use-cases and the creation of the concept
model occurs, moreover, the work sharing of the creation
of the concept also occurs in sub-case (3), (4) and (5). The
workload estimations using the proposed model are
shown in the Table3.

4.2 Discussion of the Case 1

Bar charts that are based on the results of casel in
Table3 are shown in Figure3. We thought that the order of
the works is important to create the bar charts. The
creation of the use-case is finished before the starting of
the creation of the concept model.

In sub-case (1), the development period is 5§ months
because there is no communication workload. In sub-case
(2), it is an example of work division in COMI; dividing
into kinds of works. The communications occur when the
development process shifts from the creation of the use-
cases to the creation of the concept model. Total
communication workload is 1.5625 man-months. The
communication period is .78 months because the 1.5625
man-months is divided by 2 (two kinds of works). Total
development period is 5.78 months because the 0.78
months is added to the 5 months. In sub-case(3), it is an
example of sharing same work in COM2 and dividing
works in COM1. The creation time of the concept model
is 1.5 months because 3 man-months are divided 2 (two
developers). However, communication workload between
the developers occurs during the creation of the concept
model. The communication workload (COM 1 + COM2)
is about 2.6 man-months using the proposed model. The
development period is about 4.8 months. The formula is
as follows:

Table 3 Results of case 1

Case Incuorktoas (Man- COM1,m COM 2, Total workload
month) (num. of times) (num. of times) (man-month)

(1) a developer 0 0 0 S

(2) a developer create use-cases 1.5625 125 0 5.7813

a developer create a concept model

(3) two developers create a concept model 2.6092 125 502 7.6092

(4) three developers create a concept model 5.7388 125 2003 10.7388

(5) four developers create a concept model 9.3825 125 4504 14.3825

576

Sub-case 10 mlonths 12 months 14 months 16 months 18 months 20 months 22 months 24 months
] | | |
(5) Program 2.5months 1.45manths 1.45months
?": U":\ COMI1 Program | COM2 | Program SEMETHA ST Unit'Test Com binationTest lsyf,‘:;m
s;aring COMI Program | COM2 | Program JEMEHETIEE COM?2 IEEET 25.6 months
6 2.5months 1.45maonths 48 5 2 Omonths_ 0 Smonths
Specificaions comi__| program | cOM2 | program [REETSTRSN cono IR Ei [F2] 234 months
of combinat on COM1 Program § COM2 | Program SRS COM?2 B W ITS
and sysem test 1.25months _ 1.0months S1:Specification of Combinationtes
work division S2:Specification of System test
‘1:Execution of Combincation teg
F2:Execution of Svstern ted

Figure 4 Project plans of sub-case (5), (6) in case2

24 1.56/27+1.04"/27+1.5"°= 4.8 months

*":2 is the development period of use-cases

" :1.56 is communication workload of COM1

3.2 means two kinds of works: the creation of the use-
case and the creation of the concept model

:1.04 means communication workload of COM2

7 :2 means two developers who shared the creation of
the concept model.

:1.5 means 3 man-months workload (the creation of
the concept model) is divided by 2 (two
developers)

*

Similarly, in sub-case (4) the development period is
about 5.2 months, in sub-case (5) the development period
is 5.9 months. Therefore, if a manager want to reduce
even slight development period, the manager will adapt
the plan of sub-case (3). However, the manager must not
add more than two developers. The development periods
in three or four developers are more than a development
period that a developer executes all works. Adding three
and more developers to the creation of the concept model
makes it later because the total communication workload
in the three and more developers increases drastically.
The experiential rule in “Mythical man month” is
reconfirmed quantitatively using the results of the case 1.

