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ABSTRACT 
Support Vector Machines (SVMs) are known as some of the best 
learning models for pattern recognition, and an SVM can be used 
as a software reliability model to predict fault-prone modules from 
complexity metrics. We experimentally evaluated the prediction 
performance of an SVM model, comparing it with commonly-
used conventional models including linear discriminant analysis, 
logistic regression, a classification tree, and a neural network. The 
results revealed that the SVM model exhibited showed the best 
performance among all the models tested. 

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification]: Reliability; D.2.8 [Met-
rics]: Complexity; I.5.1 [Models]: Neural nets, Statistical; 

General Terms 
Reliability, Experimentation 

Keywords 
Support vector machine, multivariate analysis, discriminant analy-
sis, prediction stability 

1. INTRODUCTION 
Identification of fault-prone modules, which may need reworking 
and/or comprehensive testing, is an important issue in software 
quality assurance. Various multivariate modeling techniques ap-
plicable to fault-prone module prediction have been proposed, 
including among others linear discriminant analysis [9], logistic 
regression analysis [8], artificial neural network models [5], and 
classification trees [7]. 
To achieve high prediction accuracy, in this paper we employ a 
Support Vector Machine (SVM) as an alternative modeling tech-
nique. An SVM is non-linear learning machine used for two-
group classification problems [4]. SVMs have been theoretically 
proven not to fall into a local minimum in contrast to conven-

tional non-linear models, such as neural networks, which harbor 
the chance of finding a local minimum in learning. Also, SVMs 
are robust against noisy samples. As shown in Fig. 1, input vec-
tors are non-linearly transformed and mapped onto a very high-
dimension feature space. Then, a separator for two groups is de-
termined in this feature space. SVMs are now used in a wide vari-
ety of research areas such as optical character recognition [10]. 
This paper follows a recent research by Xing, Guo and Lyu, which 
showed that it is feasible to an SVM as a fault-proneness model, 
and its prediction performance was better than linear discriminant 
analysis and classification trees [11]. This paper extends their 
research by comparing the SVM model used above with other 
commonly-used models, i.e. logistic regression and neural net-
works, as well as linear discriminant analysis and classification 
trees. 
In what follows, Section 2 describes the design of our experiment 
to evaluate the prediction accuracy of the models, and Section 3 
provides the results and discussion. Finally, Section 4 concludes 
the paper with a summary and some future topics. 

2. EVALUATION SETTINGS 
The goal of the experiment is to evaluate the prediction perform-
ance of an SVM-based model, comparing it with linear discrimi-
nant analysis, logistic regression analysis, a neural network, and a 
classification tree. 

2.1 Dataset 
The target software is an application software, written in COBOL, 
that has been developed and used in a Japanese software company. 
Its size is about 300,000 source lines of code (SLOC) and it con-
tains 514 modules, 277 of which are not-fault-prone and 237 that 
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Figure 1. Basic concept of SVM 

 

 



are (i.e. contain one or more faults). The value of the objective 
variable is 0 if the modules are not fault-prone, and is 1 if the 
modules are fault-prone. These faults were recorded during testing 
phases (unit, integration and system testing).  
Predictor variables are complexity metrics of modules. We meas-
ured 21 metrics for each module, with Table 1 showing the statis-
tics of each metric. 

2.2 Models 
There are the several types of SVM, which depend on the kernel 
function being used, such as the radial basis function (RBF), the 
polynomial function, and the sigmoid function. In this paper, the 

RBF kernel was used since it has an advantage in model selection 
(variable selection) [2], and its performance was excellent in fault-
prone module prediction [11]. 
Regarding neural network models, five types of three-layer neural 
network were constructed, having one of the following number of 
learnings: 10,000; 20,000; 30,000 50,000; 100,000. Also, as a 
classification tree model, we used the classification and regression 
trees (CART) algorithm [7] for model construction. 
The bootstrap method was applied in this experiment. The dataset 
(of 514 modules) was randomly divided into two datasets (fit 
dataset and test dataset). The fit dataset was used for model con-
struction and the test dataset was for model evaluation. This divi-
sion was repeated 25 times, and stepwise variable selection was 
applied to all models at each repetition. 

