
NAIST-IS-DD0361009

Doctoral Dissertation

Protecting Secret Information in

Software Processes and Products

Yuichiro Kanzaki

February 2, 2006

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yuichiro Kanzaki

Thesis Committee:

Professor Ken-ichi Matsumoto (Supervisor)

Professor Katsumasa Watanabe (Co-supervisor)

Associate Professor Akito Monden (Co-supervisor)

Associate Professor Yuichi Kaji (Co-supervisor)

Protecting Secret Information in

Software Processes and Products ∗

Yuichiro Kanzaki

Abstract

Recently, many software development processes and products involve secret

information, which is valuable or related to system security, such as the cipher

keys of a digital rights management system, conditional branch instructions for

license checking, and algorithms that are commercially valuable. The goal of this

dissertation is to prevent such secret information from being revealed to users.

Two cases are considered where secret information is revealed: (1) through work

products (e.g., source code, specification) leaked by insiders (developers) who

take part in a software development process, and (2) by reverse engineering of

software products (i.e., software implementation).

First, in order to tackle (1), a method is proposed which is useful for construct-

ing secure (i.e., little risk of leakage by insiders) software development processes.

Knowledge about work products in a software process is transferred among de-

velopers in a person-to-person manner, and the probability of each developer

knowing each product depends on the assignment of developers and the structure

of the software process. Based on these facts, the mechanism of knowledge trans-

fer within a software process for evaluating the risk of leaking security-sensitive

products by insiders is formulated.
∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD0361009, February 2, 2006.

i

Second, in order to tackle (2), a method for increasing the cost of reverse

engineering attacks is proposed. This method first overwrites program instruc-

tions with dummy instructions. Then, the program itself restores (i.e., replaces

the dummy instructions with the original instructions) within a certain period

of execution using a self-modification mechanism. This drastically increases the

complexity of program understanding since the understanding fails if the dummy

instructions are inspected as they are.

This dissertation is organized as follows. In Chapter 1, the background and

outline of the dissertation is summarized. In Chapter 2, a method to evaluate the

risk of leaking security-sensitive work products by insiders, for a given software

process, is presented. In Chapter 3, a method for increasing the cost of reverse

engineering attacks using the self-modification mechanism is presented. Chapter

4 concludes the dissertation and presents directions for future work.

Keywords:

software security, software protection, information leakage, software development

process, tamper-resistant software

ii

List of Major Publications

Journal Papers

• Yuichiro Kanzaki, Hiroshi Igaki, Masahide Nakamura, Akito Monden, and

Ken-ichi Matsumoto, “Quantitative Analysis of Information Leakage in

Security-Sensitive Software Processes,” IPSJ Journal, Vol.46, No.8, pp.2129–

2141, Information Processing Society of Japan, August 2005.

• Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Mat-

sumoto, “A Software Protection Method Based on Instruction Camouflage,”

The IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences (Japanese Edition), Vol.J87-A, No.6, pp.755–767,

June 2004. (in Japanese)

International Conference Papers

• Yuichiro Kanzaki, Hiroshi Igaki, Masahide Nakamura, Akito Monden, and

Ken- ichi Matsumoto, “Characterizing Dynamics of Information Leakage in

Software Process,” In Proc. 3rd Australasian Information Security Work-

shop (AISW2005), Vol.44, pp.145–151, January 2005.

• Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Mat-

iii

sumoto, “Exploiting Self-Modification Mechanism for Program Protection,”

In Proc. 27th Computer Software and Applications Conference (COMP-

SAC2003), pp.170–179, November 2003.

Domestic Conference Papers

• Yuichiro Kanzaki, Hiroshi Igaki, Masahide Nakamura, Akito Monden, and

Ken-ichi Matsumoto, “Evaluating the Risk of Information Leakage in Soft-

ware Process,” Computer Security Symposium 2004 (CSS2004), Vol.2,

pp.775–780, October 2004. (in Japanese)

• Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Mat-

sumoto, “Protecting Software Programs by Replacing Instructions at Run-

time,” Technical Report of IEICE, ISEC2002-98, pp.13–19, December 2002.

(in Japanese)

Patent Applications

• Akito Monden and Yuichiro Kanzaki, “Program, Apparatus and Method

for Adding Self-Modifying Code,” Japan Patent Pending, 2002-355881, De-

cember 2002. (in Japanese)

iv

Contents

1 Introduction 1

1.1. Background . 1

1.2. Goal and Approach . 5

2 Quantitative Analysis of Information Leakage in Security-Sensitive

Software Process 8

2.1. Introduction . 8

2.2. Preliminaries . 12

2.2.1 Software Process Model 12

2.2.2 Order among Processes . 14

2.2.3 Assumption on Software Process Model 15

2.3. Characterizing Dynamics of Information Leakage 17

2.3.1 Product Knowledge of Developers 17

2.3.2 Leakage of Product Knowledge 18

2.3.3 Stochastic Product Knowledge 20

2.4. Case Studies . 23

2.4.1 Case Study 1: Impact of Collaboration among Developers 24

2.4.2 Case Study 2: Optimal Developers Assignment 27

2.4.3 Case Study 3: Influence of Process Structure 29

v

2.5. Discussion . 33

2.5.1 Setting Value of leak(u,w, u′) 33

2.5.2 Deterministic Model . 35

2.5.3 Related Work . 36

3 Protecting Software Based on Instruction Camouflage 38

3.1. Introduction . 38

3.2. Method of Software Protection by Instruction Camouflage 40

3.2.1 Attacker Model . 40

3.2.2 Key Idea . 41

3.2.3 Preliminary . 43

3.2.4 Outline of the Proposed Method 44

3.2.5 Construction of Camouflaged Program M 45

3.2.6 Construction Example of Camouflaged Program M 51

3.3. Discussion of Difficulty of Analysis 53

3.3.1 Assumed Analysis Procedure 53

3.3.2 Security against Static Analysis 54

3.3.3 Security against Dynamic Analysis 57

3.4. Case Studies . 58

3.4.1 Outline . 58

3.4.2 Distance between Target Instruction and Restoring Routine 59

3.4.3 Size Overhead . 61

3.4.4 Performance Overhead . 62

3.5. Related Work . 66

4 Conclusion 69

4.1. Achievements . 69

4.2. Future Research . 71

vi

Acknowledgements . 73

References . 75

Appendix . 83

A. Example of Camouflaged Program 83

A.1 Original Program (C language) 83

A.2 Original Program (assembly) 83

A.3 Camouflaged Program . 85

vii

List of Figures

1.1 Two avenues of obtaining secrets 3

1.2 A scenario of obtaining clues to nullify the password-checking routine 7

2.1 Security-sensitive software process 10

2.2 Process model example . 13

2.3 Computation result of Risk . 27

2.4 Optimal assignment and risky assignment 29

2.5 Target software process model . 30

2.6 Influence of process structure . 32

3.1 Example of camouflage . 41

3.2 Image of a camouflaged program 43

3.3 An outline of the proposed method 45

3.4 Example of targeti, P (RRi) and P (HRi) that satisfy four conditions 46

3.5 Example of a camouflaged program 52

3.6 Probability of success of code analysis (m = 100) 56

3.7 Distribution of target instructions and restoring routines 61

3.8 Impact on program execution time 63

3.9 Program execution time and probability of success of code analysis

(m/L = 1%, 3%, 5%) . 65

viii

List of Tables

2.1 Know(u, Integrate) (u ∈ {A,B,C,D,E}) 18

2.2 PKnow(u, Integrate) (u ∈ {A,B,C,D, E}) 23

2.3 Average of Risk with respect to Col 26

3.1 Distance between target instructions and restoring routines 60

ix

Chapter 1

Introduction

1.1. Background

As software involving security-sensitive secret information increases, protection of

internal secrets from being leaked out to software users has become an overarching

issue in today’s software development. A wide variety of secret information is

present in today’s software systems as follows:

Security-Sensitive Data: Security-sensitive data are constant values (e.g.,

numeric values and alphabet strings) that are related to system security

and/or user privacy. For instance, in CPPM (Content Protection for Pre-

recorded Media)/ CPRM (Content Protection for Recordable Media) stan-

dards, a cipher key called a “device key” and related constant values called

an “S-Box” must be secretly implemented in a digital contents player soft-

ware and must be concealed from its users [1]. If a user obtains such secret

values, illegal copying or use of digital contents could occur [65].

Security-Sensitive Algorithm: A security-sensitive algorithm is a logical se-

quence of instructions that is related to system security or is commercially

1

valuable. For instance, the decryption algorithm of CSS (Contents Scram-

bling System) standards, which is still commonly used for DVD media pro-

tection, should have been concealed from users [21], although the algorithm

was revealed by a “crack” in 1999. As a result, programs which subvert

DVD copy protection are widely distributed these days [54].

Security-Sensitive Branch Points: A security-sensitive branch point is a set

of conditional branch instructions related to system security. For instance,

it must be extremely difficult for users to find and modify conditional branch

instructions that check whether a user is licensed or not, to avoid illegal use

or copying of software [21,23,26].

Illegal activities caused by the revealment of such secret information are fatal

threats to the software industry since those activities bring about serious financial

damage to software suppliers and vendors [49]. In order to prevent such secret

information from being revealed to users, the following two avenues of obtaining

secrets must be obstructed:

1. Obtaining secret information through leaked work products of a software

process (Figure 1.1(a)).

2. Obtaining secret information by reverse engineering of software products

(Figure 1.1(b)).

The two avenues of obtaining secrets are described in detail below.

2

Leak

……
……
……
……
……
……
……
……
……
……
……
……

……
……

Software Products

Users

Work Products
(source code etc.)

Secret

Developers

Developer

Software Development Process

Release

(a) Obtaining secret information through leaked work products of a software process

……
……
……
……
……
……
……
……
……
……
……
……

……
……

Software Products

Users

Work Products
(source code etc.)

Secret

Developers

Software Development Process

Reverse

Engineering

Release

(b) Obtaining secret information by reverse engineering of software products

Figure 1.1. Two avenues of obtaining secrets

3

1. Obtaining secret information through leaked work products of a

software process

There is a possibility that work products (e.g., source code, specification) of a

software development process leak out to users. The leakage of work products

could have many different causes, such as having a computer that has secret

information stolen or misplaced, unauthorized access to the computer via the

Internet, and illegal sales of secret information by insiders [3]. For example, the

source code of Microsoft Windows NT and Windows 2000 has been leaked onto

the Internet [7]. Certain evidence seems to point to a Microsoft partner company

as the source of the leaked code [36,38]. Microsoft is concerned about the potential

theft of its handiwork because this theft calls into question intellectual property

rights [37].

2. Obtaining secret information by reverse engineering of software

products

Even if a user cannot obtain leaked work products that include secret information,

he/she might be able to obtain the secret information by the reverse engineering

of software products (i.e., software implementation). Reverse engineering is the

process of taking a software program apart and analyzing its workings in detail.

While reverse engineering commonly takes place in software maintenance tasks

such as the investigation of interoperability and security auditing, it also has been

used for obtaining secret information involved in software by end users.

On open systems such as Windows and Unix, information about the API of the

OS and the architecture of CPU [59] is open to the public. In addition, tools for

analyzing software such as disassemblers, binary editors and debuggers are easily

available. Since it is easy for users to reverse engineer compared to conventional

4

embedded devices [25], software running on open systems is always exposed to

the menace of reverse engineering attacks. In fact, many illegal activities have

been and are currently occurring through reverse engineering, and many software

developers worry about their applications being reverse engineered [18,52,57].

1.2. Goal and Approach

The goal of this dissertation is to explain how to prevent secret information from

being revealed to users. Assuming that a user can obtain secret information

through leaked work products of software processes, and by reverse engineering

of software products, two methods for protecting secrets are presented:

1. A method for evaluating the risk of leaking security-sensitive work products

2. A method for protecting software against reverse engineering attacks

The approaches of each method are described below.

A method for evaluating the risk of leaking security-sensitive work

products

Since leakage of security-sensitive work products is caused by human errors in

many cases [3], minimizing the amount of knowledge transfer of secret informa-

tion among software developers to prevent the information from leaking out is

important. However, from the viewpoint of efficiency, knowledge transfer should

be improved, since it helps developers acquire a similar understanding of the pro-

cess [32, 35]. Thus, people who design a security-sensitive software process (e.g.,

software process analyst, software process designer) should carefully consider the

balance between the productivity and the risk of leakage, when they determine

5

the structure of the software process and the assignment of developers to each

process.

As a method that is useful for preventing leakage of security-sensitive software

process, a framework to quantitatively evaluate the risk of information leakage,

that is, the knowledge transfer with irrelevant products, for a given software pro-

cess is presented. To achieve this, first the problem of information leakage is

formulated by introducing a formal software process model. Next, assuming that

the knowledge of the irrelevant products can be transferred, a method to compute

the probability of each developer knowing each product is presented. The prob-

ability reflects the risk that someone leaked the product to the developer. This

probability is derived from the given software process model using a recurrence

formula.

This method is introduced in detail in Chapter 2.

A method for protecting software against reverse engineering attacks

First, how typical reverse engineering attacks are performed to obtain a solution

for protecting software against the attacks is considered. Although it is difficult

to clearly answer how software is reverse engineered since there are many ways to

attack software programs, it is certain that an attacker (i.e., a user who performs

reverse engineering attacks) has to understand a program to reverse engineer that

program successfully.

