
Empirical Evaluation of an SVM-based
Software Reliability Model

Yasutaka Kamei

Nara Institute of Science
and Technology

Nara, Japan

yasuta-k@is.naist.jp

Akito Monden
Nara Institute of Science

and Technology
Nara, Japan

akito-m@is.naist.jp

Ken-ichi Matsumoto
Nara Institute of Science

and Technology
Nara, Japan

matumoto@is.naist.jp

ABSTRACT
Support Vector Machines (SVMs) are known as some of the best
learning models for pattern recognition, and an SVM can be used
as a software reliability model to predict fault-prone modules from
complexity metrics. We experimentally evaluated the prediction
performance of an SVM model, comparing it with commonly-
used conventional models including linear discriminant analysis,
logistic regression, a classification tree, and a neural network. The
results revealed that the SVM model exhibited showed the best
performance among all the models tested.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability; D.2.8 [Met-
rics]: Complexity; I.5.1 [Models]: Neural nets, Statistical;

General Terms
Reliability, Experimentation

Keywords
Support vector machine, multivariate analysis, discriminant analy-
sis, prediction stability

1. INTRODUCTION
Identification of fault-prone modules, which may need reworking
and/or comprehensive testing, is an important issue in software
quality assurance. Various multivariate modeling techniques ap-
plicable to fault-prone module prediction have been proposed,
including among others linear discriminant analysis [9], logistic
regression analysis [8], artificial neural network models [5], and
classification trees [7].
To achieve high prediction accuracy, in this paper we employ a
Support Vector Machine (SVM) as an alternative modeling tech-
nique. An SVM is non-linear learning machine used for two-
group classification problems [4]. SVMs have been theoretically
proven not to fall into a local minimum in contrast to conven-

tional non-linear models, such as neural networks, which harbor
the chance of finding a local minimum in learning. Also, SVMs
are robust against noisy samples. As shown in Fig. 1, input vec-
tors are non-linearly transformed and mapped onto a very high-
dimension feature space. Then, a separator for two groups is de-
termined in this feature space. SVMs are now used in a wide vari-
ety of research areas such as optical character recognition [10].
This paper follows a recent research by Xing, Guo and Lyu, which
showed that it is feasible to an SVM as a fault-proneness model,
and its prediction performance was better than linear discriminant
analysis and classification trees [11]. This paper extends their
research by comparing the SVM model used above with other
commonly-used models, i.e. logistic regression and neural net-
works, as well as linear discriminant analysis and classification
trees.
In what follows, Section 2 describes the design of our experiment
to evaluate the prediction accuracy of the models, and Section 3
provides the results and discussion. Finally, Section 4 concludes
the paper with a summary and some future topics.

2. EVALUATION SETTINGS
The goal of the experiment is to evaluate the prediction perform-
ance of an SVM-based model, comparing it with linear discrimi-
nant analysis, logistic regression analysis, a neural network, and a
classification tree.

2.1 Dataset
The target software is an application software, written in COBOL,
that has been developed and used in a Japanese software company.
Its size is about 300,000 source lines of code (SLOC) and it con-
tains 514 modules, 277 of which are not-fault-prone and 237 that

x2

x1

z2

z3

)

Figure 1. Basic concept of SVM

are (i.e. contain one or more faults). The value of the objective
variable is 0 if the modules are not fault-prone, and is 1 if the
modules are fault-prone. These faults were recorded during testing
phases (unit, integration and system testing).
Predictor variables are complexity metrics of modules. We meas-
ured 21 metrics for each module, with Table 1 showing the statis-
tics of each metric.

2.2 Models
There are the several types of SVM, which depend on the kernel
function being used, such as the radial basis function (RBF), the
polynomial function, and the sigmoid function. In this paper, the

RBF kernel was used since it has an advantage in model selection
(variable selection) [2], and its performance was excellent in fault-
prone module prediction [11].
Regarding neural network models, five types of three-layer neural
network were constructed, having one of the following number of
learnings: 10,000; 20,000; 30,000 50,000; 100,000. Also, as a
classification tree model, we used the classification and regression
trees (CART) algorithm [7] for model construction.
The bootstrap method was applied in this experiment. The dataset
(of 514 modules) was randomly divided into two datasets (fit
dataset and test dataset). The fit dataset was used for model con-
struction and the test dataset was for model evaluation. This divi-
sion was repeated 25 times, and stepwise variable selection was
applied to all models at each repetition.

2.3 Evaluation Criteria
We used three commonly-used criteria (recall, precision, and the
F1-value) to evaluate the prediction performance of constructed
models. Recall is the ratio of correctly predicted fault-prone mod-
ules to actual fault-prone modules, and precision is the ratio of
actual fault-prone modules to the modules predicted as fault-prone.
F1-value is a combined value of recall and precision, formally
defined in Eq. (1):

PrecisionRecall
PrecisionRecallF

�
uu

2

1 . (1)

3. RESULTS AND DISCUSSION
Figure 2 shows boxplots of F1-values of five models: linear dis-
criminant analysis (LDA); logistic regression analysis (LRA); a
neural network (NN, # of learnings = 30,000, which was the best
among the neural network models); a classification tree (CT); and
the SVM. Obviously, the SVM performed the best in terms of
median value as well as best-case and worst-case values. The F1-
values of the SVM ranged from 0.52 to 0.72, while the linear
discriminant analysis ranged from 0.46 to 0.64, the logistic re-
gression analysis from 0.45 to 0.61, the neural network from 0.51
to 0.69, and the classification tree from 0.48 to 0.70.
Figure 3 shows recall and Fig. 4 illustrates the precision of the
five models. While the SVM showed the best performance in
recall (median value was 0.06 to 0.23 higher than in other models),
precision was slightly worse (median value was 0.03 lower than
the best model, LDA). This indicates that the SVM model has a
great advantage to avoid overlooking actual fault-prone modules,
with just a small loss in precision.
Interestingly, LRA (logistic regression) showed the worst per-
formance in this experiment; it was even worse, in fact, than LDA
(linear model).
NN (neural network) and CT (classification tree) performed better
than LRA and LDA in terms of F1-value and recall. However, the
precision of CT was the worst among all models.
We consider that the accuracy and the stability of the SVM model
derived from using the soft margin [4] since it allows noisy sam-
ples in the training dataset, and this contributed to avoiding the
over-fitting problem.

