
21st IEEE/ACM
International Conference on
Automated Software
Engineering

Tokyo, JAPAN

September 18-22, 2006

Proceedings of the 2nd International Workshop on
Supporting Knowledge Collaboration in
Software Development
(KCSD2006)

September 19, 2006

Editors: Yunwen Ye & Masao Ohira

ISBN 4-86049-036-3 National Institute of Informatics (Tokyo, Japan)

Proceedings of the

2nd International Workshop on

Supporting Knowledge Collaboration in
Software Development

KCSD2006

September 19, 2006
Tokyo

In conjunction with
21st IEEE/ACM International Conference on
Automated Software Engineering (ASE2006)

Editors:
Yunwen Ye & Masao Ohira

iii

Table of Contents

Workshop Organization ...v

Session 1: Collaboration and Communication

Supporting Software Development as Collective Creative Knowledge Work1
 Kumiyo Nakakoji (University of Tokyo, Japan & SRA Key Technology Lab, Japan)

When Programmers Don't Ask ..9
 Sukanya Ratanotayanon, Susan Elliott Sim (University of California, Irvine, USA)

Session 2: Knowledge Access

Recommending Library Methods: An Evaluation of Bayesian Network Classifiers17
 Frank McCarey, Mel Cinneide, Nicholas Kushmerick (University College Dublin, Ireland)

Assisting Concept Assignment Using Probabilistic Classification and Cognitive Mapping25
 Brendan Cleary, Chris Exton (University of Limerick, Ireland)

(Position Paper)
A Tool-Supported Environment for Knowledge Feedback Cycle in Software Development33
 Noriko Hanakawa (Hannan University, Japan)

Session 3: Community Knowledge

Social Network Analysis on Communications for Knowledge Collaboration in OSS Communities.....35

Takeshi Kakimoto, Yasutaka Kamei, Masao Ohira, Ken-ichi Matsumoto
(Nara Institute of Science and Technology, Japan)

The Flow of Knowledge in Free and Open Source Communities ..42
 Daniel M. German (University of Victoria, Canada)

(Position Paper)
Using SNS Systems to Support Knowledge Collaboration ..50
 Masahiko Ishikawa (Software Research Associates, Inc., Japan)

Session 4: Project Knowledge

Building the Knowledge Network in Software Project ..52
 Atsushi Inuzuka (Japan Advanced Institute of Science and Technology, Japan)

(Position Paper)
Coordinating Multi-Team Variability Modeling in Product Line Engineering60
 Deepak Dhungana, Rick Rabiser, Paul Grunbacher (Johannes Kepler University, Austria)

(Position Paper)
Learning Support by Reflection and Knowledge Collaboration in a ...62
Team-based Software Engineering Project Course
 Atsuo Hazeyama (Tokyo Gakugei University, Japan)

(Position Paper)
Knowledge Collaboration by Mining Software Repositories ..64
 Thomas Zimmermann (Saarland University, Germany)

v

Workshop Organization

Workshop Co-Chairs

Yunwen Ye
University of Colorado USA & SRA Key Technology Laboratory, Japan

Masao Ohira

Nara Institute of Science and Technology, Japan

Program Committee

Gerhard Fischer, University of Colorado, USA
John Grundy, University of Auckland, New Zealand

Katsuro Inoue, Osaka University, Japan
Kouichi Kishida, SRA Key Technology Lab, Japan

Kei Kurakawa, Nara Institute of Science and Technology, Japan
Karim Lakhani, Massachusetts Institute of Technology, USA

Jianguo Lu, University of Windsor, Canada
Ken'ichi Matsumoto, Nara Insitute of Science and Technology, Japan

Kumiyo Nakakoji, University of Tokyo, Japan
David Redmiles, University of Califorina, Irvine, USA

Tao Xie, North Carolina State University, USA
Lu Zhang, Beijing University, China
Binyu Zang, Fudan University, China

Supporting Software Development as Collective Creative Knowledge Work

Kumiyo Nakakoji
1,2

1
RCAST, University of Tokyo

2
SRA Key Technology Laboratory Inc.,

kumiyo@kid.rcast.u-tokyo.ac.jp

Abstract
We view software development as a system of

evolution consisting of the three elements: (1) artifacts,

(2) individual developers, and (3) a community of

developers. An individual’s determining what artifacts

to contribute and how, with whom to communicate by

asking or answering, and which role to play within the

community affects the quality of software to be

developed; how the developers relate to each other

does matter. Software development should be viewed

as a system of evolution driven through metabolic

processes of how artifacts, developers, and the

community grow. This paper describes the framework

of viewing software design as a collective creative

knowledge work, and outlines possible research areas

to pursue.

1. Introduction
Software development is knowledge intensive work,

involving both planning and presentation activities [34].

Developers need to locate source code potentially

relevant to the task at hand, understand how to modify

the source code while identifying why the way it is,

and/or write new code where necessary [20]. Although

requirement specifications, design documents,

comments, and design rationale are provided to help

developers in this process, they are often not enough.

Developers need to be familiar with the programing

language for the code, component libraries used and

potentially usable for implementing the code, design

methods applied to develop the code, programming

tools and environments available to develop the code,

and application domains of the code.

While experience is certainly helpful, it does not

necessarily work in such a way that a longer

experience of engaging in a development project

provides more knowledge about the entire project.

Software development needs knowledge in a variety of

fields, which require constant updates. There are no

absolute experts in software development. Application

domains are subject to rapid change. Component

libraries are continually updated. New features and

functionalities keep being introduced in programming

tools and environments. Moreover, there is such

culture in software development that keeps developers

from sharing knowledge over the entire source code.

As LaToza et al. observed, “implicit knowledge

retention is made possible by a strong, yet often

implicit, sense of code ownership, the practice of a

developer or a team being responsible for fixing bugs

and writing new features in a well defined section of

code” [20]. Thus, the “symmetry of ignorance” among

a development team is neither a problem nor an

accident; it is a matter of fact in software development

[8].

This makes software development a fundamentally

social activity [30]. The activity is carried out by a

group of developers, forming a community, engaging

in collective creative knowledge work [26]. It is a

social activity mediated through artifacts, which are

primarily source codes and documents. Even a single-

person project has such a community aspect because

the project is likely to use component libraries and

existing modules, which have been developed by a

number of other developers over a long period of time.

2. Social Aspects of Software Development
Social aspects of software development have been

studied mostly in the context of how developers and

end-users work together in designing a computer

technology. Ethnographers and social scientists have

explored ways to help them develop a shared

understanding and shared context during the process

[41]. Another social aspect that has been studied is the

organizational context of a software development

project [30].

This paper in contrast focuses on the peer-to-peer

level of knowledge collaboration of software

developers. How developers use other developers as

knowledge resources and what social issues are

involved during the process, such as the cost of

interruption and the motivation for contribution.

Let me first illustrate what kinds of social issues I

am referring to.

While sharing knowledge and information within a

community of developers is indispensable, the primary

means for developers to obtain knowledge is not

1

through communicating with their peers, but through

artifacts.

In understanding source code, developers ask

questions such as where to focus as an initial point,

exploring the related parts, understand concepts

involved the related parts, and understand the

relationships among the concepts [35]. During the

process, software developers “invest great effort

recovering implicit knowledge by exploring code” [20].

However, this exploration process often does not

succeed primarily because of the lack of detailed

knowledge articulated in the source code. If this

becomes the case, software developers would start

depending on distributed knowledge resources; namely,

the other developers in the community.

By conducting two surveys and eleven interviews

with software developers at Microsoft Corporation,

[20] have observed that “Developers go to great

lengths to create and maintain rich mental models of

code that are rarely permanently recorded, and when

trying to understand a piece of code, developers turn

first to the code itself but when that fails, to their social

network.” This would work because source code is

often owned by a certain developer or a team of the

small number of developers, who has a detailed, almost

complete knowledge of the source code.

This way of knowledge sharing and collaboration

involves two types of social issues. First, asking the

owner of the source code, either through face-to-face

or via email would cost some additional work for the

person who is being asked for help, and may interrupt

his/her primary work [20]. An interruption is regarded

as an unexpected encounter initiated by another person,

which disturbs “the flow and continuity of an

individual’s work and brings that work to a temporary

halt to the one who is interrupted” [37]. Different

interruption moments have different impacts on user

emotional state and positive social attribution [1].

Second, even if the one understands the source code

by being helped by his/her peer, this understanding is

not likely to be articulated nor recorded because not

only of the overhead of writing it down, but also of the

feeling that the newly found information “is not

authoritative enough to add permanently to the code”

or that checking in the comment under his/her own

name “would inappropriately make them experts” [20].

This thereby often results in “institutional memory

loss” [20].

Supporting software developers would need to

support their collaboration with their peers. Support for

collaboration, then, would need more than simply

finding the “right” person for completing the task.

Social factors, such as motivation, trust, self-

confidence and social recognition, need to be dealt

with.

3. Three Elements of Software

Development: Artifacts, Developers, and a

Community
The goal of supporting software development as

collective creative knowledge work is to support

software developers to develop software. This is

different from that of social matching systems, which

is to introduce people to people [38].

This position paper views software development as

a system of evolution consisting of the three elements:

(1) artifacts, (2) individual developers, and (3) a

community of developers (Figure 1). A group of

developers engaging in software development can be

viewed as forming a knowledge community. A

knowledge community is a group or people that

collaborate with one another for the construction of

artifacts of lasting value [4]. In a knowledge

community, people are bonded through the

construction of artifacts.

Figure 1: Software Development as a System of
Evolution Consisting of the Three Elements

The community element is essential when viewing

software development as collective creative knowledge

work. The roles of individual developers, both

formally assigned ones and informally perceived ones,

change over time during a project. The social

relationships among the developers grow through the

engagement in the project. Such factors affect how the

developers collaborate, communicate, and coordinate

with one another, resulting in different ways of how

they share knowledge.

Because sharing knowledge is indispensable in

software development, the quality of resulting software

thus depends not only on the skills and knowledge of

individual developers but also on the roles of and the

social relationships among the developers. The sum of

the amount of each developer’s knowledge does not

simply determine the quality of software to be

developed; how the developers relate to each other also

does.

None of the three elements are constant during the

software development. Artifacts change over time

throughout the development. Individual developers, or

more precisely, what individual developers know,

grow by gaining experiences of engaging in the

development and learning about the artifacts. A

2

community of developers change by having new

developers join, and some developers leave the

development project. Their officially assigned roles

and informally perceived roles change over time, and

the social relationships among them also change.

Existing studies on supporting software

development have primarily focused on the evolution

of artifacts. More recent work has started to look at

how individuals change over time through learning. In

contrast, not much has been studied on the aspect of

the evolutionary community in the context of software

development processes [27].

The rest of the position paper focuses on how the

community element evolves and how technologies

ought to support such processes.

4. The Metabolic Process of a System of

Evolution
A software system needs to evolve to improve its

quality in terms of efficiency and robustness, or to

cope with the external changes in the environment

where the software is used. This type of evolution,

recently referred as incremental change [32], should be

viewed as not simply adding new objects or mending

broken ones; rather it should be viewed as a metabolic

process.

Artifacts go through such a metabolic process by

adding, modifying, and refactoring the source codes.

New parts are added and old parts are rewritten. Some

parts may be replaced with other parts.

Individuals’ knowledge evolves through learning

[22]. They learn by reading source code and

information sources such as documents. They learn by

asking peers questions. They also learn by solving new

problems and experiencing unfamiliar situations. Their

old knowledge is replaced with new ones and

restructured during the learning process.

Figure 2: Three Aspects of the Community's
Metabolic Process

A community grows through a metabolic process

through individual activities. This paper views the

metabolic process of a community from the following

three aspects (Figure 2): (1) the relationship of an

individual with artifacts; (2) the relationship of an

individual with other developers; and (3) the

relationship of an individual to the community as a

whole.

(1) the relationship of an individual with artifacts.

How one relates with artifacts is concerned with what

knowledge, expertise, and experiences he/she has had

on what artifacts. This information is useful in

identifying a set of people who has likely to have

expertise on a certain artifact.

An early social navigation system, Expert Browser

[24], provides this type of information. Expertise

browser uses data from change management systems to

locate people with desired expertise, by using a

quantification of experience. The system then presents

evidence to validate this quantification as a measure of

expertise.

As a more recent tool, LifeSource [14] provides two

visualizations of CVS code repositories.

CodeConnections provides file-centric, temporary-

animated visualizations, where color-coded authors

(i.e., developers) are indicated in terms of the file-

structures. CodeSaw provides the author-centric

visualizations of weighted collection of email and code

contributions of each developer, where the view can

overlay multiple developers’ contribution to make

comparisons.

(2) the relationship of an individual with other

developers. How one relates with other individuals is

concerned with social relationships among developers.

This information helps a developer to both determine

to whom to actually ask for help about a certain artifact,

and decide whether and how to actually respond to the

question being posed by the asker (Figure 3).

Figure 3: Asker-Helper Relationship

Answering to a question costs the helper (i.e., the

answerer) additional work as well as interrupts the

helper’s current task. Resuming the original task after

such an interruption has also been found quite costly

[19] . How one would, then, helps another if answering

is such a costly task.

To help people to decide to whom to ask, social

awareness tools [36] help community members

become aware of what is going on within a community,

and primarily helps askers to decide who and when to

ask a question by looking at how intensively potential

helpers are currently engaging in their own tasks.

Comparing to the number of approaches that aim at

supporting askers, very few studies exist that focus on

supporting helpers (Figure 3).

3

The feeling of expectation and obligation plays an

important role during the helper’s process of deciding

whether and when to help. Having information about

one’s social relationships with the other individual

developers helps him/her develop a feeling of

obligation and expectation with each of them [28] as

people tend to favor reciprocal acts. If Person X gives a

service to Person Y, X feels an expectation for Y while

Y feels obliged to return the service to X in the near

future. Thus, one may feel obliged to answer to a

question being asked by his/her peer developer who

had kindly helped him/her the week before.

Obligations “represent a commitment of duty to

undertake some activity in the future” [25].

Expectations are what one has on others based on one’s

trust to them and vice versa. Researchers see

obligations and expectations as complementary

features [3], incurred during prior interactions, creating

value for the community in the future [31].

A few systems have been developed to explore

individual relationships to help one decide how to

engage in the communication. For instance, Soylent [9]

provides temporal and social structures of an online

activity by visualizing email messages and their traffics.

The system provides a nice ego-centric view to identify

with whom one has been communicating at what time,

helping him/her to develop a feeling of obligation and

expectation.

(3) the relationship of an individual to the community

as a whole. How one relates with the community is

concerned with his/her role within the community,

belonging to either a peripheral part, a core part, or an

intermediate layer. This aspect helps a developer to

decide how much he/she contributes to the community

by getting trust and social reputations within the

community. One’s role evolves within a community

through legitimate peripheral participation [40]. By

looking at how and what a developer’s peers who are

closer to the core of the community do within the

community, he/she gradually acquires skills through

learning, and develops his/her identity within the

community.

One-to-one communication and collaboration also

contributes to the development of social reputation.

Obligations and expectations also play a role in this

context. When other peers in the community look at X

giving service to Y, X might gain not only expectation

to Y but also social reward from the community in the

form of good reputation and trust from the community.

This might then lead to shifting the role of X within the

community from the periphery closer to the core.