Figure 1.2 shows a scenario, where an attacker obtains clues to nullify the

password-checking routine. First, the attacker disassembles the binary program

into an assembly program to make it easy to understand. Then, the attacker often

narrows the range of analysis to reduce the cost of program understanding. Then,

a program fragment containing the checking routine is identified and understood

by the attacker. As a result, the checking routine may be canceled or cropped,

6

Binary Program

cmpl $12, %ebp
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax
movl $1, %esp
jmp L11

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

Program Fragment
Containing the Checking Routine

Assembly Program

Narrow the Range of
Analysis

Disassemble

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

Understand Clues to Nullify
the Checking Routine

Figure 1.2. A scenario of obtaining clues to nullify the password-checking routine

and the program may be used without password authentication. As seen in this

example, whenever software is reverse engineered, there must be a process where

an attacker reads the program and tries to understand the program.

An effective method to protect software against reverse engineering attacks

is to increase the cost of program understanding. The key idea of the method

presented in this dissertation is to camouflage a significant amount of instructions

with dummy instructions in a program. Our method first overwrites the instruc-

tions with dummy instructions. Then, the program itself restores the instructions

within a certain period of execution using a self-modification mechanism. This

drastically increases the complexity of program understanding, since the under-

standing fails if the dummy instructions are inspected as they are.

This method is presented in detail in Chapter 3.

7

Chapter 2

Quantitative Analysis of

Information Leakage in

Security-Sensitive Software

Process

2.1. Introduction

Information leakage is a serious problem in today’s advanced information society.

Many incidents have been reported recently, including leakage of user accounts

and passwords [61], medical records [47], and product source codes [7]. Because

of its impact on trust and security, minimizing the risk of information leakage is

now a social responsibility for every organization.

Although information leakage occurs in many domains, the leakage in a soft-

ware development process is especially focused on. The development of a complex

and large-scale software system requires the collaborative effort of many people

8

with an elaborate software process [30]. A (whole) software process is composed

of partially-ordered sub-processes (simply called processes) such as design, coding

and testing. Each process has work products (simply products) as either the input

or output of the process.

Typically, a number of developers including manages, designers and program-

mers, participate in a common process. Given input products, the developers

collaborate with each other, and produce output products. Through the collab-

oration, they usually share their knowledge of the products in order to achieve

the process efficiently. Thus, when multiple developers participate in a process,

certain knowledge transfer may occur in the process. From the viewpoint of effi-

ciency, knowledge transfer should be improved, since it helps developers to acquire

a similar understanding of the process [35].

However, in the development of security-sensitive software such as DRM ap-

plications [11, 41], the transfer of product knowledge is not always encouraged.

To understand this better, a simple example is introduced.

Figure 2.1 shows a software process consisting of two processes P1 and P2.

P1 is a design process conducted by developer Alice, where Alice produces a

product Specification from two given products, Requirement and SecretInfo. It

is here assumed that SecretInfo is confidential information (e.g., device keys or

S-BOX of CPRM systems [1]) that only Alice is authorized to see, and that must

appear in Specification in a certain encoded form. P2 is a coding process in which

Alice, Bob, and Chris participate. The three developers collaborate with each

other and produce Code from Specification. Since Alice knows Specification, Alice

may explain it to Bob and Chris in the collaboration. This knowledge transfer

is reasonable, since Specification is necessary for Bob and Chris to perform P2

together. Even if Alice does not give any explanation, Bob and Chris must know

Specification. On the other hand, both Requirement and SecretInfo are irrelevant

9

Requirement
……
……

SecretInfo
……
……

P1
Design

Specification

……
……

Code

P2
Coding

Alice

Alice Bob Chris

Encoded
Secret
………

………

Figure 2.1. Security-sensitive software process

to P2, since they are not directly connected to P2. However, what happens if

Alice tells Bob or Chris the knowledge about SecretInfo in P2? In this case, Bob

or Chris gets to know SecretInfo, which ruins the security scheme.

From the above observation, in a security-sensitive software process, the knowl-

edge transfer with any such irrelevant products should carry a warning such as

information leakage. Note that the risk of information leakage varies, depending

on the structure of the software process and the assignment of developers to each

process. For example, in Figure 2.1 if Alice is not assigned to P2, no leakage

occurs.

The goal of this chapter is to propose a framework to evaluate quantitatively

the risk of information leakage for a given software process. To achieve this,

10

first the problem of information leakage by introducing a formal software process

model is formulated. The model is based on the conventional process-centered

software engineering environment [19, 22]. The contribution is to formulate

product knowledge of each developer on top of the model, focusing on the process

structure and the developer assignment.

Next, assuming that the knowledge of the irrelevant products can be trans-

ferred (i.e., leaked), a method to compute the probability of each developer know-

ing each product is presented. The probability reflects the risk that someone

leaked the product to the developer. The probability is derived from the given

software process model using a recurrence formula.

To show applicability to practical or actual settings, three case studies are

conducted. The first case study demonstrates how the information leakage varies

depending on the assignment of developers. In the second case study, an applica-

tion to find an optimal assignment of developers for a constrained software process

is presented. In the last case study, the relationship between the process struc-

ture and the information leakage is investigated. The proposed method provides

a simple but powerful means to perform quantitative analysis on information

leakage in a security-sensitive software process.

The rest of this chapter is organized as follows: In Section 2.2, definitions of

the software process model are given. Section 2.3 describes the proposed method

for characterizing the dynamics of information leakage. In Section 2.4, the case

studies are conducted. In Section 2.5, two issues are discussed: setting probability

of leakage among developers, and leakage in a deterministic manner. The related

work is also reviewed in the section.

11

2.2. Preliminaries

2.2.1 Software Process Model

First, a definition of a software process model is presented. The model is based

on the conventional process-centered software engineering environment [19, 22],

where the software development is modeled by partially-ordered activities (pro-

cesses) operating with given or intermediate working products. In addition to the

conventional model, the proposed model involves the assignment of developers to

specify explicitly who participates in each process.

Definition 1 (Software Process Model) A software process model is defined

by P = (U,WP, PC, I, O, AS), where:

• U is a set of all developers participating in the development.

• WP is a set of all work products.

• PC is a set of all processes.

• I is an input function PC → 2WP that maps each process p ∈ PC onto a

set IP (⊆ WP) of input products of p.

• O is an output function PC → 2WP that maps each process p ∈ PC onto a

set OP (⊆ WP) of output products of p.

• AS is an developer assignment function PC → 2U that maps each process

p ∈ PC onto a set of developers participating in the process p.

Figure 2.2(a) shows an example of the software process model, which simplifies

an implementation stage of a security-sensitive application. The model contains

12

U = { A, B, C, D, E}
PD = { DesignSpec, Rev-Spec, SecretInfo,

ModuleSpec, S-ModuleSpec, MainModule,
SecurityModule, ObjectCode }

PC = {Review, SecAnalysis, S-Design, Coding1,
Coding2, Integrate }

I(Review)={DesignSpec}
I(SecAnalysis)={Rev-Spec}
I(S-Design)={SecretInfo}
I(Coding1)={ModuleSpec}
I(Coding2)={S-ModuleSpec}
I(Integrate)={MainModule, SecurityModule}

O(Review)={Rev-Spec}
O(SecAnalysis)={ModuleSpec,SecretInfo}
O(S-Design) = {S-ModuleSpec}
O(Coding1)={MainModule}
O(Coding2)={SecurityModule}
O(Integrate)={ObjectCode}

AS(Review)={A}
AS(SecAnalysis)={A, B}
AS(S-Design)= {A, B}
AS(Coding1)={A, C}
AS(Coding2)={B}
AS(Integrate)={C, D, E}

Design
Spec

Rev-Spec

Module
Spec

Secret
Info

Security
Module

Main
Module

Review
{A}

{A, B}

{A, C}

{A,B}

Coding1

S-Design

SecAnalysis

Integrate{C, D, E}

Object
Code

{B} Coding2

S-Module
Spec

(a) Software Process Model (b) Petri-Net Representation

Figure 2.2. Process model example

five developers, eight work products, and six processes. The scenario assumed in

the model is briefly explained as follows:

Example Scenario: The implementation stage produces an object code from

a given design specification. In this stage, the design specification is revised by

a review process. Next, by applying a security analysis to the reviewed specifi-

cation, all security-sensitive information is isolated from the specification. The

rest of the specification is called ModuleSpec. From the security information,

authorized developers design a specification, called a S-ModuleSpec for an inde-

pendent security module in which the raw security information is encoded. A

main module and the security module are coded respectively from ModuleSpec

and the S-ModuleSpec. Finally, these two modules are integrated as the object

13

code.

In Figure 2.2(a), let us consider the process Review. This process models the

review of the design specification. Review takes DesignSpec as an input product,

and outputs a reviewed specification (Rev-Spec). In this example, only developer

A is responsible for conducting the process. Next, the process SecAnalysis is

considered. This process takes Rev-Spec as an input, and outputs ModuleSpec

and SecretInfo. Two developers A and B participate in the process. Through a

similar discussion, how the process model achieves the example scenario can be

seen.

By definition, each process has a set of input products and a set of output

products. This definition allows us to draw a given process model by a Petri net

[43], by associating WP with places, PC with transitions, and by connecting a

place and a transition with an arc according to I and O. Figure 2.2(b) shows

a schematic representation of the example process with Petri net. Also, a set

of developers is associated with each corresponding transition based on AS, as

depicted in the left of the transition. Note that the use of the Petri net is just for

better comprehension of the overview of the process structure, but is not essential

to the methodology here.

2.2.2 Order among Processes

Suppose that P = (U,WP, PC, I, O,AS) is given. For p ∈ PC, w ∈ I(p) and

w′ ∈ O(p), a triple (w, p, w′) is used to represent a product dependency of process

p, where a work product w′ is produced from w via p. The product dependencies

implicitly specify a partial order between processes, since a process needs input

products that have been previously generated by other processes.

14

Definition 2 (Order of Processes) For processes p and p′, p is executed be-

fore p′ (denoted by p < p′) iff there exists a sequence (w0, p, w1) (w1, p1, w2) ...

(wn−1, p
′, wn) of product dependencies. For processes q and q′, if any < is not

defined between q and q′, q and q′ are independent.

Let us consider the previous example. As depicted in Figure 2.2(b), the order

among the six processes can be seen, i.e., Review < SecAnalysis < Coding1 <

Integrate, and Review < SecAnalysis < S-Design < Coding2 < Integrate. Note

that the order is partial at this moment. Indeed, no order between Coding1 and

S-Design (or Coding2) is defined, thus they are independent. The independent

processes can be executed in any order, even concurrently.

2.2.3 Assumption on Software Process Model

The following two assumptions are used for a given process model P = (U, WP,

PC, I, O, AS).

Assumption A1: There exists no sequence (w0, p0, w1) (w1, p1, w2) ...

(wn−1, pn, wn) of product dependencies such that w0 = wn.

Assumption A2: For any pair of independent processes p and p′, if AS(p) ∩
AS(p′) 6= φ, then an order between p and p′ must be given.

Assumption A1 states that the product dependencies never form a loop. This is

quite reasonable for general software processes. Indeed, it is unrealistic to assume

that a work product newly obtained can be used as the input of the processes

that have been completed previously. By this assumption, there is a consistent

partial order among processes for a given sequence of product dependencies.

Assumption A2 states that independent processes p and p′ must be ordered

when the same developer is assigned to both p and p′. This assumption is based

15

on the observation that a developer cannot engage in more than one process si-

multaneously. Let us consider the process model in Figure 2.2. In this example,

processes Coding1 and S-Design are independent. However, they cannot be ex-

ecuted simultaneously, since the same developer A is assigned to both processes

(i.e., AS(S − Design) ∩ AS(Coding1) = {A}). Hence, it is required to give

an order between these processes, for instance, S-Design < Coding1, so that A

conducts S-Design first.

By these assumptions, if a developer u is fixed, then the processes in which u

participates are totally-ordered.

Proposition 1 Let P = (U,WP, PC, I, O, AS) be a given process model with

Assumptions A1 and A2. For a developer u ∈ U , let PCu = {p|p ∈ PC ∧ u ∈
AS(p)} be a set of all processes to which u is assigned. Then, PCu is totally-

ordered.

Consider the process model in Figure 2.2 with S-Design < Coding1. Then, the

processes to be conducted by each user are ordered as follows:

PCA : Review < SecAnalysis < S-Design < Coding1

PCB : SecAnalysis < S-Design < Coding2

PCC : Coding1 < Integrate

PCD : Integrate

PCE : Integrate

Since PCu are totally-ordered, any process in PCu has at most one immediate

predecessor.

Definition 3 (Predecessor of Process) Let pu1 , pu2 , ..., puk
be all processes in

PCu such that pu1 < pu2 < ... < puk
. For pui

∈ PCu, pui−1
is called immedi-

ate predecessor of pui
with respect to u, which is denoted by predu(pui

). Also,

predu(pu1) is defined to be ε (empty).

16

In the above example, there is predA(Coding1) = S-design, which means that

A participates in S-design immediately before Coding1. Also, there is predC

(Coding1) = ε meaning that Coding1 is the first process that C engages in.

2.3. Characterizing Dynamics of Information Leak-

age

2.3.1 Product Knowledge of Developers

To perform a process p, developers engaging in p must know all the input products

of p. Based on the input products, they develop the output products. Hence,

when finishing p, developers should be acquainted with the output products as

well. Thus, when a process is performed, the developers acquire knowledge about

the related (i.e., input/output) products. For each developer, the knowledge is

accumulated in the sequence of completed processes. This dynamics depends on

the given process model, specifically, I, O, and AS.