We discuss what’s happen in adding new developers
near the close of a project. In case 2, it assumes that a
manager recognizes a delay of his project near the close
of his project. The manager wants to add new developers
to the remainders of works because he wants to recover
from the delay of the project. The remainders of works
are programming (creation of attributes, creation of
methods), unit test (specification of test and execution of
test), combination test (specification of test and execution
of test) and system test (specification of test and
execution of test). In sub-case (1), a developer is assigned
to all works, in short, no developer is added to the project.
In sub-case (2), two developers are assigned to all works,
in short, all remainders of the works are shared out two
developers. In sub-case (3), three developers share all
remaining works in the same way of sub-case (2). In sub-
case (4), a new developer is assigned to only the
combination test and the system test, in other words, the
works of the combination test and the system test are
shared to two developers. In sub-case (5), a new
developer is assigned to the works in which the remaining
quantity of the work is very much such as programming
(creation of attributes, creation of methods) and unit test
(specification of test, execution of test). The remaining
quantity of the work means the numbers of the instances
in Table 2. Table 4 shows results of estimation of the
case2 using the proposed model.

4.3 Case 2 4.4 Discussion of the case 2
Table 4 Results of case 2
Sub- INC,ortivade CcoM1,,, COM2,. Total workload Percentage of communication in [Devin+10.7
case (man month) (num. of times) (num. of times) (man month) total workload (month)
(1) 0 0 0 14.25 0% 24.95
) 14.73 625 3320 28.98 50.8% 25.19
3) 35.51 625 13286 49.76 71.4% 28.59
-(4) 6.67 450 502 20.92 31.9% 2591
(5) 10.88 400 2818 25.13 43.3% 25.64
6) 10.88 400 2818 25.13 43.3% 23.39

577

In the case, the project has already consumed 10.7
months because the upper process works (creation of use-
case, creation of concept model and so on) have been
finished. If a developer executes all remaining works in
sub-case (1), the development period will be 14.25
months because of the 714.25 workloads divided by I(one
developer). However, if the deadline of the project can
not be set after 74.25 months, a manager of the project
will fall into the temptation to add new developers to his
project. However, in all results of the estimation from
sub-case (2) to sub-case (5), the development periods with
adding new developers are longer than the development
period without adding new developers. That is, we have
reconfirmed that the addition of new developers near the
close of the project is meaningless for recovering from the
delay of the project. Especially, in sub-case (3), the
percentage of the communication workload in total
workload is more 70 %. The high percentage of the
communication workload makes the project complicated.
The developers of the project consume much time for the
communication among the developers. Because the
consuming time for the communication is more than the
consuming time for executing the works, the developers
feel inefficient and boring in such projects.

A manager often adapts a plan such as sub-case (5) to
the late project. The manager tends to add new developers
to the works that are not finished, because the manager
feels that the work sharing is the only way of reducing the
development period. However, even if a new developer
shared the remaining works with the original developer,
the new developer is not useful for recovering from the
delay of the project. The results of the case2 in Table4
indicate the miss judgments of the manager under the
delay of the project.

Here, we discuss sub-case (5) further. The program
work and the unit test work were shared out two
developers because the remaining quantities of the works
were a lot. The combination test and the system test were
not shared because the remaining quantities of the tests
were not so much. But if you watch carefully the
associations among the remaining works in Figure 1, you
will be able to see that there is no association between the
specification of the combination test and the unit test (the
specification and the execution of the unit test). Similarly,
there is no association between the specification of the
system test and the unit test. No association between two
works means that the works can execute concurrently
without the communication workload.

In sub-case (5), if a new developer is assigned to the
specification work of the combination test and the
specification work of the system test, the new developer
can execute his/her works concurrently with the program
work and the unit test work that are executed by the other
developers. The result of this case is shown as sub-case
(6) in Table4. In sub-case (6), three developers are
assigned to the works (See Figure 4). The original

578

developer is assigned to a half of the program work and a
half of the unit test work and the execution of the
combination test and the execution of the system test. The
new developer is assigned to a half of the program work
and a half of the unit test work. The second new
developer is assigned to the specification of the
combination test and the specification of the system test.

The three developers can execute their works
concurrently around the 13months or 14months in the
Figured4.