Tools have been developed to use Usenet

Newsgroup communities to identify this type of

relationships of an individual with the community.

Tools described in [10][12] provide a second-degree

ego-centric network for each author together with out-

degree histograms of each community, and identify

types of users (e.g., answer-only group) and

characterizes each community. Newsgroup Crowds

and AuthorLines [39] identify authors and types of

authors in terms of how they are engaged in the

community. The tools visually represent for each user

the number of posting per thread and that of active

days over a month. They highlight recently posted

messages and the encodes the number of posts to the

entire set (Usenet Newsgroup as a whole) as the size,

allowing people to understand the “role” of a user as a

whole and for a particular newsgroup.

In order to support the evolutionary metabolic

process of a community, we need technologies for

individuals to become aware of the current state as well

as its history from the three aspects; that is, to help

them determine what artifacts to contribute and how,

with whom to communicate by asking or answering,

and which role to play within the community.

5. Technical Support for Metabolic

Processes of the Community Evolution
Our approach is to use the interaction histories as a

source for such decision making by allowing

developers to deal with social factors, such as

motivation, trust, self-confidence and social

recognition.

A number of social navigation systems have been

studied to support community activities in a variety of

domains [17]. Many of them visualize the history of

the community members’ activities to analyze the

community as a whole, and/or to help a user decide

which community to join or to find people with whom

the user should communicate. Many of them, however,

suffer from not having a clear goal of who is to use the

visualizations for what purposes. Having clear goals

would determine what types of data to show in what

ways, for instance, whether to use my-own-data or

collective-social-data as a collective snapshot or as

temporal transitions [11].

Our goal here is to use the interaction history data to

help software developers determine how to engage in

the community by interacting with which artifacts and

with whom. How developers engage in the community

then would shape the metabolic processes of the

system of evolution from the community aspect. In

considering this, this section argues for the following

claims.

(1) Such data should describe the state of the

community, as well as the trends and temporal changes

over a long period of time.

4

The evolution of an organism depends not only on

the type of perturbation, but also on the current

structure of the organism. The current structure is

determined through its historical development [22].

Having temporal views that allow us to understand

how the community has evolved is quintessential.

For instance, even when two developers worked the

equal amount of time on a certain module, if the one

has worked over the period of two years and the other

has been working during the last two months, the latter

developer is likely to know better about the current

version of the module. This kind of information is

important to identify to whom ask about the module

[24].

(2) Such data should support not only views for the

summaries and overviews of the interaction history

data but support ego-centric views, those based on

individuals’ perspectives.

Because it is situated within a social context,

knowing the current state and its history of one’s

relationships with artifacts, the other developers, and

the community, is not as straightforward as it seems.

Such relationships are by no means objectively

countable or measurable. One could only assume, or

feel, what the relationships currently are and have been.

One could also assume, thereby, how the relationships

would look by another developer.

For instance, you think you have the X amount of

expertise on a particular part of the source code. You

may think that you are a little bit overestimated by one

of your colleagues, Bob, and have a feeling that Bob

thinks that you have the Y amount of expertise on the

part. You think that Bob has the Z amount of expertise

on the part, but again, Bob might think a little

differently.

Thus, such technologies that support a community’s

metabolic process should help an individual to feel or

assume the current state as well as its history of his/her

relationships with artifacts, the other developers, and

the community. They need to aim at providing data not

only from an objective standpoint, but also from an

individual, ego-centric viewpoint.

(3) Such data can be collected within the scope of a

single community activity, as well as from that of

external activities.

People’s social relationships might be determined

not only through activities within the community but

also through those external to the community or within

another community [43]. A software developer might

be a member of another project, belonging to multiple

communities.

A developer might be able to better understand the

skill level of his/her peer by knowing the role of the

peer member within another development community.

(4) Some parts of such data should only be partially

disclosed to the community members, creating

asymmetric information disclosure.

Software developers may not want to disclose all

the historical information of his/her activities within

the community. He/she should be able to explicitly

specify some of the properties of his/her relationships

with artifacts, developers and the community (e.g, the

skill level with a certain module) because it is not

always possible to adequately assume how such

relationships are and have been.

The Saori system [15] provides users with

awareness of and control over the information

dissemination process within social networks. Saori

allows users to specify types of information to be

shared and a sharing policy at the level of mostly

public and mostly private, not at the level of

individuals. The STeP_IN (Socio-Technical Platform

for in situ Networking) system [29] allows users to

explicitly specify with whom developers want to

communicate in what topics. This information is kept

invisible to the other developers.

6. Social Factors
This section briefly examines social factors that

affect software development driven by a knowledge

community: motivation and interruption.

6.1 Motivation
Studies have recently been reported on how to

motivate people to make contributions of higher

quality to community-maintained artifacts of lasting

value (CALVs). Ludford et al. [21] reports that telling

people how they are special with respect to the group

and its purpose increases member contributions and

levels of satisfaction. Cosley et al. [4] argues that what

they call “intelligent task routing,” which is matching

people with work, can be helpful to increase people’s

contribution, and that such intelligent task routing

should consider not only the community’s needs but

also a person's knowledge and ability. Rashid et al.

[33] has found that giving feedback about the value of

a participant’s contribution in terms of a small group

the user has affinity with is most effective in

motivating people to contribute.

Although the domain of these projects is movie

recommendation and not software development, these

findings seem to be equally applicable to software

development as a collective creative knowledge

community activity. On the other hand, this domain

has fundamentally different nature from that of

software development. In making a community

repository of movie recommendations, the members of

5

the community has no clear purpose of finishing it

having no explicit incentives for doing so. With many

of software development projects, developers of each

community share the clear goal of finishing a project,

and they may be more motivated to help one another.

In either case, we need to conduct empirical studies

to draw any significant conclusions on this matter, and

further studies are necessary on how to motivate

developers to contribute high quality artifacts and

sustain the community as a system of evolution.

6.2 Interruption
Although interruptions between humans have

mainly been studied in face-to-face communication

settings, many findings seem to also be applicable to

communications through email. In a face-to-face

communication, an asker and a helper first need to go

through a negotiate process making an agreement on

when to interrupt the helper. People use a variety of

social cues to decide when to start the negotiation

process and making an agreement [42].

In using email for communication, it is much easier

for a helper to ignore email message that asks for help.

On the other hand, it is more difficult for an asker to

get a timely help as the asker cannot tell when a helper

would reply to the message. Studies by LaToza [20]

found that this makes developers to go more and more

face-to-face communications rather than using email,

which causes serious problems of interruption

especially employing agile development styles.

Wiberg and Whittaker [42] report that in their face-

to-face interruption studies, users preferred to take

interruptions as soon as possible. People preferred to

take interruptions now, incurring the cost of disrupting

their currently activity in order to avoid the future

overhead of having to schedule and remember later

commitments to talk. The authors also argue that users

felt a social obligation to return calls and a need for

being polite rather than delegating them even though it

require more effort to do this.

These phenomena seem to also hold true for email

communications. Although it is not as socially critical

as in face-to-face communication, putting off replying

to information-seeking messages often makes one to

feel guilty. One may feel that he/she wants to reply to a

message as soon as possible so that he/she would not

need to worry about not forgetting replying.

To address this issue, the STeP_IN system [29][44]

uses a mechanism to automatically set up anonymously

addressed mailing list for an asker’s request. The tool

produces such a mailing list by taking into an account

who is asking what question (i.e., the topic) and

identifying a several set of developers in a community

who have expertise in the topic and have good social

relationships with the asker. The mechanism allows

receivers of the message to remain anonymous, letting

them from not feeling bad by not replying to the

message. When one of the recipients replies to the

message, the identity of the helper is revealed to the

asker and the regular ways of social interaction will

follow, helping them to develop feelings of expectation

and obligation. The approach is unique where the cost

of interruption is treated as a collective manner. This

aspect needs to be studied further in order to better

support software development as collective creative

knowledge work.

The field of human-computer interaction has long

been studying how to model interruption between

humans and computer agents [18][5]. Some parts of

their models and findings should be taken into account

to achieve more effective, less disturbing

communication channels in support of software

development within a social setting. For instance, one

possible approach is to model the timing of when a

potential helper should receive an email message by

deliberately delaying the message delivery.

7. Related Work
The previous sections list existing tools and studies

that address specific aspect of the approach. This

section addresses three projects that have similar

research goals with us in the domain of supporting

software development as social activities.

The Augur system can be viewed as an example

technique to look at software development as the

system of evolution. The Augur system [6][13]

simultaneously visualizes the structure of a software

system (i.e., artifacts) and the structure of the

development process carried out by developers (i.e.

developers and the community). Augur visualizes the

result of call graph analysis, and networks of

contributors to a project, relating those who worked

together on a single module. By looking at how

developers worked together on what parts of a software

system, a user of Augur could tell how relationships

between artifacts (software system module structures)

and developers change over time, including

phenomena such as types of projects, how different

roles different developers take, how such roles shifts

between core and periphery, how authorship changes,

and what patterns of stability and changes are

observable. Augur currently supports ways to view the

structural changes from an objective standpoint.

Providing ego-centric individual viewpoints, for

instance, from a particular developer’s point of view,

such as similar to the ones provided by Soylent [9].

Another example is Hybrid Networks [23], which

integrates links from multiple development data

sources. The tool uses the Probabilistic Latent

6

Semantic Indexing clustering technique to associate

and cluster data from email discussions, authors, and

CVS source code tree branches. The result is integrated

and displayed in a single visualized view. The tool

currently does not support temporal views or ego-

centric views.

As mentioned above, Storey et al. [36] argues for

the importance of supporting awareness in software

development by visualizing artifact and activity data,

and report the result of comparing then-existing 13

tools that support such awareness. They have

developed a survey framework, which consists of

intention of the visualization, information that are

visualized, presentation used in the visualization,

interaction provided for the visualization, and

effectiveness of the visualizations. Some parts of the

framework, such as whether tools address temporal and

historical changes over time, and what types of

artifacts tools support, are important for our purpose.

However, the framework does not focus on the

relationships among artifacts, developers and the

community, and how they change over time.

8. Discussion
Human aspects of software development have long

been not highly focused [30][7] except in few

approaches, such as empirical software engineering [2]

and considerations of cognitive aspects of software

engineering [16]. Recent trends in software

engineering cannot be taken into a full account without

seriously taking the social aspect of knowledge-

intensive software development as a central theme.

Using open source software, adapting agile methods

through incremental change, and engaging in global

software development equally aware of the importance

of the collective, creative aspect. This would demand

us to develop inter-disciplinary research agenda to

cope with the issue. We as researchers and

practitioners in this field need to engage in socio-

technical collaboration for ourselves.

Acknowledgements
This research is partially supported by the Ministry of

Education, Science, Sports and Culture (MEXT)

Grant-in-Aid for Exploratory Research, 17650038,

2005.

Reference
[1] Adamczyk, P.D., Bailey, B.P., If not now, when?: the

effects of interruption at different moments within task

execution, Proc. . CHI04, ACM Press, pp.271-278, 2004.

[2] Basili, V., The Role of Experiments in Software

Engineering: Past, Current, and Future, Proc. ICSE'96,

pp.442-449, ACM, 1996.

[3] Coleman, J.S., Social capital in the creation of human

capital. American Journal of Sociology, 94: pp. S95-S120,

1998.

[4] Cosley, D., Frankowski, D., Terveen, L., Riedl, J.,

Using Intelligent Task Routing and Contribution Review to

Help Communities Build Artifacts of Lasting Value, Proc.

CHI06, ACM Press, pp. 1037-1046, 2006.

[5] Czerwinski, M., Horvitz, E., Wilhite, S. 2004. A diary

study of task switching and interruptions, Proc. CHI’04,

ACM Press, pp.175-182, 2004.

[6] de Souza, C., Froehlich, J., Dourish, P., Seeking the

source: software source code as a social and technical artifact,

Proc. GROUP05, ACM Press, New York, NY, pp. 197-206,

2005.

[7] Dittrich, Y., Doing Empiorical Research on Software

Development: FInding a Path Between Understanding,

Intervention, and Method Development, Software Practice is

Social Practice, Social Thinking - Social Practice, Dittrich,

Y., Floyd, C., Klischewski, R. (Eds.), pp.243-262, MIT Press,

2002.

[8] Fischer, G., Symmetry of Ignorance, Social Creativity,

and Meta-Design, Knowledge-Based Systems Journal,

Elsevier Science B.V., Oxford, UK, Vol 13, No 7-8, pp 527-

537, 2000.

[9] Fisher, D., Dourish, P., Social and temporal structures in

everyday collaboration, Proc. CHI04, p.551-558, Vienna,

Austria, 2004.

[10] Fisher, D. Understanding Communication Using Social

Networks. IEEE Internet Computing. September/October,

2005.

[11] Fisher, D., Ask Not for Whom the Visualization is

Rendered; It is Rendered for Thee. Workshop paper,

presented at the Social Visualization Workshop, CHI 2006.

[12] Fisher, D., Smith, M., Welser, H. You Are Who You

Talk To, Proc. HICSS, January 2006.

[13] Froehlich, J., Dourish, P. 2004. Unifying Artifacts and

Activities in a Visual Tool for Distributed Software

Development Teams. ICSE’04. IEEE Computer Society,

387-396.

[14] Gilbert, E., Karahalios, K., LifeSource: two CVS

visualizations. CHI ‘06 Extended Abstracts on Human

Factors in Computing Systems ACM Press, 791-796, 2006.

[15] Goecks, J., Mynatt, E. D. Leveraging social networks

for information sharing. Proc. CSCW ‘04. ACM Press, 328-

331, 2004.

[16] Herbsleb, J. D., Beyond computer science. Proc. ICSE

‘05. ACM Press, 23-27, 2005.

[17] Hook, K., Benyon, D., Munro, A.J. (Eds.), Designing

Information Spaces: The Social Navigation Approach,

CompSpringer, 2003.

7

[18] Horvitz, E., Apacible, J. 2003. Learning and reasoning

about interruption. Proc. ICMI ‘03. ACM Press, pp.20-27,

2003.

[19] Iqbal, S. T., Bailey, B. P., Leveraging characteristics of

task structure to predict the cost of interruption, CHI’06,

ACM Press, 741-750, 2006.

[20] LaToza, T.D., Venolia, G., DeLine, R. Maintaining

mental models: a study of developer work habits, Proceeding

of the ICSE ‘06. ACM Press, 492-501, 2006.

[21] Ludford, P.J., Cosley, D., Frankowski, D., Terveen, L.,

Think different: increasing online community participation

using uniqueness and group dissimilarity, Proc. CHI’04,

ACM Press, 631-638, 2004.

[22] Maturana, H.R., Varela, F.J., The Tree of Knowledge:

The Biological Roots of Human Understanding, Shambhala

Publications,Inc., Boston, MA, 1998.

[23] Medynskiy, Y., Ducheneaut, N., Farahat, A., Using

hybrid networks for the analysis of online software

development communities, Proc. CHI’06, ACM Press, 513-

516, 2006.

[24] Mockus, A., Herbsleb, J. D., Expertise browser: a

quantitative approach to identifying expertise, Proceedings

ICSE’02. ACM Press, 503-512, 2002.