For example, consider the example in Figure 2.2. Developer A participates

in process Review. Hence, when Review is finished, A must know the products

DesignSpec and Rev-Spec. Similarly, the completion of SecAnalysis provides the

knowledge of Rev-Spec, ModuleSpec, and SecretInfo for both A and B. Thus,

when A completes SecAnalysis, A knows four products; DesignSpec, Rev-Spec,

ModuleSpec, SecretInfo.

Definition 4 (Product Knowledge) Let P = (U,WP, PC, I, O, AS) be a given

software process model. For u ∈ U and p ∈ PC, a set of working products

Know(u, p) (⊆ WP) is defined s.t.

Know(u, p) =
⋃

u∈AS(p′)∧p′≤p

(I(p′) ∪O(p′)) (2.1)

17

Table 2.1. Know(u, Integrate) (u ∈ {A,B, C, D, E})
u DSpc RSpc SInfo MSpc SSpc MMo SMo OCd

A 1 1 1 1 1 1 0 0

B 0 1 1 1 1 0 1 0

C 0 0 0 1 0 1 1 1

D 0 0 0 0 0 1 1 1

E 0 0 0 0 0 1 1 1

Know(u, p) is called the product knowledge of developer u at the completion of

process p.

The term “knowledge” is used in an abstract sense, which can be refined in terms

of, for instance, the essential idea or mechanism, the product’s document itself,

or the access method to the product.

Let us compute Know(B, Coding2) with Figure 2.2. Before Coding2, B has

participated in SecAnalysis and S-Design. Hence, accumulating the input/output

products of these three processes, there is Know(B,Coding2) = { Rev-Spec,

SecretInfo, ModuleSpec, S-ModuleSpec, SecurityModule }.
For convenience, Know(u, p) is represented with a binary vector. Let w1,

w2, ..., wn be all work products in WP . Then, Know(u, p) = [wp1, wp2, ..., wpn]

is denoted, where wpi = 1 iff wi ∈ Know(u, p), otherwise wpi = 0. Then, the

product knowledge of all users at the completion of the last process (i.e., Integrate)

can be represented in Table 2.1.

2.3.2 Leakage of Product Knowledge

Now suppose a situation such that a developer may share his/her product knowl-

edge to other developers sharing the same process.

18

As an example, consider Coding1 in Figure 2.2. This process is shared by A

and C. Assuming an order S-Design < Coding1, the product knowledge of A and

C at Coding1 are computed as follows:

DSpc RSpc SInfo MSpc SSpc MMo SMo OCd

Know(A,Coding1) = [1 1 1 1 1 1 0 0]

Know(C, Coding1) = [0 0 0 1 0 1 0 0]

Coding1 is the first process that C participates in. Hence, at this moment, C

is supposed to know only ModuleSpec and MainModule. C does not need to know

all the rest of the products. On the other hand, A has more product knowledge

than C, because A has previously participated in three other processes.

Assume now that during Coding1, A tells C the product knowledge that C

does not know, for example SecretInfo, with some probability. As a result, C

learns SecretInfo although C has never directly touched it before. Once C knows

SecretInfo, the knowledge would be propagated to D and E, since C shares the

subsequent process, Integrate, with D and E. As a result, the isolation of security

information would be in vain.

Thus, when multiple developers work in the same process, the product knowl-

edge can be spread from the developer who knows the product to developers who

do not know. This is regarded as information leakage in the software process,

which is specifically defined as follows.

Definition 5 (Leakage) For developers u, u′ ∈ D, a work product w ∈ WP

and a process p ∈ PC, u may leak w to u′ at p iff {u, u′} ⊆ AS(p) and both

w ∈ Know(u, p) and w 6∈ Know(u′, p).

The above definition of leakage might be a bit broad. Indeed, this definition

covers a case such that a security product w is known to an unauthorized devel-

oper u′. On the other hand, someone may say that it is not leakage if w is not a

19

security-sensitive product, or if u and u′ work for the same company. However,

for simplicity and generality of the model, this broad definition is kept. A more

detailed criteria of the leakage should be tuned depending on the target software

process.

2.3.3 Stochastic Product Knowledge

Now, let us take the leakage of product knowledge into account in the model.

Specifically, the following assumption for a given process model P = (U , WP,

PC, I, O, AS) is introduced:

Assumption A3: For u, u′ ∈ U and w ∈ WP , let leak(u,w, u′) be the probabil-

ity that u leaks w to u′. It is assumed that leak(u, w, u′) is given for any u,

u′ and w.

Then, in a process p, a developer u may happen to know a product w such

that w 6∈ Know(u, p), since someone could leak w to u with a certain probability.

This motivates us to deal with product knowledge in a stochastic manner.

Let us consider a probability that a developer u knows a work product w at

the completion of process p, which Pkn(u, p, w) is denoted. When u knows w at

the completion of p, two cases can be considered.

Case C1: w ∈ Know(u, p), or

Case C2: w 6∈ Know(u, p) and some developers leak (or leaked) w to u.

Case C1 means that w is already counted in u’s product knowledge. For this

case, Pkn(u, p, w) = 1.0. Case C2 can be further divided into two sub-cases.

Case C2a: u knew w before p (via someone else), or

20

Case C2b: [u ∈ AS(p)] and [u did not know w before p] and [in p some devel-

opers sharing p with u leak w to u].

The probability that Case C2a holds is

P (C2a) = Pkn(u, predu(p), w) (2.2)

which means that u knew w in the predecessor process. Next, the probability

for Case C2b can be formulated by

P (C2b) = C(u, p) ∗ (1− Pkn(u, predu(p), w)) ∗ Pleak (2.3)

where C : U × PC → {0, 1} such that C(u, p) = 1 iff u ∈ AS(p); otherwise

C(u, p) = 0, and Pleak is the probability that some developers sharing p leak w

to u.

Next, Pleak is formulated. Let u1, u2, ..., uj be developers who share p with u

(i.e., {u1, u2, ..., uj} = AS(p)−{u}). In order for ui to leak w in p, two conditions

are required: (1) ui needs to have known w before p, and (2) ui leaks w to u.

Therefore, the probability that ui leaks w to u in p is

Pkn(ui, predui
(p), w) ∗ leak(ui, w, u)

Moreover, u knows w iff at least one of u1, u2, ..., uj leaks w to u in p, which

is the complement of “none of u1, u2, ..., uj leaks w to u in p”. Hence,

Pleak = 1− ∏

ui∈AS(p)−{u}
{1− Pkn(ui, predui

(p), w) ∗ leak(ui, w, u)} (2.4)

21

Combining all formulas together, Pkn(u, p, w) is finally derived, which is the

probability that u knows w at the completion of p :

Pkn(u, p, w) =

1.0 (· · · if w ∈ Know(u, p))

Pkn(u, predu(p), w)

+ C(u, p)

∗ (1− Pkn(u, predu(p), w))

∗ [1−∏
ui∈AS(p)−{u}{1− Pkn(ui, predui

(p), w)

∗ leak(ui, w, u)}]
(· · · if w 6∈ Know(u, p))

(2.5)

Note that Pkn(u, p, w) is specified as a recurrence formula with respect to

the process p. According to Assumptions A1 and A2, the set of processes that u

participates in is totally-ordered. Hence, predu(p) is uniquely obtained. Also, by

Assumption A3, leak(ui, w, u) is given. Therefore, the value of Pkn(u, p, w) can

be calculated deterministically.

Pkn(u, p, w) is now defined as stochastic product knowledge.

Definition 6 (Stochastic Product Knowledge) Let P = (U, WP, PC, I,

O, AS) be a given software process model with Assumptions A1, A2 and A3.

Let w1, w2, ..., wn be all work products in WP . For u ∈ U , p ∈ PC, a vector

PKnow(u, p) is defined s.t.

PKnow(u, p) = [Pkn(u, p, w1), Pkn(u, p, w2), . . . , Pkn(u, p, wn)] (2.6)

PKnow(u, p) is called stochastic product knowledge of u at the completion of

p.

Consider the example in Figure 2.2 with S-Design < Coding1. For the sake of

simplicity, let us assume a fixed probability leak(u,w, u′) = 0.01 for all u, u′ ∈ U

22

Table 2.2. PKnow(u, Integrate) (u ∈ {A,B,C,D,E})
u DSpc RSpc SInfo MSpc SSpc MMo SMo OCd

A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0

B 0.0199 1.0 1.0 1.0 1.0 0.0 1.0 0.0

C 0.01 0.01 0.01 1.0 0.01 1.0 1.0 1.0

D 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0

E 0.0001 0.0001 0.0001 0.01 0.0001 1.0 1.0 1.0

and w ∈ WP . Therefore, the stochastic product knowledge of all users at the

completion of the last process (i.e., Integrate) can be obtained as shown in Table

2.2.

2.4. Case Studies

To show the applicability of the proposed method to practical software processes,

this section conducts three case studies.

A software tool which automatically derives the stochastic product knowledge

is implemented. The tool is written in C++, comprising about 600 lines of codes.

The tool computes the stochastic product knowledge from a given text file, which

includes software process model and values of leak(u,w, u′) in a text format. As

for the performance, the tool required 0.07 seconds to compute the result for the

example process shown in Figure 2.2, on a Pentium 4 PC (3.60GHz).

23

2.4.1 Case Study 1: Impact of Collaboration among De-

velopers

The aim of this case study is to demonstrate how the collaboration among develop-

ers influences the risk of information leakage. Here, the software process model

shown in Section 2.2.1 (see Figure 2.2) is further investigated. The stochastic

product knowledge with varying AS on some processes is computed.

Let us recall the scenario of the process model. In the scenario, a work product

SecretInfo is assumed to be confidential. Also, only developers A and B are

authorized to access SecretInfo. When S-Design is completed, A and B are the

only developers that know SecretInfo.

The interest is to evaluate the risk that SecretInfo is leaked to unauthorized

developers C, D or E. For this evaluation, The developers assignment AS is

varied in the subsequent three processes Coding1, Coding2 and Integrate.

For convenience, first the following parameters is defined:

• Uaut = {A,B}: authorized developers.

• Uuaut = {C, D, E}: unauthorized developers.

• PCtgt = {Coding1, Coding2, Integrate}: target processes where the devel-

opers assignment is varied.

The risk of the leakage depends heavily on how the authorized developers

(A, B) collaborate with the unauthorized ones (C, D, E) in the target processes

(PCtgt). To characterize the collaboration, the following parameter for a process

p is defined:

Col(p) = |Uaut ∩ AS(p)| ∗ |Uuaut ∩ AS(p)| (2.7)

24

Also,

Col =
∑

p∈PCtgt

Col(p) (2.8)

is defined.

Col(p) represents the number of combinations of authorized and unauthorized

developers in a process p. This intuitively characterizes the degree of collaboration

where an authorized developer interacts with an unauthorized one in p. For

example, if AS(p) = {A,B,C,D} with Uaut = {A,B}, Uuaut = {C, D}, then

Col(p) = 4, which implies that there are 4 patterns where an authorized A or

B interacts with an unauthorized C or D. Col is the total number of such

interactions in the target processes. Hence, with the greater value of Col, the

more the authorized developers can collaborate with the unauthorized ones.

For a fixed developers assignment as = [AS(Coding1), AS(Coding2),

AS(Integrate)], the risk that SecretInfo is leaked to unauthorized developers

is formulated by:

Riskas =
∑

u∈Uuaut

Pkn(u, integrate, SecretInfo) (2.9)

Riskas is characterized as the expected number of unauthorized developers

knowing SecretInfo.

Using the developed tool, Riskas is computed for all possible assignments

as ∈ 2U × 2U × 2U . In the computation, it is assumed that leak(u,w, u′) = 0.01

for every u, u′ ∈ U and w ∈ WP .

Figure 2.3 depicts the result. In this scattered plot, the horizontal axis repre-

sents Col, while the vertical axis plots Riskas. Table 2.3 shows the average value

of Riskas with respect to Col 1 .

1 Due to the structure of the given process model, there is no developer assignment such that

Col = 17.

25

Table 2.3. Average of Risk with respect to Col

Col Risk

0 0.000000000

1 0.010040352

2 0.020082816

3 0.030094976

4 0.040112381

5 0.050125019

6 0.060119186

7 0.070156853

8 0.080101327

9 0.090217868

10 0.100071167

11 0.110321914

12 0.120011146

13 0.130566804

14 0.139962521

15 0.151329923

16 0.160040993

17 —–

18 0.180650505

26

00.020.040.060.080.10.120.140.160.180.2

0 2 4 6 8 10 12 14 16 18 20

Risk

Col
Figure 2.3. Computation result of Risk

As seen in the result, the risk that SecretInfo is leaked grows as Col increases.

This increase implies that more collaboration among authorized and unauthorized

developers causes the higher risk of information leakage. In this case study,

each probability that a developer u leaks a product w to another u′ is relatively

small (i.e., leak(u,w, u′) = 0.01 = 1%). However, if the developers share many

processes, the total probability of the leakage becomes significantly large. For

Col = 18 where all of five developers are assigned to every target process, the

risk becomes as large as 18%.

2.4.2 Case Study 2: Optimal Developers Assignment

This case study demonstrates how the proposed method can be used to find an

optimal assignment of developers. For a software process model (with certain

27

constraints), an assignment of developers AS is optimal if the risk of the leakage

is minimized by AS.

In this case study, a software process model P = (U,WP, PC, I, O,AS) is

used, where U , WP , PC, I and O are the same as those in Figure 2.2 and AS

is not determined yet. Also, the same security scheme is assumed as the one in

the previous case study. In general, a software process has certain constraints

with respect to human resources, developing time, etc. As a typical example, the

following constraints is imposed on P :

• All processes in WP must be performed by the effort of the total 10 devel-

opers (with overlaps).