Moreover, in sub-case (6), the new communication
workload does not occur by the new division of the
works; the specification of the combination test and the
specification of the system test. It is because that the new
work divisions cut no association among the classes of the
Concept Model of Figurel. Therefore, the work division
in sub-case (6) can reduce the development period from
25.64 months to 23.39 months without the addition of the
new communication workload. The 23.39 months is
shorter than the 24.95 months in which a developer is
assigned to all remaining works. Only sub-case (6) is
success to recover from the delay of the project.

In the same way of sub-case (6), if a manager tries to
simulate in the proposed model many times taking the
work division (COM1), the work sharing (COM2) and the
executable concurrency among the works into account,
the manager will be able to make the most efficient
project plan.

5. Related works

Many useful models and methods for a software
development project management have been proposed.

Komiya et al. proposed a method and facilities to
project risks in a software project through Kepner-Tregoe
problem, and proposed schedule re-planning by using
generic algorithm for avoiding the projected risks [8]. In
the method and facilities, users can recognize their
project’s risks such as a mistake of assigning workers and
a mistake of arranging tools for the project, using KT’s
program. Because workers can be assigned to activities
that are defined in a meta-model of work structure, the
divisions of the works are clarified, the execution time for
each worker is clarified. However, the communication
workload is not mentioned when the work is divided to
some the workers.

Onishi et al. proposed a communication model for
software requirement specification [11]. In the model, the
communication means that a symbol is transferred from a
sender to a receiver. However, it is difficult to
communication in three cases. The first case is that the
receiver does not know the symbol, the second case is that
the symbol whose expression are difficult between the
sender and the receiver, the third case is that the symbol
whose expression has difficult meanings between the
sender and the receiver. In addition, the authors developed

a co-operative virtual requirements definition method via
network based on the communication model. The model
and method are useful to lead incorrect communications
to successful communication. In the real project, this is a
valuable tool for communications among developers.
However, the model focuses on only a way of the
communication between developers. The communication
workload is not mentioned.

Kusumoto et al. proposed a new model for describing
software processes and an estimation method for the
quality, cost and delivery date of a software projects [9].
The project model focuses on three key component;
activity, product and developer. The process model
consists of Activity models using Generalized Stochastic
Petri-Net. In the Activity model, the workload can reflect
the communication among developers. The
communication rate is derived from a function whose
parameters are the number of developer, the sum of each
developer’s experience and the completion rate of input
document. Therefore, the increment of the communication
workload that occurs by work division is calculated in the
proposed model and method. However, they focus on
only the work division that is the division of kinds of
works (COMI). The distinction between the work
division (COMI) and the work sharing (COMI) are not
clear.

6. Summary

We propose a new workload estimation model that can
indicate quantitatively the common sense in “Mythical
man month” written by Brooks. Using the proposed
model, a project manager can see if a new developer is
added to the remaining works of the project. In addition,
he/she can see what works the new developer should be
assigned to, what works can be in efficient concurrent
executions. The manager can make the most efficient plan
even if the manager realizes a delay of his/her project near
the close of the project.

In future, various important values of the model will be
derived from real projects, or experiments. The
multiplicities of the relation diagram of works will be
determined by counting the relationships of the contents
in the documents. H,. (average time of once
communication) will be determined based on the
observation of developers’ behaviors in real project or
experiments. In addition, the model will be added
important human factors. Learning time [3][4][7] that is
caused by the work division and the work sharing will be
added to the proposed model.

7. References

[11 T.K. Abdel-Hamid, “The Dynamic of Software Project
Staffing”, Transaction of IEEE, Software engineering, Vol.15,
No.2, 1989, pp. 109-119.

579

[2] Brooks, F.P, Jr., The Mythical Man-Month, Addision Wesley,
MA, 1975.

[3] N. Hanakawa, K. Matsumoto, K. Torii, “A Knowledge-
Based Software Process Simulation Model”, [International
Journal of Annals of Software Engineering, Vol.14, Oct. 2002,
pp.383-406.