[25] Nahapiet, J., Ghoshal, S., Social Capital, Intellectual

Capital, and the Organizational Advantage. Academy of

Management Review, 23, pp.242-266, 1998.

[26] Nakakoji, K., Ohira, M., Yamamoto, Y., Computational

Support for Collective Creativity, Knowledge-Based Systems

Journal, Elsevier Science, Vol.13, No.7-8, pp.451-458,

December, 2000.

[27] Nakakoji, K., Yamamoto, Y. Nishinaka, Y., Kishida, K.,

Ye, Y., Evolution Patterns of Open-Source Software Systems

and Communities, Proc. IWPSE2002, ACM Press, Orlando,

FL., pp.76-85, May, 2002.

[28] Nakakoji, K., Humane Requirements for Enabling and

Nurturing Collective Creativity, Proc. HCII05, Las Vegas,

NV, CD-ROM, Jul. 22-27, 2005.

[29] Nishinaka, Y., Asada, M., Yamamoto, Y., Ye, Y., Please

STeP_IN: A Socio-Technical Platform for in situ Networking,

Proc. APSEC’05, Taipei, pp. 813-820, Dec. 2005.

[30] Noerbjerg, J., Kraft, P., Software Practice is Social

Practice, Social Thinking - Social Practice, Dittrich, Y.,

Floyd, C., Klischewski, R. (Eds.), pp.205-222, MIT Press,

2002.

[31] Resnick, P. Beyond bowling together: sociotechnical

capital. Carroll, J. M. (Ed.) HCI in the New Millennium, pp.

247-272, 2002.

[32] Rajlich, V., Changing the Paradigm of Software

Engineering, Communications of ACM, Vol.49, No.8, pp.67-

70, August, 2006.

[33] Rashid, A. M., Ling, K., Tassone, R. D., Resnick, P.,

Kraut, R., Riedl, J., Motivating participation by displaying

the value of contribution, Proc. CHI’06, ACM Press, New

York, NY, 955-958, 2006.

[34] Robillard, P. N., The role of knowledge in software

development. Comm. ACM 42, 1 87-92, 1999.

[35] Sillito, J., Murphy, G., De Volder, K., Questions

Programmers Ask During Software Evolution Tasks, Proc.

Symposium on Foundations of Software Engineering,

November 2006 (to appear).

[36] Storey, M-A. D. Cubranic, D., German, D.M., On the

use of Visualization to Support Awareness of Human

Activities in Software Development: a Survey and a

Framework, Proc. SoftVis’05, ACM Press, pp.193-202,

2005.

[37] Szoestek, A.M., Markopoulos, P. Factors Defining Face-

To-Face Interruptions in the Office Environment, CHI2006,

Work-in-Progress, pp.1379-1384, 2006.

[38] Terveen, L., McDonald, D. W. 2005. Social matching: A

framework and research agenda, ACM Trans. of Comput.-

Hum. Interact. 12, 3, 401-434, 2005.

[39] Viegas, F., Smith, M., Newsgroup Crowds and

Authorlines: Visualizing the Activity of Individuals in

Conversational Cybersapces, HICSS-37, Hawaii, January

2004.

[40] Wenger, E., Communities of Practice - Learning,

Meaning, and Identity. Cambridge, England: Cambridge

University Press, 1998.

[41] Westrup, C., On Retrieving Skilled Practices: The

Contribution of Ethnography to Software Development,

Social Thinking - Social Practice, Dittrich, Y., Floyd, C.,

Klischewski, R. (Eds.), pp.95-110, MIT Press, 2002.

[42] Wiberg, M., Whittaker, S., Managing availability:

Supporting lightweight negotiations to handle interruptions.

ACM Trans. of Comput.-Hum. Interact.,12,4, 356-387, 2005.

[43] Ye, Y., Yamamoto, Y., Dynamic Communities in

Support of Situated Knowledge Collaboration, Proceedings

HCII05, Las Vegas, NV, CD-ROM, Jul. 22-27, 2005a.

[44] Ye, Y., Dimensions and Forms of Knowledge

Collaboration in Software Development, Proceedings

APSEC, Taipei, pp. 805-812, Dec. 2005b.

8

When Programmers Don’t Ask

Sukanya Ratanotayanon
Department of Informatics

University of California, Irvine
sratanot@uci.edu

Susan Elliott Sim
Department of Informatics

University of California, Irvine
ses@ics.uci.edu

Abstract

Throughout the software development process,
participants of the project need to collaborate in order
to exchange the knowledge required to complete the
project. Exchanging and obtaining knowledge is often
done through asking and answering questions. We
present an initial study aimed at understanding
question-asking behavior during knowledge exchange
in software development. We found that this seemingly
simple activity is often not performed well, nor as
frequently as required. Novices do particularly poorly
as they are not aware of their knowledge needs.
Experts also asked few questions but focused on
different kinds of knowledge. In addition, they
sometimes, ask questions although they have ability to
obtain information themselves. We speculate on the
causes of failures in question asking and the rationale
behind experts’ questions.

1. Introduction

Software development is a knowledge-intensive
activity. Various stakeholders who are involved in the
project need to collaborate and communicate in order
to exchange and transfer their knowledge. However,
collaboration and knowledge exchange in software
projects are often not performed effectively. As
reported by Curtis [1], the most common and severe
issues in software development projects are the thin
spread of domain knowledge, and communication and
coordination breakdowns. These issues need to be
addressed in order to improve overall development
process performance.

A common way to exchange knowledge is through
asking and answering questions. However, in order to
effectively perform this seemingly simple activity, the
participants need to aware of what knowledge others
have and their needs for knowledge. In addition, as
observed in other fields such as education, it is not

unusual that a person does not ask questions because he
lacks the information or does not understand the given
explanation. If this behavior is also present in software
development, it could decrease the effectiveness of
knowledge exchange.

In order to support knowledge collaboration, we
need to understand the question-asking behavior: i)
how and why people ask questions and ii) what kind of
information is needed, including its importance to the
inquirer’s knowledge needs. The answer to these
questions can provide guidance for designing
collaboration tools, such as what kinds of information
is needed but is not requested, or support for novices to
ask the right questions.

In this paper, we report on an initial exploratory
study in a laboratory setting. The data reported here
comes from a multi-part study in which novice and
expert software engineers are required to collaborate
on a change request for a moderate-sized web
application. Our goal is to explore the question-asking
behavior in knowledge transfer. We observed how
software developers ask questions in a collaboration
session to increase their understanding of the
application and to complete an assigned task.

We found breakdowns in question asking. Our
results showed that developers do not ask questions
well, nor do they ask as often as they should. Novices
did especially poorly as were not aware of their
knowledge needs and didn’t ask questions when they
really should have. Experts also asked few questions,
but focused on knowledge from different levels of
abstraction. In addition, they sometimes, asked
questions that they have ability to answer themselves.

This paper is organized as follows. Results from
related research are reviewed in Section 2. The
laboratory procedure used in the study is described in
Section 3. The results are presented in Section 4. The
discussion of the causes of the failures in question
asking is presented in Section 5. Section 6 presents our
future work. We conclude our paper in Section 7.

9

2. Related Work

Previous studies in question-asking fall into two
main categories: psychological studies and field studies
of question-asking in software development and
engineering.

In psychology, questions tend to be used as an
indicator of cognitive activity. Questions are viewed as
a means to obtain knowledge that is important for the
inquirer to reach a certain goal [2, 3]. Ram suggested
that questions are crucial and central to learning [3].
The question formulation process is the process of
identifying what the learner needs to learn, and asking
the right questions allows the learner to focus on
relevant issues by pursuing the questions. Therefore,
the depth of understanding of the learner depends on
the questions asked. However, as shown in experiment
performed by Miyake and Norman [4] a prerequisite
for asking questions about a new topic is an appropriate
level of knowledge with which to formulate the
question and to interpret the response. The number of
questions a person asked when learning new material
depended on two variables: i) the existence of a proper
knowledge structure and ii) the level of completeness
of those structures regarding new material.

Although, the work discussed above gives us an
insight into question asking as a cognitive activity, it
doesn’t address what questions are asked and how they
are actually asked in a work situation. The following
are field studies investigating questions asked in
software development and engineering.

Berlin performed field study of consulting
interaction between apprentices and experts [5]. The
results showed that question-asking played an
important role in collaborative conversation between
apprentices and experts. Confirmative questions were
used by experts to invite apprentices' interjections.
Apprentices used questions that restated the
explanation to signal their level of understanding and to
ask for validation or help. This collaborative process
was important to providing a successful explanation,
because the pair continually sought and provided
evidence that they understood each other, which
resulted in rapid repairs of misunderstandings. Berlin
also found that experts were quicker to seek help from
other experts, which might be due to better self-
monitoring skill or social factors, such as having more
reciprocal relationship with other experts.

Herbsleb et al. performed a field study aimed to
assess knowledge needs in software development by
examining the questions asked in requirement
specification and design meetings [6]. Data was
collected from projects in requirements and early

design phases. The results showed that the most
common questions were “what” and “how” questions
targeting requirements, even for the project that already
move into design phase. Very few “why” questions
were asked although design rationale [7] is considered
very important information.

Ahmed and Wallace studied queries made by
novice and experienced designers in a large aerospace
company. Similar to Herbsleb, the goal of the study
was to identify knowledge needs of designers and their
awareness of their knowledge needs. The results
showed differences between novices and experts in
both types of queries made and patterns of responses to
the queries. In addition, the finding indicated that
novice designers tended to be unaware of their
knowledge needs and required support in identifying
what they needed to know.

3. Empirical Method

The goal of our study was to gain an understanding of
question-asking behavior as a means of knowledge
transfer in software development projects. We
observed how software developers asked questions to
increase their understanding of the application in order
to complete an assigned task.

3.1. Research Design

While quantitative studies use experimental
methods and quantitative measures to make predictions
and generalize findings, qualitative studies use a
naturalistic approach to build understanding and
extrapolate to similar situations [8]. In order to gain a
better understanding of question-asking behavior, we
chose to perform an exploratory qualitative study
instead of a quantitative study which ignores effects
that may be important, but are not statistically
significant. Qualitative methods provide a wider
understanding of the entire situation as it accepts the
complex and dynamic quality of the social world. It
provides results that are more in-depth and
comprehensive than those produced by quantitative
methods.

We performed a laboratory study simulating a
situation in software maintenance. An existing
developer has to transfer his knowledge to assist
another programmer who is also assigned to make a
modification to a software system. This allows us to
evaluate the quality and relevance of questions asked
by subjects. More detailed information of study design
is presented elsewhere [9].

10

3.2. Procedure

Two subjects were required to participate in each
session. Each session took a total of 210 minutes and
comprised three tasks: Task A, Handover and Task B.
The time line of each session is depicted in Figure 1.

0:30 1:00 1:30 2:00 2:30 3:00 3:30
Subject A Task A Handover
Subject B Handover Task B

Figure 1: Time line of study procedure

Task A: The first subject was given a scenario where a
customer requested a feature in the company’s survey
management application. He was asked to complete a
Change Request Proposal (CRP) form describing how
to make the change. The CRP gives the guideline of
what information should be provided to Subject B. The
subject was also asked to not make any modification
and had up to 90 minutes to finish this task
individually.
Handover: In this task, Subject A verbally handed
over to Subject B the information gathered in the first
task. The Handover task began with Subject A giving
an explanation without any interruptions. During the
explanation, the application and its code might be
shown to Subject B to improve his understanding.
Once the explanation was completed, Subject B was
allowed to ask questions. The subjects were given 30
minutes to perform this task.
Task B: Following the Handover, Subject B was left
with the CRP and Subject A’s notes. Subject B had to
work individually and make the modification within 90
minutes.

This division of tasks not only allows us to examine
the collaboration behavior of asking question, it also
mimics common work situations where research is
separated from detailed work. The CRP is a commonly
used process in which software evolution is managed
by a Change Control Board (CCB).

Before performing the tasks, both Subjects were
given a short description of typical architecture of web
applications, task description and instructions on
running and compiling the application. Subjects were
allowed to use any information available on the
Internet. There was no application developer
documentation, such as a design document. However,
this omission is not uncommon in real-world
maintenance settings.

During each session, each subject’s activities were
recorded by a web camera, a microphone and screen
capturing software. Scratch paper was provided to the
participants and was collected at the end of the study.

Eclipse IDE containing a project set up for the task and
TextPad software were also provided.

3.3. Software characteristics

The application used in this study was an open-
source web-based survey management tool called
VTSurvey, developed at Virginia Tech. It is a typical
n-tier web application created with JSP, Java, and
XML technologies, and runs on the Tomcat application
server. It enables users to create, maintain and run
online surveys. It also provides a user management
system for managing user accounts. Originally,
VTSurvey didn’t maintain each user’s email address.
We requested that the system be modified so that it can
save and display user’s email addresses.

VTSurvey consists of 38 Java™ files, 74 JSP (Java
Server Page) files. In addition, there were 4 DTD
(Document Type Definition) files. It has a total of
10,342 lines of code. Subjects were presented with all
source files, including those that were not relevant to
the assigned task.

3.4. Subjects

The subjects were mainly recruited by word of
mouth. A total of twelve subjects participated in the
study. Half the subjects were novices and the other half
experts. Novices were senior undergraduates, or recent
graduates who had been working for less than one year.
Experts were developers with five or more years of
work experience. We had three female subjects and all
of them were experts. All subjects considered
themselves fluent in English and had experience
working with Java. We also surveyed their experience
(including non-work experience) in the areas of web
development and database management. Figure 2
presents overall level of experience of subjects in each
group.

Figure 2: Level of experience in Web Dev. and DB

4. Analysis and Results

11

We analyzed audio and video data recorded during
the six sessions. The implementation was graded based
on its correctness and completeness regarding our
requirements and was given a numeric score out of 55.
The conversations during Handover sessions were
transcribed in order to identify questions from both
subjects. We included both implicit and explicit
questions in our analysis. Explicit questions were
formed in question sentences. The implicit questions
were be formed as normal sentences or fragments, but
acted as questions due to the inquirer’s expression and
tone, and generated answers from the partner. The full
list of questions is found in Table 3 and Table 5.

4.1. Number of Questions

We identified only total of 64 questions from the six
sessions. Due to time constraints on the implementation
task, we expected that Subject B would ask a lot of
questions in order to take advantage of Subject A’s
knowledge. However, there were surprisingly few
questions asked, in comparison with other studies [10,
11]. More than half of these questions were asked in a
single session, the fourth one. In addition, the purpose
of the questions, as well as the quality and type were
very different from other sessions. As a result, we
decided to analyze this session separately and this is
presented in Section 4.4. The number of questions
asked and total time spent in the Handover sessions are
shown in Table 1.

Table 1: Number of questions and time spent
Run Subject A Subject B Total Handover

Time (min)
1 (E-N) 5 5 9:55
2 (E-N) 1 1 3:00
3 (N-E) 7 7 7:44
5 (N-N) 5 5 10:00
6 (E-E) 4 8 12 12:45

4 (N-E) 10 24 34 27:56
* (Subject A - Subject B), E = Expert, N = Novice

4.2. Types of Questions

In order to perform the modification, the subjects
needed to understand the VT survey application.
Previous studies [12, 13] showed that in order to
successfully comprehend software, information from
different levels of abstraction is needed in order to
build a mental model. To investigate what information
subjects asked for, we categorized the knowledge
requirement of the questions into three levels of

abstraction. The summary of the categories is shown in
Table 2.