2.3 Evaluation Criteria 
We used three commonly-used criteria (recall, precision, and the 
F1-value) to evaluate the prediction performance of constructed 
models. Recall is the ratio of correctly predicted fault-prone mod-
ules to actual fault-prone modules, and precision is the ratio of 
actual fault-prone modules to the modules predicted as fault-prone. 
F1-value is a combined value of recall and precision, formally 
defined in Eq. (1): 
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3. RESULTS AND DISCUSSION 
Figure 2 shows boxplots of F1-values of five models: linear dis-
criminant analysis (LDA); logistic regression analysis (LRA); a 
neural network (NN, # of learnings = 30,000, which was the best 
among the neural network models); a classification tree (CT); and 
the SVM. Obviously, the SVM performed the best in terms of 
median value as well as best-case and worst-case values. The F1-
values of the SVM ranged from 0.52 to 0.72, while the linear 
discriminant analysis ranged from 0.46 to 0.64, the logistic re-
gression analysis from 0.45 to 0.61, the neural network from 0.51 
to 0.69, and the classification tree from 0.48 to 0.70. 
Figure 3 shows recall and Fig. 4 illustrates the precision of the 
five models. While the SVM showed the best performance in 
recall (median value was 0.06 to 0.23 higher than in other models), 
precision was slightly worse (median value was 0.03 lower than 
the best model, LDA). This indicates that the SVM model has a 
great advantage to avoid overlooking actual fault-prone modules, 
with just a small loss in precision. 
Interestingly, LRA (logistic regression) showed the worst per-
formance in this experiment; it was even worse, in fact, than LDA 
(linear model). 
NN (neural network) and CT (classification tree) performed better 
than LRA and LDA in terms of F1-value and recall. However, the 
precision of CT was the worst among all models. 
We consider that the accuracy and the stability of the SVM model 
derived from using the soft margin [4] since it allows noisy sam-
ples in the training dataset, and this contributed to avoiding the 
over-fitting problem. 

Table 1. Collected metrics 

METRICS Mean Median Std. Dev. 

Source lines of code 547.88 405.50 531.15 

Commented lines 211.40 165.00 166.51 

Commented lines per SLOC 0.59 0.58 0.08 

Newly developed SLOC 304.99 218.50 300.78 

Reused SLOC 29.69 0.00 247.69 

Number of test items 36.018 20.00 60.96 

Cyclomatic number 32.31 21.00 38.88 

Cyclomatic number per SLOC 3.28 2.49 2.70 

The number of Loops 2.98 2.00 3.87 

Maximum of nest level 5.80 6.00 1.47 

Sum of nest level 3.69 3.63 0.43 

Number of jump nodes 4.09 1.00 9.40 

Number of declared variables 68.20 33.00 98.47 

Number of referred variables 109.01 69.00 153.56 

Number of assigned variables 84.98 54.00 123.79 

Number of inner calls 12.15 9.00 11.89 

Number of external calls 4.24 1.00 7.96 

Number of global assigned vari-
ables 43.31 25.00 55.99 

Number of global referred vari-
ables 56.66 36.00 68.37 

Number of macros 5.11 4.00 3.26 

Number of parameters 4.49 1.00 7.14 

 



4. SUMMARY 
In this paper, we experimentally evaluated the prediction perform-
ance of an SVM model and five conventional models by using an 
actual project dataset. The results indicated that the SVM model 
exhibited the best performance among all the models tested.  
One of our future works will be to evaluate these models with an 
imbalanced dataset that contains a very low proportion of fault-
prone modules. For such an “imbalanced” dataset, we may need to 
apply the re-sampling method [3] to a fit dataset before construct-
ing SVM models. 
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Figure 2. F1 Value of Each Method 
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Figure 4. Precision of Each Method 
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Figure 3. Recall of Each Method 