• At most two developers can conduct each process.

• Both SecAnalysis and S-Design must be done only by the authorized devel-

opers (Uaut = {A,B}).

• leak(u, w, u′) = 0.01 for all u, u′ ∈ U , and w ∈ WP .

With the above constraints, the optimal assignment is computed, where the risk

that SecretInfo is leaked is minimized.

The computation is rather straightforward. For every possible assignment

as that satisfies the constraints, Riskas is computed (see Case Study 1). The

optimal assignment is shown in Figure 2.4(a). In this assignment, there is no

risk that SecretInfo is leaked (i.e., Riskas = 0.0000). For a just comparison, the

assignment is also computed where Riskas is maximized within the constraints.

Figure 2.4(b) shows one of such cases, where Riskas is as large as 0.0300).

As can be seen in the optimal assignment (Figure 2.4(a)), after S-design there

is no process involving authorized (A, B) and unauthorized developers (C, D, E),

simultaneously. In contrast, as for the risky assignment (Figure 2.4(b)), in every

28

Design
Spec

Rev-Spec

Module
Spec

Secret
Info

Security
Module

Main
Module

Review
{A,C}

{B}

{A, B}

{A,B}

Coding1

S-Design

SecAnalysis

Integrate{D,E}

Object
Code

{C} Coding2

S-Module
Spec

Design
Spec

Rev-Spec

Module
Spec

Secret
Info

Security
Module

Main
Module

Review
{A, B}

{A}

{A, E}

{B}

Coding1

S-Design

SecAnalysis

Integrate{A, C}

Object
Code

{B,D} Coding2

S-Module
Spec

(a) Assignment that Riskas is (b) Assignment that Riskas is

minimized (Riskas = 0.0000) maximized (Riskas = 0.0300)

Figure 2.4. Optimal assignment and risky assignment

process after S-design either A or B shares the process with an unauthorized

developer.

Thus, the proposed method can be also used as a powerful means to perform

optimal tunings of the process configuration.

2.4.3 Case Study 3: Influence of Process Structure

The previous two case studies showed that the assignment of developers to each

process is an essential factor for controlling the risk of the information leakage.

The next interest is to examine the influence of the process structure (i.e., the

shape of the Petri Net, intuitively) on information leakage.

29

ProgDesign1

DesignRev1

Coding1

CodeRev1

SysDesDoc2

ProgDesign2

ProgDesDoc2

DesignRev2

ReviewedDes2

Coding2

Code2

CodeRev2

{A,D}

{A,D}

{A,B}

{A,B,C}

{B,E}

{B,E}

{B,D,E}

{A,B,C,D,E}

ReqDoc

ReqSpec

ReqAnalysis{A,B}

SysDesign

SysDesDoc1

ProgDesDoc1

ReviewedDes1

Code1

ReviewedCode1

Test

SecretInfo

ReviewedCode2

{A,B} CombineCode

CombinedCode

…

…

{A,B}

{A,B}

SecMod
Design{A,B}

G1 G2

(a) Structure S1

ProgDesign1

DesignRev1

Coding1

CodeRev1

SysDesDoc2

ProgDesign2

ProgDesDoc2

DesignRev2

ReviewedDes2

Coding2

Code2

CodeRev2

{A,D}

{A,D}

{A,B}

{A,B,C}

{B,E}

{B,E}

{B,D,E}

{A,B,C,D,E}

ReqDoc

ReqSpec

ReqAnalysis{A,B}

SysDesign

SysDesDoc1

ProgDesDoc1

ReviewedDes1

Code1

ReviewedCode1

Test

SecretInfo

ReviewedCode2

{A,B} CombineCode

CombinedCode

…

…

{A,B}

{A,B}

SecMod
Design{A,B}

G1 G2

(b) Structure S2

Figure 2.5. Target software process model

30

For this, two software process models S1 and S2 shown in Figure 2.5 are

introduced. The scenario of S1 is summarized as follows:

• Five developers A, B, C, D, and E participate in the software process.

• A and B first make the requirement specification (ReqSpec) from the given

requirement document (ReqDoc) by the requirement analysis (ReqAnalysis).

• A and B conduct the system design (SysDesign) to divide the whole system

into three sub-systems: a security module and two sub-modules.

• In SysDesign, A and B carefully isolate the confidential information (Se-

cretInfo) from the rest of the system, to design the security module. For

this isolation, it is assumed that only A and B are authorized to access

SecretInfo. That is, Uaut = {A, B} and Uuaut = {C,D,E}.

• The two sub-modules are developed in two concurrent processes G1 and

G2 (shown as dotted boxes in Figure 2.5), each of which consists of four

processes (program design, design review, coding, and code review).

• The reviewed codes of the two sub-modules are combined into one. The

resultant code is applied to the subsequent test process.

Model S2 is almost the same as S1, but is somewhat ill structured. S1 and S2

have the same sets of products and processes. The developers assignment for S1

is also equal to the one for S2. However, for S2, some processes in G1 require

some products in G2 (vice versa), which is represented by the three extra arcs

between G1 and G2. These arcs suppress the execution order of some processes.

For instance, DesignRev2 can be performed only after ProgDesign1 is completed.

For both S1 and S2, authorized developers A and B share some processes

with the unauthorized ones C, D and E. Therefore, the knowledge of SecretInfo

31

0.1388

0.1390

0.1392

0.1394

0.1396

0.1398

0.1400

0.1402

Ri
sk

S1 S2

Figure 2.6. Influence of process structure

may leak. The interest is to see how the structural difference between S1 and

S2 (i.e., the three extra arcs) impacts the risk of the leakage. As in a similar

discussion in the previous case studies, the risk is formulated by:

Riskstr =
∑

u∈{C,D,E}
Pkn(u, Test, SecretInfo) (2.10)

Figure 2.6 illustrates the result, where the horizontal axis represents the name

of the model, while the vertical axis plots Riskstr for all possible execution or-

ders of the processes. As seen in the result, S2 tends to have a higher risk of

information leakage.

According to Assumption A2, it is required to give an order for between any

independent processes. A simple solution is to give an order so that Riskstr is

minimized. For S1, the optimal order of processes is:

ProgDesign2 < DesignRev2 < Coding2 < CodeRev2 < ProgDesign1 <

DesignRev1 < Coding1 < CodeRev1

32

where Riskstr = 0.139052. On the other hand, for S2, the optimal execution

order of processes is:

ProgDesign1 < ProgDesign2 < DesignRev2 < Coding2 < DesignRev1 <

Coding1 < CodeRev2 < CodeRev1

where Riskstr = 0.139524.

In S1, each process of G1 is completely independent of another process in G2.

Therefore, the processes in G1 can be executed without concern for the progress of

G2. On the other hand, for S2, the extra arcs suppress some execution order of the

processes (for example, the order Coding1 < DesignRev2 cannot be assumed).

Therefore, S2 cannot take a wide range of execution orders, which results in a

higher risk of leakage in this experiment.

Thus, the structure of the process controls the execution order of processes,

which significantly influences the risk of information leakage.

2.5. Discussion

2.5.1 Setting Value of leak(u,w, u′)

The proposed framework requires the user to give an absolute probability leak

(u, w, u′) for every u, w and u′. Although leak(u,w, u′) is assumed to be given

(see Assumption A3), here the idea of how to determine the value in a practical

setting is discussed.

By definition, the value leak(u,w, u′) characterizes the probability that a de-

veloper u leaks the product knowledge w to another developer u′. In reality, since

this action of the leakage involves many human factors, it would be difficult to

estimate an exact value of leak(u, w, u′) for each individual developer.

However, as demonstrated in Section 2.4, even if the user simply determines a

33

uniform value of leak(u,w, u′) for all u, w and u′, the user can analyze extensively

the security aspects of the given software process. In this case, the user assumes

that all developers are equally likely to leak their own product knowledge. Since

varying the uniform value is easy, this type of analysis is useful for examining the

process structure and developer assignment in the process planning stage.

On the other hand, if the user desires to estimate a more realistic value of

leak(u,w, u′) for each individual developer, the user should refer to the profile

information of developers, products, and working environment, which are sup-

posed to be available in the organization. The profile information is used to

derive objective attributes for each developer and product, involving; the age,

the position, working experience, and security awareness of the developer, as well

as organizational policies for confidential products and the trust of companies in

collaboration. Based on the derived attributes, the user would be able to estimate

leak(u,w, u′) in a more credible way.

A practical reasonable solution would be to introduce a multi-grade system

with respect to the risk of leakage. For instance, the user evaluates each developer

according to a three-grade system: dangerous, moderate, or safe. Then, the user

assigns 0.1, 0.01 or 0.001 to leak(u,w, u′) for the dangerous, moderate, or safe

developer u. Applying these settings to the proposed framework, the user can

simulate a more realistic situation of information leakage.

In addition, a user who is required to precisely evaluate the risk may desire

to vary a value of leak(u,w, u′) according to the content of the process. For

example, in the example shown in Figure 2.2, a value of leak(u, SecretInfo, u′)

in Coding2, which uses S-ModuleSpec (the product related to SecretInfo) can be

different from one in processes that do not use S-ModuleSpec (e.g., Coding1). In

order to perform such analysis, the parameter of leak needs to be extended as

follows:

34

leak(u,w, u′, p): the probability that u leaks w to u′ in p

Although this extension makes the way for setting leak more complexly, the

user can evaluate the risk in a more precise way.

More sophisticated methods and their evaluation are left as a challenging issue

in future work.

2.5.2 Deterministic Model

The information leakage has been characterized with the stochastic model so far.

However, the leakage might be considered in a deterministic manner, assuming

that any potential leakage actually occurs. Such a deterministic model could be

used to determine the safest way to avoid the leakage.

Indeed, this deterministic model can be constructed within the proposed

framework by setting every parameter leak(u,w, u′) to be either 0.0 or 1.0.

The deterministic model has the great advantage of simplicity in determining

the value of leak(u,w, u′), which can be used to analyze some special cases. For

example, suppose that a software process in a company X is performed by the

collaboration with another external company Y . For every pair of developers x

and y from X and Y , respectively, a deterministic model can be constructed,

assuming that leak(x,w, y) = 1.0, and that no leakage occurs between developers

within the same company. Then, the model can compute the set of product

knowledge that could be transfered (or leaked) from the company X to Y .

Note, however, that the deterministic model can capture only some special

situations according to the “always or never” basis. In the practical software pro-

cess, every developer can have a possibility of leaking his product knowledge. The

deterministic model cannot deal with the degree of the potential leakage that is

significantly characterized by the process structure and the developer assignment.

35

In the above example, as long as x and y shares at least a certain process, the

deterministic model always concludes that the leakage occurs. This conclusion is

just by the worst-case analysis, and is independent of the process structure and

the number of collaborations among x and y. Thus, the deterministic model tends

to omit the detailed characteristics of the given software process model itself.

On the other hand, based on the assumption that every developer has a po-

tential of leakage, the proposed stochastic model can quantitatively derive the

degree of leakage of product knowledge, taking both the process structure and

the developer assignment into account, as illustrated in Section 2.4. Although

the stochastic model has a difficulty in justification of the probability setting on

leak(x,w, y), it is expected to provide a reasonable and useful metric for many

process improvement tasks, such as constructing optimal software process under

a constraint, and examining differences among multiple software process models.

Finally, note again that the proposed framework can deal with both the de-

terministic and stochastic models. So, the user can choose either model at his

discretion.

2.5.3 Related Work

To the author’s knowledge, no research study on a software process involving

the leakage of product knowledge from one person to another exists. Chou et

al., [10] presented a model for access control named WfACL, which aims to pre-

vent information leakage within work flows that may execute among competing

organizations. Chou et al., address issues related to the management of dynamic

role change and access control. However, the model includes no concrete method

to evaluate the risk of leakage quantitatively.

A numerical approach to compute information leakage might be to use Gen-

36

eralized Stochastic Petri Net (GSPN) [43] extensively. This approach is first

examined. To do this, however, both the structure of process and the dynamics

of leakage must be modeled in one GSPN. This complicates the net structure,

and the state space becomes so large that the GSPN solver cannot compute the

probability within a reasonable time. Therefore, it is decided to treat the process

description and the leakage computation separately.

In addition, much research has been focused on different kinds of access control

methods, such as role-based access control [20, 58], and task-based access control

[62]. The goal of access control is to ensure that only authorized people are given

access to certain resources (i.e., products in this chapter). However, the aim of

the proposed method is not to control the access authority, but to evaluate the

risk of leakage as unexpected knowledge transfer among developers.

37

Chapter 3

Protecting Software Based on

Instruction Camouflage

3.1. Introduction

With the spreading use of networks, there has been remarkable progress in the

flow configuration of programs and digital content. Accompanying this is an

increasing demand for techniques which can prevent internal analysis and tam-

pering with programs by end users. In programs containing digital rights manage-

ment (DRM), for example, preventing the interception of the internal decryption

key [11,65] is necessary. In a program built into the hardware of cell phones and

set-top boxes, preventing analysis or tampering by the user [53] is also required.

An example of the problems caused by analysis is the phenomenon in which a

decryption tool for DVD data was disseminated [21, 51]. This tool was based on

an analysis of a DVD playback program, and greatly facilitated illegal copying of

DVDs.

In this chapter, analysis is meant as an act of reverse engineering to acquire

38

secret information (such as a secret key or algorithm) in a program. Typically,

such an action is assumed to involve the following steps. First the attacker

disassembles the program and tries to understand the resulting assembly program

[40]. However, a tremendous amount of labor and time is required to understand

the entirety of a large-scale program, and this amount of labor and time is not

realistic. Consequently, the attacker restricts the range to be considered (the

range which seems to be related to the secret information), and tries to understand

only that range [8,9]. The restriction and understanding of the range is repeated

until the desired secret information is acquired.