Domain Level (D) questions are concerned about a
program’s external behavior, such as those perceived
by users of the application. We further categorized
questions in this level into:
D1: Questions that ask about task’s requirements, as
provided in the task description document in order to
clarify or to confirm them.
D2: These questions ask about what the application can
do and how a user performs a specific task.
D3: These questions aim to confirm the scope of the
task. The inquirers express concerns whether additional
features are required to complete the assigned task.

Intermediate Level (I) questions ask about
mechanisms that map between domain and program
level behaviors. Examples of this kind of information
includes: software architecture and high-level design
information.

Program Level (P) includes questions about low-
level design or information that is often grounded in the
source code. These questions are divided into:
P1: Questions about location of data files, source code
files and how to run the application.
P2: Question about meaning and behavior of methods,
objects, or JSP files. These questions target the
information in a lower level of abstraction than
question in I category.

All other questions such as those asking about tool
preferences are grouped in the Other (O) category.

Table 2: Summary of categories of questions
Level Category

D1: Restatement of Change Request.
D2: Application Usage

Domain

D3: Task Scoping
Intermediate I: Mechanics

P1: Set Up Program
P2:Code Level Mechanics

Other O: Questions that were not asked
about the application.

All questions asked in each category except those
from the Run 4 are presented in Table 3 grouped by the
run in which they were asked.

Table 3: All questions asked excluding run 4’s
Questions

D1: Restatement
R1 So all they wanted was?

What (field) you want to see is?
(you need to display) Email address. Not the
password?

12

R3 Is the user id basically any characters or numbers?
Save (email) the same way (as user id and password)?

R6 Just add. Right? Add this field.
D2: Usage

R1 They (users) can’t edit?
R6 So this one (UI) is add new user and this one (UI) is

change?
D3: Scoping

R3 Do I have to verify that it (email field) is blank?
No other fields (to be added)?
Do I have to require the person to answer in email
twice?

R5 I have to check for email and make sure it was entered
into form?

R6 I’m not sure if we want to include this piece of
information?*
Should we allow the admin to change the user’s email
or not?*
I’m not sure whether they require us to do this or
not?*
Whether the email information is require or not … [if
the blank data is allowed]?*
[Do I have to validate incorrectly formed email
address]?

I: Mechanics
R3 And surveyMetaData is like the database structure?
R6 So they don’t need… they don’t use data base right?

P2: Code-Level Mechanics
R1 On the backend there is no password field?
R3 What are these files?
R5 Which one talks to the user.dtd?

So it is just those three things I’m going to worry
about?
Which files are going to need to be modified?

R6 Is this file going to control the elements in the xml
file?
I’m not sure whether we can use this new data
structure to process the old data?*
Leave what? There’s going to be a pair in the xml files
right?
So what files are involved in these changes?

O: Other
R2 Whether you are familiar with the code?*
R5 Should I just save it (currently opened files)?
* shows questions asked by Subject A

The majority of the questions were at the Domain
level, although our requirements were quite simple. In
addition, there were no “why” questions asked although
design rationale is considered important information in
comprehending software. This result is similar to the
finding from Herbsleb et al. [6].
To completely understand a program, a programmer
has to establish links between information in different
levels of abstraction. Incomplete explanations and few
questions suggested that a lot of information may be
missing. To our surprise, there were few questions

asked at the Intermediate and Program level regardless
of the completeness of the explanation received.
Further examination of the implementations showed
that subjects had difficulty finding out the information
by themselves, especially for the novices. This suggests
that subjects did not already posses the information that
was not asked for. In addition, the coverage of question
was very narrow (See Section 4.4 for comparison).

We also expected that Subject A would ask about
his partner’s experience in order to provide explanation
in a suitable presentation level. However, there was
only one question of this kind.

Table 4: Number of questions in each category and
implementation score of each session

Run/
Level

1
EN

2
EN

3
NE

5
NN

6
EE

Total 4
NE

D1 3 2 1 6
D2 1 1 2 1
D3 3 1 5 9

17

I 1 1 2 2 13
P1 0 5
P2 1 1 3 4 9

9
5

O 1 1 2 2 10
Total 5 1 7 5 12 30 34
Impl. 35 12 35 50 44 55

The number of questions asked in each category
and the implementation score from each session are
presented in Table 4. In this study, subjects who asked
about information in the I and P levels were better able
to complete the task than those who did not. This is
reasonable as our task had a time limit. Asking for this
information allowed the subjects to exploit knowledge
from his partner and to spend less time doing research.
The fact that they were able to formulate the questions
suggested that they would be able to understand the
explanation and hence able to make use of the
information.

Over the next two subsections, we discuss two
interesting patterns of questions-asking that were
manifested in our study.

4.3. Run 4: Asking in the Absence of Answers

More than half of questions in the entire study were
asked in Run 4 by our most experienced subject, E4,
who had 5-10 years of experiences in both web
applications and databases. In addition, E4 was the
only subject who completed the modification task. E4
received a very short and incomplete explanation from
his partner, N4, who had less than one year of

13

experience in both areas. The complete list of questions
asked in Run 4 is presented in Table 5.

A large number of questions might seem reasonable
as E4 had sufficient knowledge to detect missing
information and could ask questions to obtain the
missing information. However, what made this session
interesting is that E4 decided to continue “asking” N4,
who was obviously a novice and could not answer even
his simplest questions. The following excerpt was taken
from the beginning of Run 4’s Handover session.

E4: Where is the data store?
N4: No idea. I don’t know where the data is stored.
I can’t even find servlets.
E4: Hmm. Why couldn’t you find the servlets?
N4: I don’t know where it’s at.
E4: Why don’t you know?

It would not have been surprising if E4 disregarded
N4’s explanation and ended the Handover session at
this point. But E4 persisted. This question-asking
pattern continued for nearly half an hour. When N4
could not answer the questions, E4 found the answers
to his questions and explained them to N4. Since E4
clearly could not obtain answers from N4, what was the
purpose of questions in this session?

As some information provided by N4 was incorrect,
E4 used questions to judge the correctness of
explanation provided by N4. In addition, questions
were used to engage N4 in the collaborative
conversation. For example, after examining a portion
of Java code E4 posed a question:

E4: Doesn’t it gives you the impression that each
files has a user associated wit it?
N4: Name of the user as a file?
E4: The user yeah, the name of the user is the name
of the file.
N4: As you pointed out, it’s an array of ….

In addition, the type and quality of questions asked
in this session were different from the other sessions.
There was only one Domain level question and most of
questions asked were in Intermediate level. In addition,
the questions touched on more parts of the system in
more detail.

Table 5: Questions asked in Run 4
Run Questions

D2: Usage
R4 Where to actually go to that… the main page?

I: Mechanics
R4 Did you say I do or do not have to modify the Servlet?

It is a Servlet. It’s not a javabean, not … ?

Where is the data stored?
Why couldn’t you find the servlets?
Why don’t you know (where the Servlet is)?
Do you know if the data is stored in an xml file or a
real relational database?
Doesn’t it give you the impression that each file has a
user associated with it?
The name of the user as a file?*
What give you the impression that there are Servlets
involved and not just jsp files?
Did you see something like that (how Servlet is used
by Subject A in his past experience) here?
So how would that (using only JSP to implement web
application) work anyway?*
How would what work?
Do you know if it’s using the standalone or LDAP
authentication method?

P1: Set Up
R4 Do you know where that directory is?

Do you know the name of one of the user on the
system?
Do you know where the user class is?
Do you know where the source file is?
Do you know how to build this stuff? Have you done
that?

P2: Code-Level Mechanics
R4 I don’t know what that (

HttpUtils.getRequestURL(request)) is ?*
How does the listAllUser.jsp file retrieve the email
address or retrieve the user name for display?
Where would you go? I mean the action… *
It returns back to the page, which make sense. Right?
If you get down to “setPassword”, what does it do?

O: Other
R4 Have you seen the program?*

You understand this part. I mean why you have to
change it?*
Can you do find for “test” (a user name)?
Can you add another user in the system with a more
unique name?
Can you open the xml file?
This (file that he was asked to open) one?*
What do you want to see it (the file) with?*
Could we look at the constructor?*
How long will it take you to do that?*
Localhost… Can we go back to the main … main
page?

* shows questions asked by Subject A

4.4. Run 1 and 2: Novices Don’t Ask Experts

In contrast to Run 4, very few questions were asked
in Runs 1 and 2. These sessions had expert explainers
and novice implementers, and very few questions were
asked especially in Intermediate and Program level.
However, the quality of explanations given in both
sessions was different.

14

In Run 1, N1 received a very good explanation
from E1. N1 asked very few questions, mostly in the
D1 category. At first glance, this suggests that N1
received all the important information needed to
complete the task down to the level of which files and
methods were needed to be modified and how to
modify them. There was no need to ask questions to
obtain further information. However, this was not the
case. The video from implementation task showed that
N1 did not understand the explanation given and had
difficulty utilizing the information given by E1. N1
disregarded the CRP from E1 and spent a lot of time
trying to obtain the same information available in that
document.

In Run 2, E2 gave a very short and incomplete
explanation to N2. However, N2 did not ask any
questions. From his implementation task result, we
know N2 had trouble finding information on his own.
In addition, E2’s explanation contained some incorrect
information; N2 ended up being misled and received
the poorest implementation score.

It is obvious that both novices did not have the
information required to understand the application.
Why didn’t they ask more questions to their partners
who are experts and should be able to provide them
with useful information? In the next section, we
explore some possible explanations.

5. Discussion: Why developers don’t ask

In this study, the Handover sessions were rather
short and there were surprisingly few questions asked,
especially by novices. We expected Subject B to ask
for more information in order to benefit from Subject
A’s knowledge. In this section, we will speculate on the
reasons why there were so few questions.

5.1. Experts

The result showed that experts were responsible for
asking the bulk of questions in this study. Excluding
Run 4, 20 out of the 30 questions were asked by
experts. This makes an average of five questions asked
per person which is still not many. A possible
explanation is that experts are confident that they can
find out required information on their own. Among the
20 questions asked by experts, 8 were asked to novices
and 12 to experts. This shows a tendency to ask more
questions to experts than to novices. This might be
because experts have more common ground with other
experts. Also, experts can easily identify whether their
partners are novices or experts [14]. When paired with
novices, it’s possible that experts could detect their

lack of experience and discounted their ability to
provide useful answers.

The types of questions asked by experts were also
different from novices. Experts asked more questions at
the Program level than novices. This might be because
experts have better domain models which allow them to
know what information they need at P level. P level
information will be used to work out what information
is needed at the I level. This was also substantiated by
Run 4’s collaborative problem solving and information
seeking.

5.2 Novices

In this study, excluding Run 4, novices asked
average of only two questions per person. A possible
explanation is that novices lack domain knowledge and
a suitable framework to understand the explanation, an
inability to know what they need to know [4]. This
explanation is supported by Ahmed and Wallace’s
finding that novices usually don’t understand their
knowledge needs [11]. It is also possible that novices
may have questions but did not know how to ask them,
because they have difficulty framing question due to
the lack of common ground with the explainer. As
presented by Ram [3], in order to ask a question, one
almost needs to know what the answer is going to be.
This is similar to forming a hypothesis about the
answer. Also, in order to understand an answer, one
needs to be able to anticipate the answer in order to
incorporate it into existing knowledge.

5.3 The Social Act of Asking Questions

People don’t always ask their questions. The simple
explanation is that they afraid of asking stupid
questions or they are self-conscious. However, the
reasons for this are more varied and more profound.

Flammer proposed that the process of asking is a
decision process that negotiates between costs and
benefit of asking the question [2]. Examples of cost
include time and effort spent in asking and
understanding the answer, and the shame of appearing
ignorant. Other factors include importance of
questions, likelihood of existing answers elsewhere,
and likelihood of understanding an answer. Our
laboratory study de-contextualizes the interaction
between subjects. They had no prior experience with
the application and were not familiar with each other,
which makes background and credibility of the
information source unclear. Our subjects may have felt
hesitant to ask questions because benefit of asking was
unknown.

15

Cultural factors also affect questions-asking
behavior. Berlin [5] observed that among developers,
semantic questions were preferred over questions about
"simple" technical problems with the environment,
tools, or programming syntax. In addition, the culture
also encouraged novices to try to find out answer on
their own before asking experts. Asking “trivial”
questions might be considered bothersome or
distracting to experts, whose time is valuable. Finally,
face-to-face question-asking may not be valued as a
means to transfer and manage knowledge because it
doesn’t leave a record. The use of Instant Messaging
tools or email might be a preferable way to ask
questions.

6. Future Work

We plan to address open issues and to further
observe the question-asking behavior in future studies.
Possible modifications to the study design include: i)
controlling the quality of presentation and explanation
given to Subject B using confederates; ii) allowing
Subject B to ask questions during the implementation;
iii) providing additional means for asking follow-up
questions through Instant messaging or email; and iv)
use the debriefing session to ask about the reasons that
a subject asked or didn’t ask questions, and what they
think they should or should not have asked.

7. Conclusion

We have presented an initial study aimed at
understanding question-asking behavior in knowledge
exchange in software development. The study required
novice and expert software engineers to collaborate on
a change request for a web application. We found
breakdowns in question-asking by both novices and
experts. The results showed that this seemingly simple
activity is often not performed well nor as frequently as
necessary for successful knowledge collaboration.
Novices may not realize their knowledge needs nor be
able to frame questions due to lack of domain
knowledge. Other factors that prevent developers from
asking questions are lack of common ground,
likelihood of finding an answer without asking, a
disbelief in the credibility of information source, and
the low cultural value of a some types of questions.

8. Acknowledgements

Our thanks to Oluwatosin Aiyelokun, Erin Morris,
Justin Beltran, Matt McMahand, Teerawat Meevasin,
John Situ, Derrick Tseng, Jonathan Zargarian for

providing invaluable assistance in preparing and
conducting the experiment. Thanks also to Jeff Elliott
and Yuzo Kanomata for helping us with initial pilot
testing.

This material is based upon work supported by the
National Science Foundation under Grant No.
0430026. Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of
the National Science Foundation.