[4] N. Hanakawa, S. Morisaki, K. Matsumoto, “A Learning
Curve Based Simulation Model for Software Development”,
Proceedings of the 20th International Conference on Software
Engineering, IEEE Computer Society Press, Japan, April 1998,
pp. 350-359.

[5] . .. Hanakawa, H. lida, K. Matsumoto, K. Torii, “Generation
of Object-Oriented Software Process using Milestones,”
International Journal of Software Engineering and Knowledge
Engineering, Vol.9, No.4, World Scientific Publishing, 1996,
pp.445-466.

[6] N. Hanakawa, K. Matsumoto, K. Torii, “Application of
learning curve based simulation model for software
development to industry,” Proceedings of the 11th International
Conference on Software Engineering and Knowledge, World
Scientific Publishing, Germany, 1999, pp. 283-289.

[7] N. Hanakawa, H. Nogi, “Human Factor-Based Quality
Control with Technical Reviews,” Proceedings of the second
International Conference on Software Quality, Union of
Japanese Scientists and Engineers, Japan, 2000, pp.563-568.

[8] S. Komiya, A. Hazeyama, “Projecting Risks in a Software
Project through Kepner-Tregoe Program and Schedule Re-
Planning for Avoiding the Risks”, Transaction on The Institute
of Electronics, Information and Communication Enginneers,
Vol.E83-D, No.4, April 2000, pp. 627-639.

[9] S. Kusumoto, O. Mizuno, T. Kikuno, “Software Project
Simulator for Effective Process Improvement”, Journal of
information Processing Society of Japan, Vol.42, No.3, Mar.
2001, pp. 396-408.

[10] Larman, C., Applying UML and Patterns: an introduction
to object-oriented analysis and design, Prentice-Hall, 1998.

[IT] A. Onishi, “Visual Software Requirements Specification
Technique Based on Communication Model”, Transaction on
The Institute of Electronics, Information and Communication
Engineers, Vol.E85-D, No.4, April 2002, pp. 615-622.

Extracting behavior of system

Concept
model

]

. Use-case Extractin
— I Extracting use-case 10 Uocicomome £ 2 [Class Association
omain > T
1 : 5 Association
document Extracting actor Actor’name ' Extracting Class name e
1 . . . 20} Actor’s behavior . 5 | Attribute -
Extracting actor’s behavior attribute — Multiplicity
I 20 Response of system Method
Extracting response of Extracting Class name
system method
10| [4 5] 5] [4 1 e 2 1
Actor name Actor’s name Extracting association
Sequence
diagram Extracting event . Class name
. Extracting
Extracting ta 1 .
Event name |1 1 = Extracting s Extfacting
1 2| Lontract outside event State diagram message
5 3 " Extracting N State
> ontract name
Outpu Input type R ibilit . Event Extracting
items items | Image of use esponsibiity Extracting 3 Jrransition Jinstance
1 1 pinterface Type N E pre-condition 1 Original state
Pre-condition
Real use case Post-condition 2 Extra.c.tmg post-
!mag: of user 1 condglon' A t 3 Extracting
Inter qce xlrdc.tmg System |1 side event
Input |t§m Extracting 1 |operation " "
Output item Specification of | combination|Collaboration £S5age 1
combination test §3 diagram Message name
Parameter 1
1 1
Extracting 1 1 >
1| Inputand |, Combination test Executing Extracting
‘ . est interface Instance T
Specification
of system test T Extracting method |
Extracting attribute
Executing program 1
, I— 1 1| 1
Executing program Extracting Class name -
method’s Program Class design
E;:cutmg Specification |10 behavior Class name ! 1 Km;‘blge (type)
of unit test et llZlet o ?ype, parameter)
Extracting re— ssociation
: : 1 _method _ Depending relation
T
1 Executing test 1
System test .
. c
Unit test Method Attribut A 1
Extracting E .
5 attribute Xtracting
10 | A method

Figurel A relationship diagram of works in software development project using an object-oriented

580