This chapter proposes a method in which a large number of instructions in

the program are camouflaged (hidden) in order to make it difficult to analyze

an assembly language program accompanied by such range restriction. In the

proposed method, an arbitrary instruction (target) in the program is camou-

flaged by a different instruction. By using a self-modification mechanism in the

program, the original instruction is restored only in a certain period during exe-

cution [33,34]. Even if the attacker attempts an analysis of the range containing

the camouflaged instruction, it is impossible for him/her to correctly understand

the original behavior of the program unless he/she notices the existence of the

routine that rewrites the target (restoring routine). In order to make the analysis

a success, the range containing the restoring routine must be analyzed, and the

attacker is forced to analyze a wider range of the program. The proposed method

can easily be automated, and the number of targets can be specified arbitrarily.

By distributing a large number of targets and a large number of restoring routines

in the program, it is likely that analysis by range restriction will be made very

difficult.

Below, 3.2 proposes a systematic method which camouflages a large number

of instructions in the program by self-modification. 3.3 discusses attacks on the

39

proposed method, and analyzes the difficulty of the attack and its prevention. 3.4

reports a case study using the proposed method. 3.5 describes related studies.

3.2. Method of Software Protection by Instruc-

tion Camouflage

3.2.1 Attacker Model

The attacker is assumed to be as follows.

• The attacker has a disassembler and the ability to perform static analysis

including range restriction by using the disassembler.

• The attacker has a debugger with a break-point function. By (manually)

setting the break-point at an arbitrary point in the program, a snapshot at

an arbitrary execution time (i.e., the content of the program which is the

object of analysis loaded in the memory) can be acquired. However, he/she

does not have tools by which a snapshot can be acquired automatically

or by which dynamic analysis using the acquired snapshot history can be

automated. He/she also lacks the ability to construct such a tool.

The above attacker corresponds to the “level 2 attacker” in the graded attacker

model of Monden et al. [44, 45].

Assuming the above attacker model, the mechanism of program protection

must satisfy the following requirements.

• The protection mechanism is not easily invalidated by static analysis using

a disassembler.

40

movl %eax, %ebp
movl $10 , %ebp
jne L10
nop

...
...

movl %eax, %ebp
movl $10 , %ebp
jmp L7
nop

...
...

Camouflage

Replace with “jne L10”

...
...

Replace with “jmp L7”

Original Program Camouflaged Program

dummy

RR

HR

Figure 3.1. Example of camouflage

• The protection mechanism is not easily invalidated by an attack using (a

few) snapshots.

In the following subsections, a protection method satisfying the above prop-

erties is proposed.

3.2.2 Key Idea

The proposed method makes it difficult for the attacker to understand the pro-

gram by camouflaging program instructions. Camouflage means hiding the exis-

tence of the original instructions from the attacker by overwriting the instructions

with dummy instructions.

Figure 3.1 shows an example of camouflage 1 . Consider the situation in which

the instruction jne L10 in the assembly program to be protected is camouflaged.

First, a dummy instruction for jne L10, that is, an instruction with different

content, is constructed. Suppose that jmp L7 is constructed as the dummy in-

1 An Intel X86 type CPU is assumed as an example for description. The assembly language

instructions are based on the AT&T syntax.

41

struction. Then, overwriting with jmp L7 is performed at the position of jne

L10.

Next, a self-modification routine is added. Self-modification means the process

of modifying the content of instructions in the program during execution. There

are two types of self-modification routines. One is a routine that rewrites the

camouflaged instruction to the original content (RR in Figure 3.1). This routine

assures the execution of the original content of the program. In the case of Figure

3.1, the routine rewrites the camouflaged instruction as jne L10.

The other is a routine that again rewrites the instruction which has been

returned to the original instruction by RR, as the dummy instruction (HR in

Figure 3.1). This routine is intended to hinder an attacker who has a snapshot

acquisition capability from determining the original instruction. In the case of

Figure 3.1, a routine automatically rewrites the instruction to be camouflaged as

jmp L7.

The dummy instruction takes the form of the original instruction only between

the execution of RR and the execution of HR. Consequently, it is difficult for the

attacker to determine that the original instruction is overwritten by the dummy

instruction jmp L7 by simply observing the neighborhood of the camouflaged

instruction. Even if the snapshot of the program after execution of HR is acquired,

it is impossible to determine the original instruction from the obtained snapshot.

The above instruction camouflage is repeated several times on the assembly

program to be protected, in order to make the program difficult to understand.

Figure 3.2 shows conceptually the program obtained after instruction camou-

flaging has been repeated many times. It is evident that a large number of

instructions in the program have been overwritten by dummy instructions be-

fore execution (● in Figure 3.2). For each dummy, there exists a routine that

rewrites the instruction to the original instruction (before it was overwritten by

42

Dummy instructions (dummy)

Restoring routines (RR)

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

・・・・・・・・・・・・・・

Hiding routines (HR)

Figure 3.2. Image of a camouflaged program

the dummy instruction) (■ in Figure 3.2), and the routine that during execution

takes the instruction rewritten to the original instruction by the above routine

and rewrites it again as the dummy instruction (▲ in Figure 3.2).

If the part of the program which the attacker attempts to analyze contains

a dummy instruction, he/she cannot correctly determine the original behavior

of the program by examining only that part. In order to understand the pro-

gram correctly, he/she must know that rewriting is performed, and determine

the content of each dummy instruction in the part to be understood before it was

overwritten. In order to obtain this information, however, he/she must locate the

routine that rewrites the instruction to the original instruction within the whole

program, which requires a tremendous effort.

3.2.3 Preliminary

The terminology in the proposed method is defined as follows. The original

program O is the program before camouflaging is to be applied. The target in-

struction is the instruction which is the target of camouflaging in O. A dummy

instruction is an instruction which is written over the target instruction in or-

43

der to camouflage the target instruction. When the user defines multiple target

instructions, the i-th target instruction is written as targeti and the instruction

used to camouflage targeti is written as dummyi.

The restoring routine is a routine (a series of instructions) that rewrites an

instruction camouflaged by the dummy instruction, thus restoring the original

target instruction. The restoring routine that rewrites dummyi to targeti is

denoted as RRi. The hiding routine, on the other hand, is a routine that rewrites

the target instruction to the dummy instruction. The hiding routine that rewrites

targeti to dummyi is denoted as HRi. The restoring routine and the hiding

routine are together called self-modification routines.

A camouflaged instruction is an instruction whose content is changed (to

targeti or dummyi) during execution. A camouflaged program M is an assembly

program which contains camouflaged instructions.

3.2.4 Outline of the Proposed Method

Figure 3.3 shows an outline of the proposed method. First, a user (e.g., a program

developer) who uses the proposed system prepares an assembly program (orig-

inal code) O to be protected. This is normally obtained by compiling a source

program or by disassembling a binary program. Then, the proposed system adds

the self-modification mechanism to the assembly program, so that the original

program becomes hard to be analyzed. Finally, assembling an assembly program

M , which is the output of the system, the user can obtain a camouflaged program

in binary that is functionally equivalent to the original one, but which is much

more complex for attackers to analyze.

In the following sections, a systematic method is presented for deriving the

camouflaged program M from the original program O.

44

Source Program

Original Program O
(In Assembly)

Proposed System

:
i = i + 1
if(i > 10) {

x = x + 1 ;
} else {

x = x ? 1 ;
}

:

Compile

Input Output

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

Camouflaged Program M
(In Assembly)

:
movb 125,%eax

:
addl $16,%esp
or $123,%eax
jne L6
jmp L4
push %eax

:

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

．．．．．．
．．．．．．．．．．．．
．．．．．．

Binary Program

Disassemble

Camouflaged
Binary Program

Assemble

Figure 3.3. An outline of the proposed method

3.2.5 Construction of Camouflaged Program M

M is constructed by the following steps 1 to 6.

(Step 1) Determination of the target instruction and the

positions of the self-modification routines

targeti and the positions of RRi and HRi in the program are determined. Below,

the positions of RRi and HRi are denoted as P (RRi) and P (HRi), respectively.

First, targeti is determined at random from among the instructions composing

M . Or, the program developer may specify the target instruction directly. A

control flow graph (directed graph) with each instruction in the assembly program

is considered as a node. P (RRi) and P (HRi) are chosen so that the following

four conditions are satisfied. The conditions are intended to assure that dummyi

is certain to be rewritten as targeti before it is executed, and is certain to be

rewritten again as dummyi before the program ends.

[Condition 1] P (RRi) exists on any path from start to targeti.

[Condition 2] P (HRi) does not exist on any path from P (RRi) to targeti.

45

targeti
P(HRi)

start

end
P(RRi)

Figure 3.4. Example of targeti, P (RRi) and P (HRi) that satisfy four conditions

[Condition 3] P (RRi) exists on any path from P (HRi) to targeti.

[Condition 4] P (HRi) exists on any path from targeti to the end of the

program.

Figure 3.4 shows an example of P (RRi) and P (HRi) satisfying conditions 1

to 4.

Then, a procedure for choosing P (RRi) and P (HRi) satisfying conditions 1

to 4 is presented.

(1) The set Tu of paths (routes without node duplication) from start to targeti

is determined.

46

(2) In the nodes that are common to all paths t ∈ Tu determined in (1), the

set Nu whose incoming and outgoing orders are both 1 is determined. It is

assumed that targeti /∈ Nu. If Nu = ∅, define targeti anew and go back to

(1).

(3) A node nu ∈ Nu is selected at random. The incoming or outgoing edge of

nu is defined as P (RRi). Similarly,

(4) The set Tl of paths (routes without node duplication) from targeti to end

is determined.

(5) In the nodes contained in common to all paths t ∈ Tl determined in (4),

the set Nl of paths whose incoming and outgoing orders are both 1 is de-

termined. It is assumed that targeti /∈ Nl. If Nl = ∅, define targeti anew,

and go back to (1).

(6) A node nl ∈ Nl is selected at random. The incoming or outgoing edge of nl

is defined as P (HRi).

(Step 2) Determination of dummy instruction

An arbitrary instruction with the same instruction length as targeti is selected

and is defined as the dummy instruction dummyi. An example is presented below

in which the operation code composing targeti, or one of the operands, is modified

for 1 byte, and is used as dummyi. Consider the following targeti.

(Hex Representation) 03 5D F4

(Assembly Representation) addl -12(%ebp),%ebx

By modifying operation code 03 to 33 in this targeti, the following dummyi

is composed.

47

(Hex Representation) 33 5D F4

(Assembly Representation) xorl -12(%ebp),%ebx

By modifying the operand F4 to FA in targeti, the following dummyi is com-

posed:

(Hex Representation) 03 5D FA

(Assembly Representation) addl -6(%ebp),%ebx

(Step 3) Generation of self-modification routine

The self-modification routines RRi and HRi are generated by the following pro-

cedure.

(1) Label 2 Li is inserted immediately before targeti. Using label Li, targeti

can be referred to indirectly.

(2) Using Li, a series of instructions for the rewriting of dummyi to targeti is

constructed and is defined as RRi.

(3) Using Li, a series of instructions for the rewriting of targeti to dummyi is

constructed and is defined as HRi.

An example is presented below. addl -12(%ebp), %ebx is defined as targeti,

and xorl -12(%ebp), %ebx is defined as dummyi. Label L1 is inserted into

targeti.

L1: addl -12(%ebp),%ebx

Next, RRi is generated. RRi has the function of modifying the first byte 33

of the instruction at L1 to 03:

2 A label is a name in assembly language which indicates the position of the instruction

(memory address) in the program.

48

movb $0x03,L1

The effect of this small assembly routine composed of the above instruction

is that the content of the address indicated by L1 is to be overwritten by the

immediate value 03 (hexadecimal). When RRi is executed, dummyi is rewritten

as targeti.

Similarly, HRi is generated. HRi has the function of modifying the first byte

03 of the instruction at L1 to 33.

movb $0x33,L1

When HRi is executed, targeti is rewritten as dummyi.

(Step 4) Write-in of dummy instruction and insertion of

self-modification routine

The dummy instruction dummyi generated in Step 2 is written over targeti de-

termined in Step 1. By this process, the program before execution enters a state

in which targeti is camouflaged by dummyi. Then the self-modification rou-

tines RRi and HRi which were generated in Step 3 are inserted into P (RRi) and

P (HRi), respectively.

(Step 5) Complication of self-modification routine

The self-modification routine has the property that the address of targeti in the

program area is indicated by the label (immediate value address), and the content

is rewritten. Consequently, there is a danger that an attacker may ascertain the

position through the (static) analysis, and may identify the position of targeti.

49

Consider, for example, the case in which the movb instruction in the program con-

tains the immediate address indicating the program area as the second operand.

Then, that movb instruction may be inferred to be a self-modification routine.

In order to make static analysis difficult, the self-modification routine is com-

plicated. For example, the fact that there is no write-in into the program area

may be disguised by operating on the label. Or, the identification of the self-

modification routine by the static pattern is made more difficult by the use of

conventional techniques such as obfuscation of machine language instructions [42]

and mutation [28]. An example of the modification of movb $0x03,L1 is as fol-

lows:

movl $L1 + 1250, %eax

subl $1250, %eax

movb $0x03,(%eax)

L1 does not appear in the binary program obtained by assembling the above

assembly routine (the value obtained by adding 1250 to L1 appears). This makes

it difficult to identify the address L1 (the position of targeti) by static analysis.