9. References
[1] B. Curtis, H. Krasner and N. Iscoe, "A field study of the
software design process for large systems,” Communication
of ACM., vol. 31, pp. 1268-1287, 1988.
[2] A. Flammer, "Towards a theory of question asking,"
Psychological Research, vol. 43, pp. 407, 1981.
[3] A. Ram, "A Theory of Questions and Question Asking,"
The Journal of the Learning Sciences, vol. 1, pp. 273, 1991.
[4] N. Miyake, D.A. Norman, "To Ask a Question, One Must
Know Enough to Know What Is Not Known." Journal of
Memory and Language, vol. 18, pp. 357, 1979.
[5] L.M. Berlin, "Beyond Program Understanding: A Look at
Programming Expertise in Industry," in Empirical Studies of
Programmers: Fifth Workshop, pp. 6-25, 1993.
[6] J.D. Herbsleb, H. Klein, G.M. Olson, H. Brunner, J.S.
Olson and J. Harding, "Object-oriented analysis and design
in software project teams," Human Computer Interaction,
vol. 10, pp. 249-292, 1995.
[7] A.L. Jarczyk P. and I.F. Shipman, "Design Rationale for
Software Engineering: A Survey," Proceedings of the 25th
Annual IEEE Computer Society Hawaii Conference on
System Sciences, pp. 577-586, 1992.
[8] M.C. Hoepfl, "Choosing qualitative research: A primer
for technology education researchers," Journal of
Technology Education, vol. 9, pp. 47, 1997.
[9] S.E. Sim, S. Ratanotayanon, O. Aiyelokun and E. Morris,
"An Initial Study to Develop an Empirical Test for Software
Engineering Expertise," UCI-ISR-06-6, 2006.
[10] M.M. Sebrechts and M.L. Swartz, "Question asking as a
tool for novice computer skill acquisition," in CHI '91:
Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 293-299, 1991.
[11] S. Ahmed and K.M. Wallace, "Understanding the
Knowledge Needs of Novice Designers in the Aerospace
Industry," Des Stud, vol. 25, pp. 155-173, 2004.
[12] A. Von Mayrhauser, "Program comprehension during
software maintenance and evolution," Computer, vol. 28, pp.
44, 1995.
[13] N. Pennington, "Comprehension strategies in
programming," pp. 100-113, 1987.
[14] R.L. Campbell, N.R. Brown and L. DiBello, "The
Programmer's Burden: Developing Expertise in
Programming," in The Psychology of Expertise: Cognitive
Research and Empirical AI, R.R. Hoffman, New York:
Springer-Verlag, 1992, pp. 269-294.

16

Recommending Library Methods:
An Evaluation of Bayesian Network Classifiers

Frank McCarey, Mel Ó Cinnéide and Nicholas Kushmerick
School of Computer Science and Informatics, University College Dublin,

Belfield, Dublin 4, Ireland.
{frank.mccarey, mel.ocinneide, nick}@ucd.ie

Abstract

Programming tasks are often mirrored inside an organi-
sation, across a community or within a specific domain. We
propose that final source codes can be mined, that knowl-
edge and insight can be automatically obtained and that
this knowledge can be reused for the benefit of future devel-
opments. We focus on reusable software libraries; we wish
to learn information about how such libraries are used and
then elegantly pass this information onto individual devel-
opers.

In this paper we investigate a Collaborative Filtering
approach of recommending library methods to a individ-
ual developer for a particular task. The central idea is
that we find source codes that are the most relevant to the
task at hand and use these to suggest useful library meth-
ods to a developer. To determine the similarity and rele-
vance of source code, we investigate and compare a number
of Bayesian clustering techniques including Bayesian Net-
works and Naı̈ve-Bayes. We present results and discuss the
suitability of Bayesian networks to this domain.

1. Introduction

A healthy knowledge flow between programming peers
can positively impact personnel morale, team productivity
and the ultimate outcome of a project. Be it a new de-
veloper just added to the team or the experienced profes-
sional unfamiliar with a particular library, all can benefit
from the experiences and skills of others. The tools and
techniques used to share such information within organi-
sations can vary greatly; for example, colleagues may hold
informal meetings, telephone or email each other or perhaps
rely on detailed support materials. Though these techniques
may be effective, it is clear that they lack efficiency. For
both the requestor and the responder, there is the overhead
of task switching; just replying to an email may upset the

flow of ones primary task. Similar to Ye and Fischer [28],
we propose that much of this knowledge can be shared au-
tomatically through the provision of proper tool support.

In this paper we focus on tool support for software li-
braries. Reuse of such libraries has been shown to improve
software quality and developer productivity whilst reducing
defect density [20] and time-to-market [29]. It is imprac-
tical though to consider that any one individual would be
entirely familiar with any one library; for example, the lat-
est version of the Java API library has over 3000 classes
while the Java Swing library has over 500 classes. Over a
period of time, it is likely that many different programmers
will have used a particular library. We suggest that insight
can be gained from analysing how particular libraries are
used and that this knowledge can be passed onto individ-
ual programmers through intelligent support tools; we are
currently developing the RASCAL tool.

RASCAL is a proactive recommender that is designed
to support library reuse. RASCAL hopes to address sev-
eral of the pragmatic issues that currently hamper reuse; for
example, developer motivation, time constraints, library ac-
cessability and lack of conversancy for a particular library.
RASCAL currently recommends a set of library methods
to a developer which it believes to be relevant to the task
at hand. We propose that by identifying and recommend-
ing reusable methods from a library and subsequently facil-
itating quick access to these, we will foster and encourage
reuse.

Similar to many commercial recommenders, RASCAL
produces a set of personalised recommendations for an indi-
vidual. However, unlike other domains where perhaps a set
of books or movies may be presented to a customer, RAS-
CAL recommends a set of task relevant methods to a par-
ticular developer. Like most recommendation tasks, RAS-
CAL recommends software methods that the developer is
interested in. Recommendation in our tool is complicated
though because we wish to recommend methods which we
believe the developer may be unfamiliar with or unaware of.
Another interesting distinction between our recommender

17

Figure 1: RASCAL Overview

system and most mainstream recommenders is that we are
trying to predict, in order, the next likely method a devel-
oper will employ. Many typical recommender systems only
predict a vote for items which the user has not yet tried. Our
aim is to predict the next library method a developer should
invoke; it is quite likely that the developer will have invoked
this method previously.

Recommendations are produced using a Collaborative
Filtering (CF) [25] algorithm as explained in section 3.
An important aspect of CF algorithms is clustering users;
in this paper we investigate and compare a number of
Bayesian approaches that can be used to classify how sim-
ilar source codes are. In particular, we will detail Bayesian
Networks, Naı̈ve-Bayes, Tree-Augmented Naı̈ve Bayes,
Forest-Augmented Naı̈ve Bayes and finally Bayesian Net-
work Augmented Naı̈ve-Bayes.

The main contributions of this work are:

• A viable solution to domain knowledge sharing, in re-
spect of software reuse libraries.

• A technique embedded in the RASCAL support tool
that significantly enhances reuse.

• An investigation of how effectively Bayesian tech-
niques can be applied to source code. We use these
techniques to support reuse but in theory several other
tasks could be supported such as clone detection, code
modeling and categorisation.

The remainder of this paper is organised as follows. In
the next section we provide a brief overview of the main
components in RASCAL. This is followed by a detail ex-
planation of the recommendation algorithm and a compari-
son of a number of different Bayesian techniques in section
3. Section 4 presents experimental results with discussion.
Related works are reviewed in section 5. Finally we discuss
how RASCAL can be extended and draw general conclu-
sions in section 6.

2. System Overview

RASCAL is currently implemented as a plugin for the
Eclipse IDE. As a developer is writing code, RASCAL
monitors the methods currently invoked and uses this infor-
mation to recommend a candidate set of methods to the de-
veloper. Recommendations are then presented to the devel-
oper in the recommendations view at the bottom right hand
corner of the IDE window. At present, RASCAL recom-
mends methods from the Swing and AWT libraries. Below
we describe the main components of RASCAL, as shown in
figure 1.

We produce personalised recommendations for each in-
dividual Developer. When producing a recommendation,
we only consider the content of the current active method
which this developer is coding. In recommender systems,
it is common terminology to refer to the user for whom the
recommendation is being sought as the active user; like-
wise here we will refer to the active developer or the active
method that a developer is coding. The Code Repository
contains code from previous projects, external libraries,
open-source projects etc; in our work we used the Source-
forge [8] repository. This repository will be continually up-
dated as new classes/systems are developed. From such a
repository, we can extract information about what reusable
library methods exist and also knowledge about how these
are used. We produce an Information Retrieval Model by
mining the code repository; the actual information retrieval
model used can vary as discussed in section 3.2. This model
will need to be created once initially and subsequently when
a new piece of source code is added to the repository. We
extract information from the repository using the Bytecode
Engineering Library [1].

Finally there will be a Recommender Agent for each in-
dividual developer; this agent actively monitors the method
that the developer is coding. The agent then uses the in-

18

formation retrieval model to establish a set of source codes
that are most similar to the code currently being written by
the developer and following this, a set of ordered library
methods is recommended to the active developer. The rec-
ommendation set is produced based on the similar source
codes; we explain the recommendation technique in full in
the following section.

3. Recommendations

3.1 Collaborative Filtering

The goal of a Collaborative Filtering (CF) algorithm is
to suggest new items or predict the utility of a certain item
for a particular user based on the user’s previous preference
and the opinions of other like-minded users [25]. CF sys-
tems are founded on the belief that users can be clustered.
Users in a cluster share preferences and dislikes for partic-
ular items and will likely agree on future items. CF algo-
rithms are used in mainstream recommender systems like
Amazon. In our work we use CF to recommend a set of
library methods to a developer.

For clarity we describe three terms, specific to this con-
text, that are common terminology in recommender litera-
ture. An item refers to a reusable library method. We wish
to predict a developers preference for an item. A user is a
Java method in our source code repository. The active user
can be considered as the method currently being written or
indeed the actual developer of that method. Finally a vote
represents a users’ preference for a particular item. In this
context, a vote is simply an invocation count for a particular
library method.

3.1.1 Recommendation Algorithm

Breese et al. [3] identify two classes of CF algorithms,
namely Memory-Based and Model-Based. In a memory-
based approach, a prediction for the active user is based on
the opinions of like-minded users. In contrast, model-based
CF first learns a descriptive model of user preferences and
then uses it for predicting ratings. Employing a memory-
based algorithm, vote vij corresponds to the vote by user i
for item j (invocation count in this work). The mean vote
for user i is:

vi =
1
|Ii|

∑

j∈Ii

vi,j (1)

where Ii is the set of items the user i has voted on. The
predicted vote using CF for the active user a on item j, cfaj ,
is a weighted sum of the votes of the other similar users:

cfaj = va + N
∑

i∈kNN

sim (a, i) (vi,j − vi) (2)

Figure 2: Illustration of the kNN formation. Here we look
for the active methods’ k=8 most similar source codes.

where weight sim(a, i) represents the correlation or simi-
larity between the current user a and each user i. kNN is
the set of k nearest neighbours to the current user, as illus-
trated in figure 2. A neighbour is a user who has a high
similarity value sim(a, i) with the current user. The set of
neighbours is sorted in descending order of weight. For ex-
periments we used a value of k = 10. N is the normalising
factor such that the absolute values of the weights’ sum to
unity. From equation 2 we can now predict a users’ vote for
any item. In the context of this work, we can now predict a
developers’ vote for any library method assuming that there
exists at least one snippet of code in the code repository that
has used the particular library method. Library methods are
ranked based on their predicted vote and the top n methods
are recommended to the developer. In our experiments, we
use a value of n = 7.

Central to CF is the ability to determine a set of users
who are most relevant or similar to the active user for whom
the recommendation is being sought, sim(a, i). We want to
effectively discover source codes in our repository that are
most similar to the code currently being written. The In-
formation Retrieval (IR) model chosen will have a direct
impact on which users are deemed relevant and which are
not, and thus ultimately impacts the recommendation set.
Baeza-Yates and Ribeiro-Neto [2] identify three basic re-
trieval models; boolean, vector/statistical and probabilistic.

In previous works we have investigated the suitability of
vector approaches in the software component recommen-
dation domain [4]; namely we looked at the Vector Space
Model (VSM) and Latent Semantic Indexing (LSI) and
found VSM to produce the best results. Here we investigate
how effective probabilistic approaches are at ranking source
code based on similarity. This is equivalent to classification
in machine learning; however, we are attempting to classify
the top n pieces of code that are most similar to the active
method being written. Typically statistical approaches are
used for memory-based algorithms while probabilistic tech-
niques are used with model-based algorithms. In this work,
we employ a hybrid approach akin to the work of [23]. Like
the model-based technique, we construct a Bayesian net-

19

work though we treat each method as a unique cluster and
therefore when making a prediction, we need to consider all
methods in the code repository.

3.2 Bayesian Network Classifiers

A Naı̈ve-Bayes BN [7, 16] is a simple structure that
has the classification node as a parent of all other attribute
nodes. Naı̈ve-Bayes is based on the assumption that the at-
tributes values are independent of each other given the class
C. In the context of this work, the classification node would
represent a particular piece of code from the code reposi-
tory, whereas an attribute node represents each reusable li-
brary method that can be invoked. The conditional probabil-
ity of each attribute given the class C is learnt from training
data. Classification is then done by applying Bayes rule to
compute the probability of C given a particular instance of
attributes and then predicting the class with the highest pos-
terior probability. In this work, we wish to determine the
top kNN pieces of code that are most similar to the query
instances.

Figure 3: Naive-Bayes Network

Despite the Naı̈ve assumption of probabilistic indepen-
dence between attributes, Naı̈ve-Bayes classifiers in general
work reasonably well; indeed they have been shown to out-
perform BN [9]. This is surprising given that the attribute
assumption rarely holds in real world examples. In our do-
main we might expect that there would be a relationship be-
tween at least some of the methods in the reusable library;
we investigate if the Naı̈ve-Bayes BN can effectively clas-
sify source code whilst ignoring such relationships. Figure
3 displays an example of Naı̈ve-Bayes Network.

A general Bayesian Network (BN) [22] is a much more
powerful representation of probabilistic dependencies over
a set of random attributes; a BN can effectively model the
complex dependencies that exist in most real world prob-
lems. More formally, a BN is a directed acyclic graph with
nodes representing attributes and arcs representing depen-
dence between relations among the attributes. Probabilistic
parameters are encoded in a set of tables (Conditional Prob-
ability Tables), one for each attribute node, in the form of
logical conditional distributions of a attribute given its par-
ents. Using the independence statements encoded in the net-

Figure 4: Bayesian Network

work, the joint distribution is uniquely determined by these
logical conditional distributions. Figure 4 displays an ex-
ample of a general BN; unlike Naı̈ve-Bayes the classifica-
tion node is treated the same as the attribute nodes. As is
suggested by Cheng and Greiner [5], this lack of distinc-
tion between the classification and attributes nodes is not
always desirable in certain domains and thus we introduce
Bayesian Networks Augmented Naı̈ve-Bayes shortly.

Learning a BN based classifier is a computationally chal-
lenging problem; if the network is unrestricted then it is
a NP-hard problem. We need to find a network that best
matches the entire instances in the training data. Using a
scoring function we need to evaluate each learnt network
against the training data and determine the optimal network.

Several authors have proposed a compromise between
the computationally expensive Bayesian network model and
the over-simplified Naı̈ve-Bayes approach. The desire is to
merge the ability of BN to model attribute dependence with
the simplicity and efficiency of Naı̈ve-Bayes BN. Fried-
man et al. [9] define such structures as Augmented Naı̈ve
Bayesian Networks. Each attribute must have a class at-
tribute as a parent and each attribute may have one other
parent [15]. From figure 5, it can be seen that it is now pos-
sible to model dependency between attributes whilst main-
taining the simplicity of the Naı̈ve-Bayes BN. In general, as
stated earlier, learning an unrestricted network is a NP-Hard
problem. Friedman et al. [9] deal with this by restricting
the network to a tree topology; the result is known as a Tree
Augmented Naı̈ve-Bayes (TAN) as is specifically shown in
figure 5. There is an arc from getName() to setName()
and thus these two attributes are not independent given the
class.