Table 1. Collected metrics

METRICS Mean Median Std. Dev.

Source lines of code 547.88 405.50 531.15

Commented lines 211.40 165.00 166.51

Commented lines per SLOC 0.59 0.58 0.08

Newly developed SLOC 304.99 218.50 300.78

Reused SLOC 29.69 0.00 247.69

Number of test items 36.018 20.00 60.96

Cyclomatic number 32.31 21.00 38.88

Cyclomatic number per SLOC 3.28 2.49 2.70

The number of Loops 2.98 2.00 3.87

Maximum of nest level 5.80 6.00 1.47

Sum of nest level 3.69 3.63 0.43

Number of jump nodes 4.09 1.00 9.40

Number of declared variables 68.20 33.00 98.47

Number of referred variables 109.01 69.00 153.56

Number of assigned variables 84.98 54.00 123.79

Number of inner calls 12.15 9.00 11.89

Number of external calls 4.24 1.00 7.96

Number of global assigned vari-
ables 43.31 25.00 55.99

Number of global referred vari-
ables 56.66 36.00 68.37

Number of macros 5.11 4.00 3.26

Number of parameters 4.49 1.00 7.14

4. SUMMARY
In this paper, we experimentally evaluated the prediction perform-
ance of an SVM model and five conventional models by using an
actual project dataset. The results indicated that the SVM model
exhibited the best performance among all the models tested.
One of our future works will be to evaluate these models with an
imbalanced dataset that contains a very low proportion of fault-
prone modules. For such an “imbalanced” dataset, we may need to
apply the re-sampling method [3] to a fit dataset before construct-
ing SVM models.

5. ACKNOWLEDGMENTS
This work was partially supported by the EASE (Empirical Ap-
proach to Software Engineering) project, which is part of the
Comprehensive Development of e-Society Foundation Software
program of the Ministry of Education, Culture, Sports, Science
and Technology of Japan.

6. REFERENCES
[1] Burges, C. J. C. A tutorial on Support Vector Machines for

pattern recognition. Data Mining and Knowledge Discovery,
2, 2(Jun. 1998), 121–167.

[2] Cai, J., and Li, Y. Classification of Nuclear Receptor Sub-
families with RBF Kernel in Support Vector Machine. Proc.

International Symposium on Neural Networks
(ISNN’05)(Chongqing, China, May 30- Jun. 1, 2005),
Springer, New York, NY, 2005, 680-685.

[3] Chawla, V. N, Bowyer, W. K. Hall, O. L., and Kegelmeyer,
P.W. SMOTE: Synthetic Minority Over-sampling TEchnique.
Journal of Artificial Intelligence Research, 16(Jun. 2002),
321-357.

[4] Cortes, C., and Vapnik, V. N. Support Vector Networks.
Machine Learning, 20, 3(Sep. 1995), 273–297.

[5] Gray, A. R., and MacDonell, S. G. Software metrics data
analysis - Exploring the relative performance of some com-
monly used modeling techniques. Empirical Software Engi-
neering, 4, 4(Dec. 1999), 297-316.

[6] Herlocker, J., Konstan, J., Terveen, L., and Riedl, J. Evaluat-
ing collaborative filtering recommender systems. ACM Trans.
on Information Systems, 22, 1(Jan. 2004), 5-53.

[7] Khoshgoftaar, T. M., and Allen, E. B. Modeling software
quality with classification trees. Recent Advances in Reliabil-
ity and Quality Engineering, Hoang Pham Editor. World
Scientific, Singapore, 1999, 247-270.

[8] Munson, J., and Khoshgoftaar, T. The detection of fault-
prone programs. IEEE Trans. on Software Engineering, 18,
5(May 1992), 423-433.

[9] Ohlsson, N., and Alberg, H. Predicting fault-prone software
modules in Telephone Switches. IEEE Trans. on Software
Engineering, 22, 12(Dec. 1996), 886-894.

[10] Schölkopf, B., Sung, K., Burges, C.J.C., Girosi, F., Niyogi,
P., Poggio, T., and Vapnik, V. N. Comparing Support Vector
Machines with Gaussian Kernels to Radial Basis Function
Classifiers. IEEE Trans. on Signal Processing, 45, 11(Nov.
1997), 2758-2765.

[11] Xing, F., Guo, P., and Lyu, M. R. A novel method for early
software quality prediction based on support vector machines.
Proc. Int’l Symposium on Software Reliability Engineering
(ISSRE'05)(Chicago, Illinois, Nov. 8-11, 2005), 2005, 213-
222.

SVMCTNNLRALDA

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 2. F1 Value of Each Method

SVMCTNNLRALDA

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 4. Precision of Each Method

SVMCTNNLRALDA

0.9

0.8

0.7

0.6

0.5

0.4

0.3
2

19

12

Figure 3. Recall of Each Method