The address obtained by adding 1250 to L1 does not necessarily indicate the

program area. Furthermore, the second operand of the movb instruction is not the

immediate address, but the address indicated by the register %eax. It is difficult

to determine its value by static analysis. By combining the above processing with

obfuscation and mutation, an attack by pattern matching and address analysis

will be made more difficult.

(Step 6) Iteration of above steps

The processes from Step 1 to Step 5 are repeated. The number of camouflaged

instructions is increased by each iteration. As will be discussed in 3.4, the increase

50

in the number of camouflaged instructions and degradation of the execution ef-

ficiency are in a trade-off relation. It is thus desirable to specify the number of

iterations with reference to the required degree of protection and the acceptable

degradation of execution efficiency.

3.2.6 Construction Example of Camouflaged Program M

Figure 3.5 shows an example of a camouflaged program. (a) is the original pro-

gram and (b) is the camouflaged program. The procedure for deriving (b) from

(a) is as follows.

In the first camouflaging process, the instruction addl -12(%ebp), %ebx in

the dotted frame in Figure 3.5(a) is selected as target1, and is overwritten by

dummy1 (xorl -12(%ebp), %ebx), as shown in Figure 3.5(b). Then, the self-

modification routines RR1 and HR1 for target1 are generated and inserted. In

the second camouflaging process, one of the instructions composing RR1 (movb

$0x03, (%eax) at the end of the first camouflaging process) is selected as target2

and is overwritten by dummy2 (movb $0x4a, (%eax)) as shown in Figure 3.5(b).

Then, the self-modification routines RR2 and HR2 for target2 are generated and

inserted.

In this case, part of RR1 is rewritten by dummy2. Consequently, in order to

ascertain the original instruction for dummy1, not only RR1 but also RR2 must

be found. In the Appendix A, a simple program containing a conditional branch

is presented, together with a listing of the camouflaged program.

51

movl -8(%ebp), %eax
movb $0, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx
addl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

...
...

movl -8(%ebp), %eax
movb $0, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx
addl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

...
...

(a) Original Program

movl $L2+0x824+2, %eax
subl $0x824, %eax
movb $0x03, (%eax)

movl $L1 - 0x12, %eax
addl $0x12, %eax

L2: movb $0x4a, (%eax)

movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx

L1: xorl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx

movl $L1 + 0x120, %eax
subl $0x120, %eax
movb $0x33, (%eax)

movl $L2+0x77+2,%eax
subl $0x77,%eax
movb $0x4a,(%eax)

...
...

RR2

dummy1

HR1

...

RR1

dummy2

...
...

HR2

...

movl $L2+0x824+2, %eax
subl $0x824, %eax
movb $0x03, (%eax)

movl $L1 - 0x12, %eax
addl $0x12, %eax

L2: movb $0x4a, (%eax)

movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx

L1: xorl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
leal (%eax,%ebx), %edx

movl $L1 + 0x120, %eax
subl $0x120, %eax
movb $0x33, (%eax)

movl $L2+0x77+2,%eax
subl $0x77,%eax
movb $0x4a,(%eax)

...
...

RR2

dummy1

HR1

...

RR1

dummy2

...
...

HR2

...

(b) Camouflaged Program

Figure 3.5. Example of a camouflaged program

52

3.3. Discussion of Difficulty of Analysis

3.3.1 Assumed Analysis Procedure

Consider the case in which the attacker described in 3.2.1 attempts an analysis

of the secret part C(M) of M . The following attack procedure is assumed. The

goal of the analysis is defined as understanding C(M) correctly. In order to

understand C(M) correctly, the original instruction corresponding to each of the

dummy instructions contained in C(M) must be ascertained. For this purpose,

the restoring routine for each dummy instruction contained in C(M) must be

found from the whole program.

There are two methods of analysis that the attacker can apply, static analysis

and dynamic analysis. Static analysis is a method of analysis without running

the program which is the object of analysis. A typical approach is to restrict

the range of C(M) by keyword search, pattern matching, and other techniques,

so as to understand C(M). Since the analysis is concentrated on C(M) without

considering the whole of program M , the cost of analysis is generally lower than

that of the dynamic analysis discussed later, and the method is widely applied.

The first objective of the proposed method is to make static analysis difficult.

On the other hand, dynamic analysis is performed while running the program

which is the object of analysis. The attacker runs M using tools such as a debug-

ger, and tries to identify and understand C(M) based on the output information

from the tool. By dynamic analysis, the attacker can completely track the ex-

ecution of M . However, since the analysis depends on the input and the whole

program M must be run, the cost of analysis increases very rapidly as the scale

of M is enlarged.

Furthermore, debugging information is generally deleted from commercial pro-

grams, or features such as the inhibition of unintentional execution are included.

53

Consequently, it is not necessarily true that dynamic analysis can be applied to

any program. It is possible at relatively low cost to preserve a snapshot at an ar-

bitrary point of the executed program, that is, the content of the object program

loaded into memory at any point during execution, in order to facilitate static

analysis. For this purpose, there must be a mechanism to prevent the invalidation

of protection even if several snapshots are acquired.

The next section discusses the security of M against each method of analysis.

3.3.2 Security against Static Analysis

In order to investigate the security of M against static analysis, the probability

that the attacker can correctly understand the secret part C(M) is formulated.

Consider the situation in which M contains only one dummy instruction

dummyi. In order for the attacker to correctly understand an arbitrary code

block D(M) of length m in M , the following event Ei must apply.

Ei: dummyi does not exist in D(M), or dummyi exists in D(M) and

RRi exists in D(M).

When dummyi does not exist in D(M) (i.e., there is no camouflage at all),

the attacker can directly track D(M) and can easily understand the original

behavior of D(M). When dummyi is present in camouflaged form in D(M), but

its restoring routine RRi also exists in D(M), targeti can be identified by analysis

of RRi, and the original behavior of D(M) can be discovered.

Let the number of instructions in M be L. When dummyi and RRi are

selected at random in M , the probability P (Ei) that Ei is valid is expressed as

follows:

P (Ei) =
L−m

L
+

m

L
× m

L

54

=
(L−m)2 + Lm

L2
(3.1)

Then, consider the case in which n dummy instructions (dummy1, ... ,

dummyn) are contained in M , and Ei must be valid for any i (1 ≤ i ≤ n).

The probability P (Success, D) that the analysis of D(M) succeeds is roughly

expressed as follows:

P (Success,D) =
((L−m)2 + Lm

L2

)n
(3.2)

Figure 3.6 shows the curve representing the relation between P (Success, D)

and n. The horizontal axis is the number of camouflaged instructions n in M ,

and the vertical axis is the probability of success of code analysis P (Success,D).

The number of instructions m in D(M) is set as 100. The number of instructions

in M is varied as 1000, 2000, and 3000. The result for each of these is shown. It is

evident from Figure 3.6 that as the number of dummy instructions n is increased

(and thus the extent of camouflage is raised), the probability of success of code

analysis for D(M) approaches 0.

When the secret part C(M) agrees with (or is contained in) the code block

D(M) which is arbitrarily selected by the attacker, this implies that the static

analysis of M is a success. Since the identification of C(M) depends on the skill

of the attacker, formulation by the theory of probability is difficult. Letting,

as an assumption, the probability that C(M) is contained in D(M) be X, the

probability of successful analysis P (Success) is expressed as

P (Success) = X × P (Success,D)

=
((L−m)2 + Lm

L2

)n
X (3.3)

Based on the above formulation, it is evident that in order to increase the

probability of successful static analysis by the attacker, it is necessary for him

55

0.00.20.40.60.81.0

0 20 40 60 80 100The number of camouflaged instructions nProbability o
f success of
 code analys
is P(Succe
ss,D)

L=1000

L=2000

L=3000

Figure 3.6. Probability of success of code analysis (m = 100)

either to increase X by skillfully locating C(M), or to enlarge the size m of the

analyzed part D(M). On the other hand, the user of the proposed method can

easily control P (Success) by increasing the number of camouflaged instructions

n.

In the above discussion, P (Success) increases with the size of L. This is

because dummyi is chosen at random in the formulation of the event Ei, which

can prevent dummyi from being contained in C(M). However, when the user

56

knows the position of C(M) beforehand, P (Ei) can be decreased by inserting

dummyi into C(M), or by increasing the distance between RRi and dummyi so

that it is larger than the expected m. Thus, the probability of success of code

analysis can be decreased.

On the other hand, when the user does not know exactly the position of C(M),

or wants to decrease the probability X that the attacker can locate C(M), it will

be effective to divide M into L/m blocks and to insert a constant number of

camouflaged instructions in each block. This measure makes the analysis diffi-

cult, no matter which block D(M) the attacker subjects to analysis, since the

camouflaged instructions are distributed uniformly.

3.3.3 Security against Dynamic Analysis

When M is stopped at a point during execution with a debugger, some of the

dummy instructions in C(M) may be in the state of being rewritten as the original

instructions. If the attacker acquires a snapshot and observes the part correspond-

ing to C(M) in the program loaded in memory, some of the original instructions

can be determined. This poses a danger that C(M) may be correctly understood.

However, in this process it is difficult to know the original content of all dummy

instructions present in C(M). The reason is as follows. Since the restoring

routine used to rewrite the dummy instruction in C(M) is scattered over the

whole program, various parts of the program must be executed in order to execute

all of these routines. Unless the whole program is understood, this process has a

high cost. Furthermore, when the hidden routine is executed, the instruction that

was present in the original content is again overwritten by the dummy instruction.

Consequently, even at the point immediately before the end of the program, the

attacker cannot acquire a snapshot in which most of the instructions have been

57

restored to the original instructions.

However, especially when fewer dummy instructions are present in C(M),

dynamic analysis can be an effective mode of attack. Consequently, it is desirable

to use other techniques to make dynamic analysis difficult by preventing the

operation of a debugger that uses interrupts and other instructions [8]. This will

improve the security of M against dynamic analysis.

3.4. Case Studies

3.4.1 Outline

This section describes the measurement process and the results for the following

three items when the proposed method is applied to software.

(1) The distance between the target instruction and the restoring routine

(2) The change of the file size (size overhead)

(3) The change of the execution time (performance overhead)

The tool ccrypt was used, which encrypts and decrypts files, as the soft-

ware with which to test the proposed method [60]. This program is open-source

software under the GPL license.

The authors experimentally constructed a system in which the program was

camouflaged by the proposed method [31]. Using that system, the proposed

method was applied to the target program by the following procedure.

(1) The source file s1, s2, . . . , sn in the C language was compiled and the original

assembly file a1, a2, . . . , an was obtained.

58

(2) Each of a1, a2, . . . , an was camouflaged, and the camouflaged assembly file

a′1, a
′
2, . . . , a

′
n was obtained.

(3) a′1, a
′
2, . . . , a

′
n were assembled and the execution modules o1, o2, . . . , on were

obtained.

(4) o1, o2, . . . , on are linked and the executable file p is obtained.

In each trial, it is verified that the executable file p operates correctly.

In executable files running under Windows (such as the Microsoft Portable

Executable format), enabling/disabling of writing to the code area is controlled

by a flag in the section header in the file [39]. When the proposed method is

applied, it is necessary to make the code area rewritable during execution by

setting the flag beforehand.

The computer used in the experiment had Windows XP as the OS, a main

memory size of 512 Mbytes, and a Pentium 4 CPU (clock frequency 1.5 GHz,

primary trace cache 12kµOps, primary data cache of 8 kbytes, and the secondary

cache of 256 kbytes).

3.4.2 Distance between Target Instruction and Restoring

Routine

Figure 3.7 shows the distribution of the dummy instruction and the restoring

routine for a camouflaged assembly language file. The file has 1490 lines and

947 instructions before camouflaging. One hundred thirty instructions are cam-

ouflaged. The vertical axis of the figure is the line number, and the horizontal

axis is the line number modulo 30. By adding the value on the horizontal axis

to the value on the vertical axis, the line number containing the instruction or

59

Table 3.1. Distance between target instructions and restoring routines

Average Maximum Minimum Standard Deviation

Distance[instructions] 151 611 1 192

the restoring routine is obtained. It is evident from Figure 3.7 that the target

instructions and restoring routines are scattered over the whole program.

Table 3.1 shows the average, the maximum, the minimum, and the standard

deviation of the distance between the target instruction and the restoring routine.

It can be seen from Table 3.1 that in order to ascertain whether an instruction

in the program is a camouflaged instruction, the restoring routine, which is at

a distance of 151 instructions away on average and 611 instructions away at the

maximum, must be located. Since this program is camouflaged at a rate of 1

instruction in each 7 instructions, a large number of camouflaged instructions

will be encountered in the search for the restoring routine. It can also happen, as

was discussed in the example in 3.2.6, that instructions constituting the restoring

routines are themselves camouflaged. Thus, it is likely that the cost of the analysis

intended to find the restoring routine will be high.

Since the minimum distance is 1 instruction, it can be seen that there is a

case in which the target instruction is adjacent to the restoring routine. Since

the position of the target instruction and the insertion position of the restoring

routine are selected at random from the candidates, such a case can occur.

60

0

200

400

600

800

1000

1200

1400

0 6 12 18 24 30
Line number (modular 30)

Li
ne

 n
um

be
r

Target instructions (dummy)
Restoring routines (RR)

Figure 3.7. Distribution of target instructions and restoring routines

3.4.3 Size Overhead

Examining the file size of the camouflaged program, it can be seen that the file size

increases in proportion to the number of camouflaged instructions. On average,

each time the number of camouflaged instructions is increased by 100, the file

size is enlarged by approximately 2.4 kbytes. This increase in file size is due to

the increase in the number of inserted self-modification routines as the number

of camouflaged instructions is increased.