Figure 5: TAN

20

Keogh and Pazzani [15] present a similar tree augmented
network but unlike TAN, which adds N − 1 arcs (where N
is the number of attributes), they add any number of arcs
up to N − 1. An arc is only added if it improves accuracy.
This same approach is defined by Sacha [24] as a Forest-
Augmented Network (FAN), as the augmenting arcs form
a forest of attributes (or a collection of trees); this is illus-
trated in figure 6.

Figure 6: FAN

The final BN we consider is the Bayesian Network Aug-
mented Naı̈ve-Bayes (BAN). This extends TAN by allow-
ing attributes to form an arbitrary graph, rather than just a
tree, as is shown in figure 7. This is similar to the original
general BN but in this case the classification node is treated
differently from the rest of the attribute nodes. It is hoped
that the BAN will more richly model relationships between
attributes but this will likely come at a computational cost.
A more detailed comparison of Bayesian networks can be
found in [5].

Figure 7: BAN

Excluding general BN’s and FAN’s, all the above net-
works were constructed using the popular WEKA [27] ma-
chine learning tool. We used a repeated hill climbing
searching algorithm (maximum of 5 runs) and the BDeu
scoring function. As general BN’s do not distinguish be-
tween class and attribute nodes, we decided to implement
the more efficient BAN instead; the number of parent nodes
was limited to 4. For the FAN implementation we used the
Java Bayesian Network Classifier (JBNC) toolkit [14]. All
training data was normalised and discretised to have 3 val-
ues; for example, the method setName() may be invoked
either between 0 and .33 times, between 0.34 and 0.66 times
or finally between 0.67 to 1 times.

4 Experiments

4.1 Dataset

In these preliminary experiments, we used relatively
small datasets. We produced almost 6000 recommenda-
tions from approximately 350 methods mined from Source-
forge [8]. Recommendations were produced solely at the
method level and not the class level as in previous work
[18]. Further to this, each method had on average 16 invo-
cations. Recommendations were made for both the SWING
and AWT libraries; in total there was 697 Swing and AWT
library methods that were invoked at least once in our code
repository. Although the data is small for this domain, 697
instances and 350 classes is comparatively large with ex-
periments carried out in machine learning literature. Since
we have the completed source code, we can automatically
evaluate recommendations for a piece of code by checking
whether the recommended method was called subsequently.

For each of the 350 methods, several recommendations
were made. For example, if a fully developed method had
10 Swing invocations, then we removed the 10th invoca-
tion from that method and a recommendation set was pro-
duced for the developer based on the preceding 9 invoca-
tions. Following this recommendation, the 9th invocation
was removed and a new recommendation set was formed
based on the preceding 8 invocations. This process was
continued until just 1 invocation remained. Each recom-
mendation set contained a maximum of 7 items.

4.2 Evaluation

Precision and Recall are the most popular metrics for
evaluating information retrieval systems. Precision is de-
fined as the ratio of relevant recommended items to the total
number of items recommended; P = nrs/ns, where nrs

is the number of relevant items selected and ns is the num-
ber of items selected. This represents the probability that
a selected library method is relevant. A library method is
deemed relevant if it is used by the developer for whom the
recommendation is being sought. Recall is defined as the ra-
tio of relevant items selected to the total number of relevant
items; R = nrs/nr, where nrs is the number of relevant
items selected and nr is the number of relevant items. This
represents the probability that a relevant library method will
be selected.

It is particulary important that RASCAL recommends
methods in a relevant order i.e. the invocation order. We
will evaluate this using a simple binary Next Recommended
(NR) metric; NR = 1 if we successfully predict or rec-
ommend the next method a developer will use, otherwise
NR = 0. In these investigative experiments we focused

21

(a) (b) (c)

Figure 8: (a) Precision (b) Recall (c) Next Found

solely on the above 3 metrics whilst ignoring computational
complexity.

4.3 Results

All results are displayed as a percentage value. A base-
line result is included; this was produced using the Vector
Space Model (VSM) as detailed in previous work [4]. From
figure 8, it is immediately identifiable that the VSM base-
line result produced the best results in general. While this
may not have been the desired outcome, there is still insight
to be gained from the results.

Precision is displayed in figure 8(a). VSM vastly out-
performs all of the Bayesian techniques; for example, the
average FAN precision is 33% which compares poorly with
45% when using VSM. Recall is shown in figure 8(b);
again VSM outperforms all other techniques. We notice
that Naı̈ve-Bayes (NB) and the Forest-Augmented Net-
work (FAN) produce similar results and that these are both
marginally better than the Tree Augmented Network (TAN)
and the BN Augmented Naı̈ve-Bayes (BAN).

The next found metric is displayed in figure 8(c). Using
NB, there is a 48% likelihood that RASCAL would be able
to correctly predict the next library method that a developer
would invoke; such a prediction would provide significant
help to a developer who was unfamiliar with a particular
library. In general, this is an encouraging result yet it is
relatively poor when compared with the VSM 64% average.

4.4 Discussion

From this exploratory research on using Bayesian net-
works to recommend library methods, we can make some
interesting observations. Firstly we discover that FAN and
NB produce similar results for all metrics. This would sug-
gest that the FAN added very few links as these did not
improve classification. We also notice the similarities be-
tween TAN and BAN; again this would suggest that the

BAN was very similar to the TAN created and that there
is no benefit to having multiple parents. In the context of
this work, this can be interpreted as there being very few
relationships between library methods and hence a Naı̈ve-
Bayes network will produce better recommendations. Fur-
ther work is needed to verify this. In addition to this, further
investigation is needed in the area of searching and scoring
techniques to ensure they are ideally suited to this domain.

Generally, we notice two different trends in precision
and recall. Precision tends to decrease as we know more
information about the active method while recall tends to
increase. This result perhaps requires clarification. Con-
sider a developer who invokes in total 10 methods. When
we make a recommendation for that developer when they
have only used 1 method, there is a set of 9 possible meth-
ods to recall. The chances of recalling all relevant methods
is quite low and hence the recall result is low in earlier rec-
ommendations. However, when this developer has used 9
methods and there is only 1 possible method to recall, then
the chances of this method being in the recommendation set
is quite high. In contrast, the more invocations the devel-
oper has made, the fewer there are to correctly recommend
and hence precision decreases in latter recommendations.

5 Related Work

Traditional retrieval schemes focused generally on tech-
niques such as Keyword Search and Signature Matching
[19]. More recently several Semantic-Based retrieval tools
have been proposed [26, 10]; these allow a developer to
specify queries using natural languages. Unlike traditional
retrieval, the domain information, developer context and
component relations are considered. Empirical results indi-
cate that these tools are superior to traditional approaches.

ComponentRank [13] is a promising component retrieval
technique which is useful for locating reusable components.
Similar to Google [21], this approach ranks components

22

based on analysing use relations among the components and
propagating the significance of a component through the use
relations. Preliminary results indicate that this technique is
effective in giving a high rank to stable general components
which are likely to be highly reusable and a lower rank to
non-standard specialised components. Similarly, Hummer
and Atkinson [12] have carried out a general study on using
the web as a reuse repository; they evaluate several search
engines such as Google, Yahoo and Koders. They identify
some of the advantages of web based approaches such as
scalability and efficiency but also note limitations such as
security, legal concerns and implicit classes.

The use of software agents for supporting and assisting
library browsing have been proposed by Drummond et al.
[6]. An active agent attempts to learn the component which
the developer is looking for by monitoring the developers’
normal browsing actions. Based on experimental results,
40% of the time the agent identified the developers’ search
goal before the developer reached the goal. By providing
non intrusive advice that accelerates the search, this work is
intended to complement rather than replace browsing.

A major limitation with all of the retrieval techniques
above is that the developer must initiate the search process.
However, in reality developers are not aware of all avail-
able components or methods in a library. If they believe
a reusable component for a particular task does not exist
then they are less likely to search the component reposi-
tory; none of the above schemes attempt to address this im-
portant issue. Thus to effectively and realistically support
component reuse it is tremendously important that com-
ponent retrieval be complemented with component deliv-
ery/recommendation.

Ye and Fischer [28] identify the cognitive and social
challenges faced by software developers who reuse and also
present a tool named CodeBroker which address many of
these challenges. CodeBroker infers the need for compo-
nents and pro-actively recommends components, with ex-
amples, that match the inferred needs. The need for a com-
ponent is inferred by monitoring developer activities, in par-
ticular developer comments and method signature. This
solution greatly improves on previous approaches but the
technique is not ideal. Reusable components in the reposi-
tory must be sufficiently commented to allow matching and
developers must also actively and correctly comment their
code which currently they may not do. Notably, Ye and Fis-
cher remark that browsing and searching are passive mech-
anisms because they become only useful when a developer
decides to make a reuse attempt by knowing or anticipating
the existence of certain components.

Mandelin et al. [17] present an intelligent tool for un-
derstanding and navigating the API of a particular reuse li-
brary. They suggest developers often know the objects they
would like to use but are unaware of how to write the source

code to get the object; for example a developer may wish to
create a IF ile object from a ASTNode but may not be
aware of the code needed to do this. They provide a tool
named PROSPECTOR which can automatically assist a de-
veloper to better understand the library API by providing
code snippets relevant to the current task; for example, how
to convert between different data representation or travers-
ing object schemas.

Another notable tool for finding code examples is Strath-
cona [11]. The tool is used to find source code in an exam-
ple repository by matching the code a developer is currently
writing. Similarity is based on multiple structural match-
ing heuristics, such as examining inheritance relationships,
method calls, and class instantiations. These measures are
applied to the code currently being written by the developer
and matched examples from the repository are retrieved and
recommended.

Our work is similar to a number of the techniques men-
tioned above. Like CodeBroker [28], our goal is to rec-
ommend a set of candidate software components to a de-
veloper; however, our recommendations are not based on
the developers’ comments/method signature. In contrast
we produce recommendations using CF which is similar to
the example based techniques of Holmes and Murphy [11].
Like the PROSPECTIVE tool, we are interested in increas-
ing and supporting library reuse though we are attempt-
ing to predict in advance what a developer is attempting to
code. Like Drummond et al. [6] we use an active agent
to monitor the current developer though we are concerned
with pro-actively recommending suitable reusable methods
as opposed to assisting the search process.

6 Conclusions

We have presented a solution that automatically facil-
itates knowledge sharing within a community. We have
shown that just as people can be clustered in terms of their
preferences for various items, Java source code may also
be clustered based on the library methods invoked. We
note the importance of correctly identify the optimal tech-
nique for clustering source code; we investigated a number
of Bayesian techniques and compared these with our VSM
statistical baseline result.

In this work, we discovered conclusively that Bayesian
Networks are less useful at clustering source codes than
VSM and ultimately have a negative effect of recommen-
dation performance. Further and larger experimentation
is needed to generalise this finding though; in particular
we need to evaluate more search and scoring techniques.
Bayesian techniques do still offer promising opportunities
for us; for example, modeling relationships between library
methods, classification or clustering of library methods as
opposed to classifying entire source codes as is presently

23

done and finally applying the discussed Bayesian tech-
niques to pure model-based CF.

Our recommendation scheme addresses various short-
comings of previous solutions to the library retrieval prob-
lem; RASCAL considers the developer context and prob-
lem domain but uniquely does not place any additional re-
quirements on existing library components or developers.
Unlike many typical reuse tools, RASCAL is proactive and
constantly suggests library methods to reuse.

Recommender systems are a powerful technology that
can cheaply extract knowledge for a software company
from its code repositories and then share this knowledge to
the benefit of future developments. We have demonstrated
that RASCAL offers real promise for allowing developers
discover and easily access reusable library components but
that care needs to be taken when choosing the clustering
technique.

7 Acknowledgements

Funding for this research was provided by the Irish Re-
search Council for Science, Engineering and Technology
(IRCSET) under grant RCS/2003/127.

References

[1] Apache. Bytecode engineering library (2002-2003). http:
//jakarta.apache.org/bcel. 2003.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In
Proceedings of the Fourteenth Annual Conference on Un-
certainty in Artificial Intelligence, pages 43–52, 1998.

[4] F. M. Carey, M. O. Cinnéide, and N. Kushmerick. Recom-
mending library methods: An evaluation of the vector space
model (vsm) and latent semantic indexing (lsi). In 9th Inter-
national Conference on Software Reuse, Italy, 2006.

[5] J. Cheng and R. Greiner. Comparing bayesian network clas-
sifiers. In Proceedings of UAI, pages 101–108.

[6] C. G. Drummond, D. Ionescu, and R. C. Holte. A learning
agent that assists the browsing of software libraries. IEEE
Trans. Softw. Eng., 26(12):1179–1196, 2000.

[7] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Wiley and Sons, New York, 1973.

[8] J. Ebert. Storm - a user story tool. http://xpstorm.
sourceforge.net. 2002.

[9] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Machine Learning, 29(2-3):131–163, 1997.

[10] M. Girardi and B. Ibrahim. Using english to retrieve soft-
ware. Journals of Systems and Software, 30(3):249, 1995.

[11] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engi-
neering, pages 117–125, New York, NY, USA, 2005. ACM
Press.

[12] O. Hummel and C. Atkinson. Using the web as a reuse
repository. In Proceedings of the 9th International Confer-
ence on Software Reuse, pages 298–311. Springer, 2006.

[13] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component rank: relative signif-
icance rank for software component search. In Proceedings
of the 25th International Conference on Software Engineer-
ing, pages 14–24. IEEE Computer Society, 2003.

[14] J.P.Sacha. Java bayesian network classifier (jbnc) toolkit.
http://jbnc.sourceforge.net. 2004.

[15] E. Keogh and M. Pazzani. Learning augmented bayesian
classifiers: A comparison of distribution-based and
classification-based approaches, 1999.

[16] P. Langley, W. Iba, and K. Thompson. An analysis of
bayesian classifiers. In National Conference on Artificial
Intelligence, pages 223–228, 1992.

[17] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. SIGPLAN No-
tices, 40(6):48–61, 2005.

[18] F. McCarey, M. O. Cinnéide, and N. Kushmerick. Knowl-
edge reuse for software reuse. In Proceedings of the
17th International Conference on Software Engineering and
Knowledge Engineering, July 2005.

[19] A. Mili, R. Mili, and R. T. Mittermeir. A survey of software
reuse libraries. Annals of Software Engineering, 5:349–414,
1998.

[20] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz.
An empirical study of software reuse vs. defect-density and
stability. In ICSE ’04: Proceedings of the 26th Interna-
tional Conference on Software Engineering, pages 282–292,
Washington, DC, USA. IEEE Computer Society.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988.

[23] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles.
Collaborative filtering by personality diagnosis: A hybrid
memory and model-based approach. In UAI ’00: Proceed-
ings of the 16th Conference on Uncertainty in Artificial In-
telligence, pages 473–480, CA, USA, 2000.

[24] J. Sacha. New synthesis of Bayesian network classifiers and
interpretation of cardiac SPECT images. Ph.d. dissertation,
University of Toledo, 1999.

[25] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-
based collaborative filtering recommendation algorithms. In
World Wide Web, pages 285–295, 2001.

[26] V. Sugumaran and V. C. Storey. A semantic-based ap-
proach to component retrieval. SIGMIS Database, 34(3):8–
24, 2003.

[27] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. 2nd Edition, Morgan Kauf-
mann, 2005.

[28] Y. Ye and G. Fischer. Reuse-conducive development en-
vironments. International Journal of Automated Software
Engineering, 12:199–235, 2005.

[29] K. Yongbeom and E. Stohr. Software reuse: Survey and
research directions. Management Information Systems,
14(4):113–147, Spring 1998.

24

Assisting Concept Assignment using Probabilistic Classification

and Cognitive Mapping

Brendan Cleary & Chris Exton

Department of Computer Science and Information Systems,

University of Limerick,

Ireland.

Brendan.Cleary@ul.ie, Chris.Exton@ul.ie

Abstract

The problem of concept assignment, that is, the

problem of mapping human oriented concepts to ele-

ments in the code base of a system under study, and

approaches which facilitate concept assignment can be

considered as central to assisting software engineers in

comprehending the unfamiliar systems they encounter.

This paper presents a technique called cognitive as-

signment that attempts to capture what expert engi-

neers know about the systems they work with and uses

that information to generate classifiers that are used to

implement a ranked search over a set of software ele-

ments.

1. Introduction
When a software engineer encounters an unfamiliar

system for the first time, that engineer is tasked with

understanding some or all of that system before they

are able to make any meaningful contribution to its

development or maintenance. While this problem is

readily evident in cases of novice engineers joining

existing projects [1] it also applies to experienced en-

gineers moving between projects or in cases where a

system acquired from one organization needs to be

developed or maintained by another.

Tools which assist software comprehension are an inte-

gral part of the solution to this “ramp-up” problem,

however while software comprehension is widely rec-

ognized as one of the pervasive problems of software

engineering and while many authors have tried to es-

tablish models of how software comprehension occurs

[2] [3], few authors have attempted to define what it

means for a software engineer to comprehend a soft-

ware system. Good recognising this deficiency ventures

a definition of software comprehension in [4] which

can be considered as being characteristic of other au-

thors attempts [5] [6] in that it establishes comprehen-

sion as a process which sees the engineer use informa-

tion drawn from different sources to form a model of

the software which is then used by the engineer in an-

swering questions about the system in the context of

performing some task.

Biggerstaff in defining what it is for an engineer to

comprehend a software system takes a different per-

spective, one which de-emphasises models of compre-

hension and instead looks at what is required for an

engineer to be said to comprehend a system [7]. This

definition describes software comprehension in terms

of an engineer’s ability to communicate intelligently in

human oriented terms about a systems implementation.

This categorisation of software comprehension rests on

two different expressions of “computational intent” and

the ability of the software engineer to associate con-

cepts appearing in one description of intent with the

concepts in another. Intent is what developers intend

when they write software [8]. Different descriptions of

intent are separated by constraints on the sets of con-

cepts expressible using the language in which they are

described. These constraints constitute a “conceptual

gap” [9] between different descriptions or domains of

intent. In considering software comprehension we are

usually concerned with two descriptions of intent, one

described using a human language (problem domain)

another using a programming language (solution do-

main). While a systems implementation may imply the

intent that led to its development it is not expressed

explicitly rather it is expressed using terms defined by

the implementation technologies rather than in terms

that appear naturally in the intent [10]. Biggerstaff de-

scribes the problem of associating concepts between

these different descriptions of intent or domains as the

concept assignment problem [11].

25

Existing approaches which explicitly attempt to assist

engineers to bridge this conceptual gap such as tool

assisted, lexical, statistical and dynamic concept as-

signment approaches tend to rely on the parsing of so-

lution domain artefacts (source code) to identify ele-

ments of the code base which are then inferred to be

related to the implementation of some set of concepts

from the problem domain. In this paper we present a

complementary concept assignment approach based on

the combination of a quantitative text analysis tech-

nique called cognitive mapping [12] and probabilistic

classification [13].

In section 2 we look at related work form various fields

that attempt to alleviate the concept assignment prob-

lem. In section 3 we describe our proposed technique

the effectiveness of which is tested by an experiment

described in section 4 and analysed in section 5. Finally

in section 6 we describe limitations to our technique

and evaluation and in section 7 we describe our conclu-

sions and future work.

2. Related Work
Given the scope of the concept assignment problem,

many techniques and tools from the software visualisa-

tion, comprehension, reengineering and even require-

ments engineering communities could be classified as

attempting to tackle the concept assignment problem,

here we will briefly examine a small subset of those

that explicitly set out to do so.

Dynamic software analysis techniques such as software

reconnaissance [14] or formal concept analysis [15],

focus on localising concepts that are expressible either

through test cases or through navigation of control and

data flow. Unfortunately while a systems implementa-

tion may imply the intent that led to its development,

the intent is not expressed explicitly in that implemen-

tation [10]. As such these techniques are only able to

localise concepts which are expressible as test cases.

While this is a limitation, in cases where there exists no

system expert or documentation, they can be of great

benefit in assisting engineers understand these dark

systems.

Other significant areas of related work which attempt to

capture and describe the relationship between problem

domain concepts and the code base include tool as-

sisted techniques such as the Concern Manipulation

Environment (CME) [16] and FEAT [17] which allow

engineers to explicitly describe and record associations

between software elements and user defined concerns,

and artefact recommender systems such as Hipikat [18]

which suggest pertinent artefacts (both code and docu-

mentation) to engineers as they engage in an under-

standing task. While we see these tools as closely re-

lated and complimentary to our approach; cognitive

assignment differs in that it incorporates problem do-

main information not present in the code, captured

from a system expert or experts, to assist the choices

novice
1
 users make when mapping problem domain

concepts to elements of the code base.

Another significant area of related work are the studies

into software engineer work practices carried out by

Singer and Lethbridge in the mid to late 90’s [19]. Us-

ing a set of field research techniques including; inter-

view, shadowing and questionnaires which the authors

collectively term software anthropology [20], Singer

and Lethbridge performed a series of experiments in

which they studied the work practise of software engi-

neers as they engaged in their day to day activities.

Their findings across all three studies demonstrate that

search was overwhelmingly the dominant activity en-

gaged in by the software engineers they observed. In

the longitudinal study of a novice engineer, searching

and looking at the source accounted for over 50% of

events observed by the authors. In a second study,

while editing and debugging grew in importance,

searching still accounted for a significant proportion of

events observed. Finally a study of tool usage statistics

revealed that close to 50% of the calls made by engi-

neers across the company were calls to grep-like search

programs.

In this light of the importance of search to software

understanding Marcus and Maletic [21] describe the

application of an information retrieval technique called

Latent Semantic Indexing (LSI) in recovering traceabil-

ity links between documentation and source code. Mar-

cus et al. expand on this work applying LSI directly to

the concept location problem in [22] where they build

an index of terms from identifiers and comments in the

source code which are then used to localise a user

specified query to a set of functions. While our ap-

proach coincides with Marcus et al’s approach in terms

of intent and granularity of localisation, we differ first

in that our index is derived not from the source code

but from software engineers with expertise in the sys-

tem under study through cognitive mapping and second

in that we use a different classifier to construct the

mapping between a user query and the code base.

1
 We use the term novice to indicate software engineers

encountering an unfamiliar SUS, these engineers may

or may not have experience with other systems.

26

3. Cognitive Assignment
The cognitive assignment technique consists of 2

phases; a cognitive map derivation phase (performed

once per each system-expert pair) and a concept as-

signment phase (performed each time a novice gener-

ates a query). The cognitive map derivation phase first

semi-automatically derives a cognitive map from an

expert software engineer related to a System Under

Study (SUS) by analysing texts related to the SUS au-

thored by the expert, such as design documentation,

bug reports, or transcripts of interviews with that ex-

pert. The concept assignment phase then, each time the

novice specifies a query, generates a probabilistic clas-

sifier based on a subset of the concepts and relation-

ships in the expert’s cognitive map. This subset is de-

fined in terms of the set of concepts specified in the

novices query. The generated classifier is then used to

classify elements of the SUS code base according to

their probable relation to concepts in cognitive map.

These classifications or rankings are then displayed to

the novice for their investigation through a search re-

sults interface integrated into the Eclipse IDE. The next

section describes the theory behind cognitive mapping

and cognitive maps.

3.1. Cognitive Mapping
A mental model is the model people have of them-

selves, others, the environment, and the things with

which they interact, formed through experience, train-

ing and instruction [23]. Based on the assumption that

language and knowledge can be modelled as networks

or maps of words and the relations between them [24],

texts can be thought of as containing a portion of the

author’s mental model at the time the text was created

[12]. Working under the assumption that the meaning

of a text does not result from single words but from the

co-occurrence of different words [25], cognitive map-

ping is a quantitative text analysis technique that sys-

tematically extracts and analyses the links between

words in a text in order to model the authors mental or

cognitive map as networks of words [26] [27]. This

map is then hypothesised to approximate a portion of

the mental model of the texts author at the time the text

was composed [28].

While current general purpose programming languages

do not allow for the direct expression of programmer

intent [29] [10], software engineers have long used

other software artefacts such as requirements, architec-

tural and design documentation and more recently

email, bug tracking databases and wikis to express con-

cerns which cannot be expressed directly in the source

code. Analysing these texts using cognitive mapping

allows us to extract and make explicit the portion of the

software engineer’s mental model relative the system

under study expressed within as maps of concepts, thus

capturing and making explicit some of the original in-

tent of the engineer. These maps can then be bound,

using a classifier function, to elements in the code base

of the SUS.

In [12] Carley and Palmquist present a methodology

for extracting, representing and analysing cognitive

maps from a corpus of texts consisting of 4 phases;

• A concept set definition phase where the set of

concepts which the map is to be constructed from

are identified using text pre-processing techniques

which eliminate all words from the texts but those

which are considered by the researcher to be im-

portant in answering the research questions.

• A relationship type definition phase that identifies

the relationship types that can exist between con-

cepts in the map, again the relationship types are

determined by the researcher.

• A map construction phase where a computer-

assisted coding of texts is performed using the

identified concepts and relationship types. A set

of statements is constructed using a windowing

technique from which a map is created based on

the union of the set of statements.

• Finally a map analyses phase renders the resultant

maps for analysis by the researcher.

Applying cognitive mapping to texts produced by soft-

ware engineers for the purposes of facilitating concept

assignment requires that we customise the method pre-

sented above so that it can be applied in a production

software development environment. This requires that

we automate as much of the process as possible while

at the same time attempting to maintain the qualitative

nature of the cognitive mapping process. As such we

propose to operationalize the cognitive mapping proce-

dure of Carley and Palmquist into one consisting of 2

phases;

• A semi-automated concept set definition phase

which identifies a set of concepts from a corpus of

text segments using a combined manual content

analysis and semi-automatic text pre-processing

approach.

• A completely automated map construction phase

which uses the set of concepts identified in the

concept set definition phase as the basis on which

conceptual maps are constructed using a window-

ing based approach, which creates statements be-

27

tween concepts in text segments which co-occur

within the window.

The next section describes how we construct classifier

functions from subsets of concept and relationships

captured in a cognitive map and how we use those clas-

sifiers to generate rankings for individual software ele-

ments.

3.2. Bayesian Classification
Classification is a basic task in data analysis and pat-

tern recognition that requires the construction of a clas-

sifier, that is, a function that assigns a class label to

instances described by a set of attributes [30]. Applied

to text classification, a naïve Bayesian classifier func-

tion, given a set of training texts and associated exam-

ple classifications, determines the probability of a

given term (attribute) occurring for each of the given

classifications over the set of training texts. This model

of conditional term probability can then be used deter-

mine the classification of an unseen text based on the

product of the probabilities of the set of terms con-

tained in the unseen text. Term or attribute probability

is usually calculated based on frequency of occurrence,

for example Mitchell divides the frequency of occur-

rence of a term in the training set by the sum of the

total number of distinct word positions in the training

data for the classification and the total number of dis-

tinct words in the training data [13].

In relation to the concept assignment problem a prob-

abilistic model, based on naïve Bayesian classification,

has already been used by Antoniol et al [31] for recov-

ering traceability links between code and documenta-

tion. Here the authors used unigram estimation based

on term frequency to create links that describe the simi-

larity between elements of the code base (object-

orientated classes) and high level system documenta-

tion. The authors use a stochastic language model

based on identifiers found in the source code elements

to calculate the set of conditional probabilities between

a given source code element and the set of system

documents. Naïve Bayesian classification has also been

used to assist in automatically assigning bug reports to

engineers with specialist knowledge [32]. Here the au-

thors use an existing database of assigned bugs to learn

a naïve Bayesian classifier that can automatically as-

sign or classify unseen bug reports to particular engi-

neers based on pervious classifications of bugs that

were made.

While being one of the most effective classifiers [30],

to make the calculation of the set of conditional prob-

abilities computationally tractable, the naïve Bayesian

classifier has to make a strong independence assump-

tion that all attributes are conditionally independent

given the value of the class attribute. That is, given

attributes A and B and a class C ,

)|Pr(),|Pr(CACBA = for all values of A , B

and C , whenever 0)Pr(>C . In text classification

this independence assumption means that the order or

sequence of occurrence of words in a subject text is not

taken into consideration in its classification. As such

naive Bayesian text classifiers are sometimes described

as treating texts as “bags of words”.

While naïve Bayes classifiers have been shown to be

remarkably efficient given their simple structure, the

independence assumption on which they are based is

clearly not always valid. This observation lead some

researchers to relax the independence assumption in an

attempt to create better performing classifiers that

maintain the desirable computational characteristics of

naïve Bayesian while incorporating more information

about dependencies between attributes.

In [30] the authors discuss the modification of a naïve

Bayes classifier with augmenting edges between attrib-

utes that describe the dependencies between those at-

tributes which are then taken into consideration when

used as a classifier, thus relaxing the independence

assumption of the naïve Bayes. However in order to

maintain the naïve Bayes’s computationally tractable

performance the authors refrain from developing aug-

menting edges between each pair of attributes. Instead

by applying a maximum spanning tree algorithm [33]

over the attribute set they are able to construct the op-

timal set of augmenting edges in polynomial time.

3.3. Cognitive Assignment
Our cognitive assignment procedure uses a probabilis-

tic model, based a tree augmented Bayesian classifier

formed from a subset of an experts cognitive map, to

classify elements of a SUS code base in terms of how

related they are to a concept set (classification) defined

by the novice engineer.

Given a cognitive map M defined by an expert for a

system under study S , the procedure for constructing

the classifier and applying it to classification of a set of

elements is as follows;

1. The novice engineer, engaged in assigning a con-

cept C , to a set of source code elements E in

S , defines a subset of the experts cognitive map

28

m , consisting of a set of concepts from M
which the novice considers related to the concept

or class C which she is attempting to localise.

We call the subset, m , a concern map.

2. Given the concern map m we construct a tree

augmented classifier mX by computing a mutual

information function over the set of pairs of con-

cepts in m based on their individual and co-

occurrence frequencies derived from the original

texts and the cognitive map, respectively. Then

using this score we annotate the edges between

the pairs of concepts and derive a maximum

spanning tree over the set of concepts in m .

3. We then transform the resulting undirected tree

into a directed one by picking a root concept and

setting the direction of all edges to be outward

from it.

4. This classifier, mX , is then used to classify the

set of source code elements E according to how

related those elements are to the concept C as

defined by the novice engineer in m . This rela-

tionship is established based on the occurrence of

concepts from m in the text of the source code

elements, which includes both executable and

non-executable statements.