Noting that the capacity of secondary memory devices is currently increasing,

61

the enlargement of file size will not be a serious problem. However, in an envi-

ronment where the file size is severely limited it may happen that the increase of

the file size must be minimized. Dealing with such a situation is made possible

by adjusting the number of camouflaged instructions so that the file size stays

within the permissible range.

3.4.4 Performance Overhead

The time required for the camouflaged ccrypt to encrypt a 100-kbyte text file

was measured 10 times in each session while varying the number of camouflaged

instructions. The execution time was measured as the difference in the elapsed

time of the system clock from immediately before the start of the camouflaged

program to immediately after the termination of the program. The elapsed time

of the system clock was acquired by using the clock function in C.

Figure 3.8 shows a plot of the results of the execution time measurement. The

horizontal axis shows the number of camouflaged instructions, while the vertical

axis shows the average program execution time and the proportion of camouflaged

instructions (depicted by bars).

It can be seen from Figure 3.8 that the average execution time increases with

the number of camouflaged instructions. When 500 instructions are camouflaged

(when approximately 5% of the entire instructions are camouflaged), the average

execution time is approximately 2.9 seconds. This is approximately 48 times the

execution time (approximately 0.06 second) when no instruction is camouflaged.

Three possible reasons for this increase in execution time exist.

(1) Inserting self-modification routines increases the number of instructions to

be executed.

(2) Each time a self-modification routine writes code cached in the CPU, the

62

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500
The number of camouflaged instructions

Pr
og

ram
 ex

ec
uti

on
 tim

e [
se

co
nd

s]

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

Th
e p

rop
ort

ion
 of

 ca
mo

ufl
ag

ed
 in

str
uc

tio
ns

The proportion of camouflaged instructions
Average of execution time

0.06

2.9

Figure 3.8. Impact on program execution time

corresponding cache line is invalidated [59].

(3) The self-modification mechanism increases the frequency of prediction fail-

ure of conditional branches in the CPU.

Increased execution time may or may not be a disadvantage. Excessive cam-

ouflaging is not recommended, for example, for an algorithm that considers the

next move in a game such as shogi or chess, or for an algorithm which must

operate in real time, such as a streaming playback routine for speech.

63

For a program in which the user is restricted by means of password authentica-

tion, on the other hand, the proposed method may be used in order to complicate

the analysis of the password check routine. In such a case, if the method is applied

only to the password checking part of the program, the original functioning is not

degraded, except that a longer time is required for the password check. Location

and degree of the camouflage should be chosen according to the properties and

purpose of the program or module to which the proposed method is applied.

In addition, the probability of success of code analysis, which is formulated

in 3.3.2, can help determine the degree of camouflage. Figure 3.9 shows the

relationship between the probability of success of code analysis and performance

overhead (about the same program). The horizontal axis shows the proportion

of camouflaged instructions, while the vertical axis shows the average program

execution time (depicted by the solid line) and the probability of success of code

analysis (depicted by dotted lines). m/L (the proportion of instructions to be

analyzed) is varied as 1%, 3% and 5%.

As can be seen, in this graph, the probability of success of code analysis de-

creases as the program execution time increases. Grasping this trade-off relation

between the level of protection against static analysis and performance overhead

can be useful in finding the optimal degree of camouflage.

64

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0% 1% 2% 3% 4% 5%
The proportion of camouflged instructions

Pr
og

ram
 ex

ec
uti

on
 tim

e [
se

co
nd

s]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Probability of
 success of
code analysi
s

P(Success,D
)

Average of execution time
Probability of success of code analysis P(Success, D)

m/L=1%

m/L=3%

m/L=5%

0.06

2.9

Figure 3.9. Program execution time and probability of success of code analysis

(m/L = 1%, 3%, 5%)

65

3.5. Related Work

The self-modification mechanism itself has long been known. One of its purposes

is to reduce the program size and the required memory capacity in execution [26].

Another purpose is to protect programs, as in this study, in which a program is

encrypted and decrypted by self-modification [2, 4–6, 12, 17, 23, 24, 29, 48, 55]. In

the latter case, the specified range of the program is encrypted beforehand and is

decrypted by self-modification during execution. The instructions are encrypted

again if necessary. This approach, which is called software encryption, is similar to

the proposed method in the sense that the program is rewritten during execution,

but differs in the following respects:

• Identifying the position of a camouflaged instruction by static analysis is not

easy, because a camouflaged instruction cannot be distinguished from other

instructions. On the other hand, the range of the part of the program which

is encrypted may be easily identified, since it has features different from the

other parts (such as the absence of instruction sequences and impossibility

of disassembly).

• The restoring routine used to resolve the camouflage is a very ordinary

short routine in main memory, with a length of 1 to several bytes. In

addition, since such routines are scattered through the program, identifying

their positions by static analysis is not easy. On the other hand, a routine

for decryption has a large size, and hiding the identification cue is not

easy. In particular, when the whole program is encrypted, the decryption

starts immediately at the beginning of program execution, which makes

identifying the routine for decryption easy.

66

The approach in which an instruction which has been overwritten by a dif-

ferent content beforehand is replaced by the original instruction at the time of

execution has been considered in the past for software protection. However, in

the past approach, an operator with sufficient knowledge, technique, and assem-

bler resources, had to handle the protection process manually. In contrast, this

chapter proposes and evaluates a systematic (formulated) method of protecting

software by self-modification. The proposed method is easy to automate and to

flexibly adjust the trade-off (degree of camouflage) between the degree of protec-

tion and the overhead.

The instruction code of the program that is protected by a method using

the self-modification mechanism (such as software encryption methods and the

proposed method) can be modified by any other executable program at run-

time, since the protected program needs its code section to be modified for self-

modification to be done. Although that restriction is normally not a disadvantage,

applying the methods to a program that is running all the time (e.g., a server pro-

gram) is not recommended since there is a possibility that the protected program

may be attacked by malware (e.g., viruses, worms) at run-time.

Other methods of making program analysis difficult have included many meth-

ods of software obfuscation [13–16,27,42,46,50,63,64]. Obfuscation is a technique

in which a given program is converted to a program which is more difficult to

analyze (more complex) without modifying its specifications. The behavior of

the obfuscated program can be understood correctly, even if only partially, by

spending a long time analyzing the program. On the other hand, in a program

which is protected by the proposed method, it is difficult to determine, even par-

tially, when an instruction with different content from the original instruction is

present (unless the restoring routine has been identified), even if a long time is

spent. This is the difference between obfuscation and the proposed method.

67

The proposed method is a technique which is not controversial with respect

to encryption or obfuscation. Consequently, the analysis of the program is made

still more difficult by combining the proposed method with these approaches.

When the method is combined with obfuscation, for example, the result is a

program which cannot be analyzed successfully unless the following two stages

are accomplished.

(1) The uncamouflaged state is obtained.

(2) The obfuscated program is understood.

It should be noted, however, that the program size or the execution time may

be further increased by the combined use of these approaches.

68

Chapter 4

Conclusion

4.1. Achievements

In this dissertation, research on preventing secret information in software pro-

cesses and software products from being revealed to users was addressed. Two

cases were considered where secret information was revealed: (1) through work

products leaked by insiders who take part in a software development process,

and (2) by reverse engineering of software products. Case (1) occurs before a

software product is released, while case (2) occurs after a software product is

released. The method for preventing secret information in each case has been

tackled successfully.

First, in Chapter 2, a method for evaluating the risk of information leakage in

the software development process was presented. This method is useful for pre-

venting secret information in case (1). Leakage was formulated as an unexpected

transfer of product knowledge among developers sharing the same process. Next,

a method was proposed to derive the probability that each developer will know

each work product at any process of software development.

Three case studies were also conducted. The result of the first case study

69

quantitatively showed that, more collaboration among authorized and unautho-

rized developers causes a higher risk of information leakage. In the second case

study, the proposed method was also shown to be useful as a powerful means to

perform optimal tunings of the process configuration. Finally, in the third case

study, the structure of the process was shown to control the execution order of

processes, which in turn, significantly influences the risk of information leakage.

Next, in Chapter 3, a method for increasing the cost of reverse engineering

attacks, which aims to prevent secret information in case (2) was proposed. In

particular, a systematic method of making program analysis difficult by camou-

flaging instructions was proposed. When an attacker attempts a static analysis

of a part of the program which contains camouflaged instructions, he/she cannot

understand the original behavior of that part correctly unless he/she locates the

restoring routine.

To investigate the difficulty of analysis of the camouflaged program, the prob-

ability that the attacker can correctly understand the secret part of the program

was analyzed. Based on the resulting equation, it was concluded that the more

the instructions are camouflaged, the more the probability of success of code

analysis decreases.

As a case study, a program (ccrypt) was camouflaged and the distance be-

tween the target instructions and the restoring routine, the file size, and the

execution time overhead was measured. When 130 instructions in 947 were cam-

ouflaged, the average distance between the target instruction and the restoring

routine was 151 instructions. Since many camouflaged instructions may exist

between the target instruction and the restoring routine, it is likely that a costly

analysis will be required to find the restoring routine. As regards overhead, it

was found that the file size and the overhead of execution time are increased with

70

an increasing number of camouflaged instructions. Choosing the position and

degree of camouflage according to the properties and purposes of the program or

module to which the method is applied is desirable.

Prototypes of each proposed method have been implemented. It is assumed

that the prototype tool for evaluating the risk of information leakage is used by

a developer who designs a software development process (e.g., software process

analyst, software process designer) to construct a secure software development

process, before the development process is performed. On the other hand, it is

assumed that the prototype tool for increasing the cost of reverse engineering is

used by a developer who designs or implements a software product (e.g., code

designer, programmer), after the implementation and the test of the software is

done.

4.2. Future Research

Some issues remain for future study.

The proposed method for evaluating the risk of information leakage is simple

and generic; therefore, the method should not be limited to the security-sensitive

software process. The method is highly feasible for other workflow-based appli-

cations, such as medical work flows [56] where private information must be pro-

tected. In addition, more practical methods for calculating leak(u,w, u′), which

characterize the probability that a developer u leaks the product knowledge w to

another developer u′, are left as a challenging issue for future work.

As for the method of increasing the cost of reverse engineering attacks based on

instruction camouflage, improving the system so that the execution time overhead

will be reduced in order to make the proposed method capable of wider application

71

is planned. Specifically, improving the algorithm for determining the inserting

position of self-modification routines are planned as follows:

• Determining the inserting position of a self-modification routine considering

the execution frequency of the position. Loop structure of the target pro-

gram and an estimate of execution frequency of each block of the program

are statically analyzed, to avoid inserting self-modification routines in the

frequently-executed blocks.

• Determining the positions of self-modification routines considering the ef-

fectiveness of CPU pipeline. Since a self-modification routine interrupts

branch prediction, the distance between self-modification routines influ-

ences the effectiveness of the CPU pipeline. A routine is inserted so that

the routine will be a certain distance apart from the other routines.

72

Acknowledgements

First and foremost, I wish to express my sincere gratitude to my supervisor Pro-

fessor Ken-ichi Matsumoto, for his continuous support and encouragement during

this work.

I am also very grateful to the members of my thesis review committee: Profes-

sor Katsumasa Watanabe and Associate Professor Yuichi Kaji, for their valuable

comments and helpful criticism of this work.

I am deeply grateful to Associate Professor Akito Monden. He gave me the

opportunity to study in the field of software protection. For five years, I have re-

ceived invaluable assistance from him. I will always remember his encouragement

and enthusiasm.

I also want to thank Assistant Professor Masahide Nakamura, for his patient

advice and guidance. I have learned a lot from his knowledge and positive at-

titude toward research. I could not have finished this dissertation without his

encouragement.

I wish to thank Professor Hajimu Iida. I have received helpful advice and

warm support from him for five years.

I also wish to thank Assistant Professor Masao Ohira. His comments and

advice were very helpful in the completion of this dissertation.

I have been fortunate to have received assistance from many colleagues. I wish

to thank all the members of the Software Engineering Lab., Graduate School of

Information Science, Nara Institute of Science and Technology. I can only mention

a few of my helpful colleagues here because the list is long. I wish to extend thanks

to, Hiroshi Igaki, Haruaki Tamada, Naoki Ohsugi, Hiroki Yamauchi, Susumu

Kuriyama, and Hidetaka Uwano.

Finally, I would like to express my warmest gratitude to my parents, my

73

grandmother, my sister, and my friends for their constant encouragement and

generous remarks.

The research was supported by Grant-in-Aid for 21st century COE Research

(NAIST-IS Networked Media Computing).

74

References

[1] 4C-Entity. Policy statement on use of content protection for recordable media

(CPRM) in certain applications, 2001. (Available online).

[2] D. J. Albert and S. P. Morse. Combating software piracy by encryption and

key management. IEEE Computer, pages 68–73, April 1984.

[3] NPO Japan Network Security Association. Security incident report.

http://www.jnsa.org/.

[4] D. W. Aucsmith. Tamper resistant software: An implementation, volume

1174 of Lecture Notes in Computer Science, pages 317–333. Springer-Verlag,

1996.

[5] D. W. Aucsmith and G. L. Graunke. Tamper resistant methods and appa-

ratus. Assignee: Intel Corporation 5,892,899, United States Patent, April

1999.

[6] R. M. Best. Crypto microprocessor for executing enciphered programs. Tech-

nical Report 4,278,873, United States Patent, July 1981.

[7] J. Brockmeier. Conrante Tech News. Microsoft’s code leakage. http://

openmind.corante.com/.

[8] P. Cervan. Crackproof your software. No Starch Press, San Francisco, 2002.

[9] H. Chang and M. Atallah. Protecting software codes by guards. In Proc.

Workshop on Security and Privacy in Digital Rights Management 2001, vol-

ume 2320 of Lecture Notes in Computer Science, pages 160–175. Springer-

Verlag, 2001.

75

[10] S. Chou, A. Liu, and C. Wu. Preventing information leakage within work-

flows that execute among competing organizations. The Journal of Systems

and Software, 2004. (Available online).

[11] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. A white-box DES

implementation for DRM applications. In Proc. 2nd ACM Workshop on

Digital Rights Management, pages 1–15, November 2002.

[12] F.B. Cohen. Operating system protection through program evolution. Com-

puters and Security, 12(6):565–584, 1993.

[13] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and ob-

fuscation – tools for software protection. IEEE Transactions on Software

Engineering, 28(8):735–746, June 2002.

[14] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating trans-

formations. Technical Report 148, Technical Report of Dept. of Computer

Science, U. of Auckland, New Zealand, 1997.

[15] C. Collberg, C. Thomborson, and D. Low. Breaking abstractions and un-

structuring data structures. In Proc. IEEE International Conference on

Computer Languages(ICCL’98), Chicago, May 1998.

[16] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,

and stealthy opaque constructs. In Proc. ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages(POPL98), pages 184–196,

San Diego, California, January 1998.

[17] C. N. Drake. Computer software authentication, protection, and security

system. Technical Report 6,006,328, United States Patent, December 1999.

76

[18] M. Fagerholm. IT Manager’s Journal. Managing the insider threat through

code obfuscation. http://software.itmanagersjournal.com/.

[19] P. H. Feiler and W. S. Humphrey. Software process development and enact-

ment: Concepts and definitions. In Proc. 2nd International Conference on

Software Process, pages 28–40, February 1993.

[20] D. Ferraiolo and R. Kuhn. Role-based access controls. In Proc. 15th NIST-

NCSC National Computer Security Conference, pages 554–563, 1992.

[21] S. Funamoto. Anatomy of protection technology. Subarusha, 2002. (in

Japanese).

[22] P. K. Garg and M. Jazayeri. Process-centered software engineering environ-

ments. IEEE Computer Society Press, 1995.

[23] D. Grover, editor. The protection of computer software: Its technology and

applications. Cambridge University Press, 1989.

[24] B. E. Hampson. Digital computer system for executing encrypted programs.

Assignee: Prime Computer, Inc. 4,847,902, United States Patent, July 1989.

[25] M. Hashimoto, K. Yamaguchi, and H. Isozaki. Software protection in

open software environment. Toshiba Review, 58(6):20–23, June 2003. (in

Japanese).

[26] T. Hidaka. Mysteries of the Z80 machine. Keigaku Shuppan, 1989. (in

Japanese).

[27] F. Hohl. Time limited blackbox security: Protecting mobile agents from ma-

licious hosts, volume 1419 of Lecture Notes in Computer Science, pages 92–

113. Springer-Verlag, 1998.

77

[28] J. Irwin, D. Page, and N.P. Smart. Instruction stream mutation for non-

deterministic processors. In Proc. ASAP2002, pages 286–295, July 2002.

[29] H. Ishima, K. Saito, M. Kamei, and K. Shin. Tamper resistant technology

for software. Fuji Xerox Technical Report, (13):20–28, 2000.

[30] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development

process. Addison-Wesley Longman Publishing Co., Inc., 1999.

[31] Y. Kanzaki. RINRUN: Program camouflage tool. http://se.naist.jp/rinrun/.

[32] Y. Kanzaki, H. Igaki, M. Nakamura, A. Monden, and K. Matsumoto. Quanti-

tative analysis of information leakage in security- sensitive software processes.

IPSJ Journal, Special Issue on Research on Computer Security Characterized

in the Context of Social Responsibilities, 46(8):2129–2141, August 2005.

[33] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto. Exploiting self-

modification mechanism for program protection. In Proc. 27th IEEE Com-

puter Software and Applications Conference, pages 170–179, Dallas, USA,

November 2003.

[34] Y. Kanzaki, A. Monden, M. Namamura, and K. Matsumoto. A software

protection method based on instruction camouflage. IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences

(Japanese Edition), J87-A(6):755–767, June 2004. (In Japanese).

[35] F. Keller, P. Tabeling, R. Apfelbacher, B. Grone, A. Knopfel, R. Kugel,

and O. Schmidt. Improving knowledge transfer at the architectural level:

Concepts and notations. In Proc. The 2002 International Conference on

Software Engineering Research and Practice, June 2002.

78

[36] R. Lemos. CNET News. Microsoft cracks down on source code traders.

http://news.com.com/.

[37] R. Lemos. CNET News. Microsoft probes Windows code leak. http://news.

com.com/.

[38] R. Lemos and I. Fried. CNET News. Search on for source of leaked Windows

code. http://news.com.com/.

[39] J.R. Levine. Linkers & loaders. Morgan Kaufmann, 2001.

[40] C. Linn and S. Debray. Obfuscation of executable code to improve resistance

to static disassembly. In Proc. 10th ACM Conference on Computer and

Communications Security, pages 290–299, October 2003.

[41] Y. Liong and S. Dixit. Digital rights management for the mobile internet.

Wireless Personal Communications, 29(1-2):109–119, 2004.

[42] M. Mambo, T. Murayama, and E. Okamoto. A tentative approach to con-

structing tamper-resistant software. In Proc. 1997 New Security Paradigm

Workshop, pages 23–33, September 1997.

[43] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modelling with generalized stochastic Petri nets. John Wiley, 1995.

[44] A. Monden, A. Monsifrot, and C. Thomborson. Obfuscated instructions

for software protection. Information science technical report, NAIST-IS-

TR2003013, Graduate School of Information Science, Nara Institute of Sci-

ence and Technology, November 2003.

[45] A. Monden, A. Monsifrot, and C. Thomborson. Tamper-resistant software

79

system based on a finite state machine. IEICE Transactions on Fundamen-

tals, E88-A(1):112–122, January 2005.

[46] A. Monden, Y. Takada, and K. Torii. Methods for scrambling programs

containing loops. IEICE Transactions on Information and Systems, PT.1

(Japanese Edition), J80-D-I(7):644–652, July 1997. (in Japanese).

[47] Monthly Information Security. Database of information leakage incidents.

http://www.monthlysec.net/ (in Japanese).

[48] J. M. Nardone, R. P. Mangold, J. L. Pfotenhauer, K. L. Shippy, D. W.

Aucsmith, R. L. Maliszewski, and G. L. Graunke. Tamper resistant methods

and apparatus. Assignee: Intel Corporation 6,178,509, United States Patent,

January 2001.

[49] G. Naumovich and N. Memon. Preventing piracy, reverse engineering, and

tampering. IEEE Computer, 36(7):64–71, July 2003.

[50] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a the-

oretical basis and its implementation. IEICE Transaction on Fundamentals,

E86-A(1):176–186, 2003.

[51] H. Okamura. The latest cases on the cyber law. Softbank Publishing Co.,

2000. (in Japanese).

[52] A. Orlowski. The Register. iTunes DRM cracked wide open for GNU/Linux

seriously. http://www.theregister.co.uk/.

[53] The United Kingdom Parliament. The mobile telephones (re-programming)

bill. Technical Report 02/47, House of Commons Library Research Paper,

July 2002.

80

[54] A. Patrizio. Wired News. DVD piracy: It can be done. http://www.wired.

com/.

[55] W. Paulini and D. Wessel. Process for securing and for checking the integrity

of the secured programs. Assignee: Siemens nixdorf informations system

5,224,160, United States Patent, June 1993.

[56] S. Quaglini, C. Mossa, C. Fassino, M. Stefanelli, A. Cavallini, and G. Micieli.

Guidelines-based workflow systems, volume 1620/1999 of Lecture Notes in

Computer Science, pages 65–75. Springer-Verlag, 1999.

[57] P. Samuelson. Reverse-engineering someone else’s software: Is it legal? IEEE

Software, 7(1):90–96, January 1990.

[58] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based

access control models. IEEE Computer, 29(2):38–47, 1996.

[59] IA-32 Intel Architecture software developer’s manual vol.3 System Program-

ming Guide. Intel Co. http://www.intel.co.jp/.

[60] P. Selinger. ccrypt (utility for encrypting and decrypting files and streams).

http://ccrypt.sourceforge.net/.

[61] The Mainichi Newspapers. Firms struggling to plug customer information

leaks, 2004. The Mainichi Newspapers, March 2.

[62] R. K. Thomas and R. S. Sandhu. Task-based authorization controls (TBAC):

A family of models for active and enterprise-oriented autorization manage-

ment. In Proc. the IFIP Workshop on Database Security, pages 166–181,

August 1997.

81

[63] P. M. Tyma. Method for renaming identifiers of a computer program. As-

signee: PreEmptive Solutions, Inc. 6,102,966, United States Patent, August

2000.

[64] C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper resistance:

Obfuscating static analysis of programs. Technical report sc-2000-12, De-

partment of Computer Science, University of Virginia, December 2000.

[65] H. Yamada and J. Kawahara. Current status of digital content protection

and related issues. Toshiba Review, 58(6):2–7, June 2003. (in Japanese).

82

Appendix

A. Example of Camouflaged Program

A simple program containing a conditional branch and the camouflaged program

are presented below:

A.1 Original Program (C language)

#include <stdio.h>

#define PASSNUM 13

int main() {

int n;

scanf("%d", &n);

if(n!=PASSNUM) {

printf("INVALID\n");

return -1;

}

printf("OK\n");

return 0;

}

A.2 Original Program (assembly)

LC0:

.ascii "%d\0"

LC1:

.ascii "INVALID\12\0"

83

LC2:

.ascii "OK\12\0"

.align 2

.globl _main

_main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

andl $-16, %esp

movl $0, %eax

movl %eax, -12(%ebp)

movl -12(%ebp), %eax

call __alloca

call ___main

movl $LC0, (%esp)

leal -4(%ebp), %eax

movl %eax, 4(%esp)

call _scanf

cmpl $13, -4(%ebp)

je L10

movl $LC1, (%esp)

call _printf

movl $-1, -8(%ebp)

jmp L9

L10:

movl $LC2, (%esp)

call _printf

84

movl $0, -8(%ebp)

L9:

movl -8(%ebp), %eax

leave

ret

A.3 Camouflaged Program

LC0:

.ascii "%d\0"

LC1:

.ascii "INVALID\12\0"

LC2:

.ascii "OK\12\0"

.align 2

.globl _main

_main:

movl $T2 + 0x824, %eax # RR2

subl $0x824, %eax # RR2

movb $0xeb, (%eax) # RR2

pushl %ebp

subb $0x3d, T3 + 2 # RR3

movl %esp, %ebp

subl $24, %esp

andl $-16, %esp

movl $T1 - 20 + 3, %eax # RR1

addl $20, %eax # RR1

85

T3:

movb $0x4a, (%eax) # RR1 target3

movl $0, %eax

movl %eax, -12(%ebp)

movl -12(%ebp), %eax

call __alloca

call ___main

movl $LC0, (%esp)

leal -4(%ebp), %eax

movl %eax, 4(%esp)

movl $T3 - 0x08 + 2, %eax # HR3

addl $0x08, %eax # HR3

movb $0x4a, (%eax) # HR3

call _scanf

T1:

cmpl $7, -4(%ebp) # target1

je L10

movl $LC1, (%esp)

call _printf

movl $-1, -8(%ebp)

T2:

je L9 # target2

L10:

movl $LC2, (%esp)

call _printf

movl $0, -8(%ebp)

movb $0x74, T2 # HR2

86

L9:

movl -8(%ebp), %eax

movl $T1 + 0x120 + 3, %eax # HR1

subl $0x120, %eax # HR1

movb $0x07, (%eax) # HR1

leave

ret

87

Index

AS, 12

as, 25

AS(p), 15

C(u, p), 21

Col, 25

Col(p), 25

dummyi, 44

HRi, 44

I, 12

Know(u, p), 17

leak(u,w, u′), 20

leak(u,w, u′, p), 35

M , 44

O, 12, 43

P (HRi), 45

P (RRi), 45

P (Success), 55

P (Success, D), 55

PC, 12

PCtgt, 24

Pkn(u, p, w), 20, 22

predu(pui
), 16

Riskas, 25

Riskstr, 32

RRi, 44

targeti, 44

U , 12

Uaut, 24

Uuaut, 24

WP , 12

analysis, 38

attacker, 40

camouflage, 41

camouflaged instruction, 44

camouflaged program, 44

deterministic model, 35

developer, 12

developer assignment function, 12

dummy instruction, 43

dynamic analysis, 53

hiding routine, 44

immediate predecessor, 16

88

information leakage, 6, 8, 10, 19

input product, 12

knowledge, 18

knowledge transfer, 5, 9

leakage, 19

obfuscation, see software obfuscation

order of processes, 14

original program, 43

output product, 12

Petri net, 14

predecessor of process, 16

process, 12

process structure, 29

process-centered software engineering

environment, 11, 12

product, see work product

product dependency, 14

product knowledge, 17

restoring routine, 44

reverse engineering, 4

secret information, 1

self-modification, 42

self-modification routine, 44

software development process, see soft-

ware process

software encryption, 66

software obfuscation, 50, 67

software process, 9

software process model, 12

software product, 4

static analysis, 53

stochastic product knowledge, 22

sub-process, see process

target instruction, 43

work product, 4, 12

89