This process is repeated each time the novice engineer

generates a query set of concepts using the tool support

provided in the cognitive assignment Eclipse plug-in.

The cognitive assignment plug-in [34] is an Eclipse

plug-in that implements the second phase of the cogni-

tive assignment technique described above to allow an

engineer encountering an unfamiliar system to con-

struct and record a set of associations between problem

domain concepts captured by a system expert in a cog-

nitive map and the elements of the SUS code base that

comprise that system. The next section describes an

experiment in which we assess the performance of the

cognitive assignment Eclipse plug-in in generating cor-

rectly ranked element sets.

4. Evaluation
To evaluate our proposed technique, we conducted a

small lab based experiment with 4 participants to quan-

titatively assess the performance of our cognitive as-

signment Eclipse plug-in over 4 tasks in terms of preci-

sion and recall versus sets of elements defined by a

system expert. A cognitive map was also defined for

the SUS in the experiment using the procedure de-

scribed in section 3.1. Both the expert element set and

the cognitive map we defined prior to the experiment

by the primary author.

4.1. Case Study System
The experiment was performed over the CHVIE soft-

ware visualisation tools framework [35]. The CHIVE

has been employed in the implementation of several

software understanding tools [36] and has been in de-

velopment for over 3 years. The CHIVE core, the

framework itself, consists of 7 packages, 25 classes and

over 15 KLOC of Java. Finally between the client ap-

plications and the framework there is over 40,000

words of academic and technical text documenting

CHIVE and its client applications. We chose the

CHIVE framework as the basis of this case study be-

cause it constitutes a non trivial system with which the

authors of this paper were intimately familiar but which

the participants of the study were not and finally be-

cause the source code of CHIVE is also open source.

4.2. Participant Profile
The 4 participants selected for this study were post-

graduate students, with on average 6 months of aca-

demic Java development experience and 3 years of

academic development experience with other object

oriented languages. The participants also had on aver-

age 3 months commercial Java development experience

and over 8 months commercial development experi-

ence with other object orientated languages.

4.3. Experiment Procedure
Prior to the experiment each participant was briefed on

the experiments objectives and protocol. Next the par-

ticipant received training in the use of the plug-in and

an introduction to using Eclipse. The participants then

received a 10 minute introduction to the system against

which the experiment was run. Next the participants

were presented with the tasks which they were to per-

form in series during the experiment. For each task the

participants were given 5 minutes to read the descrip-

tion and ask the experiment supervisor questions on the

description. They were then be asked to (using the cog-

nitive assignment plug-in) identify elements
2
 of the

source of the system under study which they thought

were important to the concept/task under investigation.

When the participant had completed all tasks they were

thanked for their contribution, debriefed and given the

opportunity to review the data collected.

2
 For this study we limit the element of localisation

(source code unit) to the Java method; however our

technique is applicable to any unit of decomposition.

29

4.4. Task Types
The participants were asked to complete 4 tasks, 2 con-

cept localisation tasks, a feature request task and a bug

location exercise. The tasks were each described in a

paragraph of text similar to that which would be en-

tered in a use case description, feature request or bug

report. The concept location tasks required the partici-

pant to identify the elements of the system which they

thought were important to the implementation of the

concept as described in the given use case description.

The feature request task asked the participants to iden-

tify elements that they thought either would be im-

pacted by the proposed feature request or which could

be reused in the features implementation. However for

this task the users were not asked to implement the

feature request. Finally the participants were asked to

locate the single element that was the cause of a bug

described in a bug report and demonstrated to the par-

ticipant by the experiment supervisor.

5. Results & Analysis
In order to assess the performance of our technique we

specified, prior to the experiment, a set of “correct”

elements for each of the tasks the experiment partici-

pants would perform. These expert sets allow us to

assess the performance of the cognitive assignment

plug-in in generating the correct result sets. Also here

we present an analysis of the lowest ranked elements

investigated by the participants, this analysis helps us

to empirically establish limits for the calculation of the

performance of our technique and also inform future

research on ranked element search in software under-

standing tools.

5.1. Tool Precision and Recall
Our first analysis assesses how well the cognitive as-

signment plug-in or more specifically, the tree aug-

mented classifier, performed. To do this for each task

we captured the final concern maps that were generated

by the participants performing the experiment using the

cognitive assignment plug-in. We then re-generated the

set of classification probabilities produced by these

concern maps. This then gave us for each task 4 sets of

elements ordered by the classification function. To

assess the performance of the tool we then compared

these sets against the expert element set for each task.

Task 1 Task 2 Task 3 Task 4 Average

Relevant Elements 15 9 17 1 10.5

Top 10 Total 4.75 5.75 6.5 0.5 4.375

Top 10 Recall 0.3167 0.6389 0.3824 0.5 0.45948

Top 10 Percision 0.475 0.575 0.65 0.05 0.4375

Top 20 Total 5.75 6 6.5 0.5 4.6875

Top 20 Recall 0.3833 0.6667 0.3824 0.5 0.48309

Top 20 Percision 0.575 0.6 0.65 0.05 0.46875

Table 1 - Technique Precision & Recall

We use element recall (Equation 1) to measure the

number of elements correctly retrieved from the set of

elements against the total number of correct elements

as defined by the expert. Element precision (Equation

2) then measures the number of relevant elements re-

trieved against the total number of elements retrieved.

collectionin elementsrelevant ofnumber Total

reterivedelementsrelevant ofNumber
RecallElement =

Equation 1 Element Recall

retrievedelementsofnumber Total

retrievedelementsrelevant ofNumber
Precision Element =

Equation 2 Element Precision

Table 1 shows the element precision and recall

achieved by the cognitive assignment plug-in, using the

concern maps generated by the participants, against the

expert defined element sets for the top 10 and 20 ele-

ments positions of each of the 4 tasks and the average.

Here we show that our technique was able to achieve

on average 45 and 43 percent recall and precision re-

spectively when we consider the top 10 positions in the

results. This rises slightly to 48 and 46 percent when

we consider the top 20 positions. The cognitive as-

signment classifier function best performed in task 2

where we achieved precision and recall of over 60% in

the top 20. While the recall in the top 20 on average

was not as high as we anticipated we were satisfied

with the precision rates across the first 3 tasks (task 4

had only a single correct element and so precision

tends not to record the classifiers performance on this

task very well).

5.2. Lowest Ranked Element Investigated
One of the risks identified by the authors prior to the

experiment was the potential for participants using the

cognitive assignment tool to fail to investigate all rele-

vant classification results because of the rankings allo-

cated.

30

Table 2 describes the lowest ranked element investi-

gated by participants performing the experiment using

the cognitive assignment plug-in.

Participant Task 1 Task 2 Task 3 Task 4 Average

P1 23 38 11 9 20.25

P2 3 7 9 3 5.5

P3 14 4 9 13 10

P4 2 4 11 14 7.75

Average 10.5 13.25 10 9.75 10.875

Table 2 - Lowest Ranked Element Investigated

This analysis shows that the participants tended to only

investigate those elements which were returned high in

the classification results. On average the participants

stayed within the top 10 results. This is an especially

stark finding when we consider that 269 elements (the

number of methods in the SUS) were classified and

returned to the participants for each task. While these

results are only preliminary we consider this a potential

risk factor to the use and adoption of ranked search

results to assist in concept assignment, in that if the

classification function used to generate the rankings

does not return the “correct” elements within the top

few positions the user is likely not to investigate further

down the rankings and so is likely to, initially at least,

miss potentially significant elements.

6. Technique and Evaluation Limitations
Current limitations of our technique include the cogni-

tive mapping procedure itself and the types of systems

to which the cognitive assignment plug-in can be ap-

plied. The cognitive mapping procedure, originally

designed as a social science research tool, can be

manually intensive to implement. For this reason we

are currently investigation more automatic mecha-

nisms, which while maintaining a human in the loop,

could be used for constructing simple cognitive maps

in the cases where access to expert software engineers

is limited. Another significant limitation of the tech-

nique is that it requires that there be a considerable

amount of problem domain concepts embedded in

identifiers and comments in the code. In cases where it

does not hold we are investigating the use of abbrevia-

tion generator algorithms such as is presented in [37] to

construct sets of candidate concepts which can be ac-

cepted in place of the problem domain concept being

searched for.

Our evaluation presented here is also limited in that the

size of the system under study was relatively small,

15KLOC compared to large industrial systems, as such

the performance of the cognitive mapping procedure

and the cognitive assignment classification function

could be a limitation when exercised over larger sys-

tems. Also the number of participants, while larger than

that usually available in industrial studies, is small and

so limits the generality of our results.

7. Conclusions and Future Work
We have presented here a technique for assisting con-

cept assignment for the purposes of software under-

standing where engineers encounter unfamiliar systems.

The cognitive assignment technique applies cognitive

mapping, a quantitative text analysis technique, to texts

authored by engineers familiar with existing systems.

We extract from those texts the cognitive maps of the

engineers related to those systems which can then be

used to establish mappings between the human orien-

tated concepts captured in the cognitive maps and ele-

ments in the system under study’s code base using a

probabilistic classification function. These mappings,

presented in the form of ranked search results, can then

be used by engineers attempting to understand those

unfamiliar systems to facilitate software comprehen-

sion.

We have implemented the cognitive assignment tech-

nique in an Eclipse plug-in and have here also pre-

sented the results of an experiment involving 4 partici-

pants where we compare the cognitive assignment

plug-in’s success in generating sets of element rankings

against an expert defined set. While the results of the

experiment in terms of precision and recall (less than

50% on average) are not as good as we had anticipated,

our immediate goal in the light for this experiment is to

attempt to generalise our findings by extending this

experiment to use other classifier functions and tech-

niques such as Latent Semantic Indexing (LSI) which

may demonstrate better precision and recall versus the

classifier implemented here. We also wish to extend

our evaluation to investigate the impact that ranked

search results have on the decisions that novice soft-

ware engineers make when engaged in concept assign-

ment.

8. References
[1] D. Cubranic and G. C. Murphy, "The ramp-up

challenge in open-source software projects," presented at

Workshop on Open-Source Software, held as part of the

IEEE/ACM International Conference on Software Engineer-

ing (ICSE'01), Totonto, Ontario, Canada, 2001.

[2] R. Brooks, "Towards a Theory of the Comprehen-

sion of Computer Programs," International Journal of Man-

Machine Studies, vol. 18, pp. 543-554, 1983.

31

[3] N. Pennington, "Comprehension strategies in pro-

gramming," presented at Empierical Studies of Programmers:

Second Workshop, New Jersey, 1987.

[4] J. Good, "Programming Paradigms, Information

Types and Graphical Representations: Empirical Investiga-

tions of Novice Program Comprehension," University of

Edinburgh, 1999.

[5] A. v. Mayrhauser and A. M. Vans, "From program

comprehension to tool requirements for an industrial envi-

ronment," Proceedings of the Second IEEE Workshop on

Program Comprehension, Capri, Italy., pp. 78-86, 1993.

[6] J. I. Maletic and A. Marcus, "Supporting program

comprehension using semantic and structural information,"

presented at Software Engineering, 2001. ICSE 2001. Pro-

ceedings of the 23rd International Conference on, 2001.

[7] T. J. Biggerstaff, B. G. Mitbander, and D. E. Web-

ster, "Program understanding and the concept assignment

problem," Commun. ACM, vol. 37, pp. 72-82, 1994.

[8] C. Simonyi, "Intentional Programming," The Inten-

tional Software Corporation, 2005.

[9] V. Rajlich and N. Wilde, "The role of concepts in

program comprehension," presented at Program Comprehen-

sion, 2002. Proceedings. 10th International Workshop on,

2002.

[10] J. Greenfield and K. Short, Software Factories:

Assembling Applications with Patterns, Frameworks, Models

& Tools: John Wiley & Sons, 2004.

[11] T. J. Biggerstaff, "Design recovery for maintenance

and reuse," Computer, vol. 22, pp. 36-49, 1989.

[12] K. Carley and M. Palmquist, "Extracting, Repre-

senting and Analyzing Mental Models," Social Forces, vol.

3, pp. 601-636, 1992.

[13] T. M. Mitchell, Machine Learning. New York:

McGraw Hill, 1997.

[14] N. Wilde and M. C. Scully, "Software reconnais-

sance: Mapping program features to code," Journal of Soft-

ware Maintenance: Research and Practice, vol. 7, pp. 49-62,

1995.

[15] T. Eisenbarth, R. Koschke, and D. Simon, "Locat-

ing features in source code," Software Engineering, IEEE

Transactions on, vol. 29, pp. 210-224, 2003.

[16] W. Chung, W. Harrison, V. Kruskal, H. Ossher, J.

Stanley M. Sutton, and a. P. Tarr, "Working with Implicit

Concerns in the Concern Manipulation Environment," pre-

sented at Linking Aspect Technology and Evolution Co

hosted with Aspect Orientated Software Development

(ASOD 05), Chicago, USA, 2005.

[17] M. P. Robillard, "Representing Concerns in Source

Code," The University of British Columbia, 2003.

[18] D. Cubranic, G. C. Murphy, J. Singer, and K. S.

Booth, "Hipikat: a project memory for software develop-

ment," Software Engineering, IEEE Transactions on, vol. 31,

pp. 446-465, 2005.

[19] J. Singer and T. Lethbridge, "Studying work prac-

tices to assist tool design in software engineering," presented

at Proceedings 6th International Workshop on Program

Comprehension IWPC98, Ischia Italy, 1998.

[20] T. C. Lethbridge, S. E. Sim, and J. Singer, "Soft-

ware Anthropology: Performing Field Studies in Software

Companies," 2004.

[21] A. Marcus and J. I. Maletic, "Recovering documen-

tation-to-source-code traceability links using latent semantic

indexing," presented at Software Engineering, 2003. Pro-

ceedings. 25th International Conference on, 2003.

[22] A. Marcus, A. Sergeyev, V. Rajlich, and J. I.

Maletic, "An information retrieval approach to concept loca-

tion in source code," presented at Reverse Engineering,

2004. Proceedings. 11th Working Conference on, 2004.

[23] D. Norman, Things that make us smart : defending

human attributes in the age of the machine: Reading, Mass :

Addison-Wesley Pub. Co, 1993.

[24] J. F. Sowa, Conceptual Structures: Information

Processing in Mind and Machine: Addison-Wesley., 1984.

[25] Z. Cornelia and L. Juliane, "Computer-assisted

Content Analysis without Dictionary," presented at Sixth

International Conference on Logic and Methodology - Re-

cent Developments and Applications in Social Research

Methodology, Amsterdam, The Netherlands, 2004.

[26] J. Diesner and K. Carley, "Using Network Text

Analysis to Detect the Organizational Structure of Covert

Networks," presented at NAACSOS, 2004.

[27] R. Popping, Computer-assisted Text Analysis.

London: Thousand Oaks: Sage Publications, 2000.

[28] K. M. Carley, "Extracting team mental models

through textual analysis.," Journal of Organizational Behav-

ior, vol. 18, pp. 533-558, 1997.

[29] K. Czarnecki and U. Eisenecker, Generative Pro-

gramming - Methods, Tools and Applications: Addison-

Wesley, 2000.

[30] N. Friedman, D. Geiger, and M. Goldszmidt,

"Bayesian Network Classifiers," Machine Learning, vol. 29,

pp. 131-163, 1997.

[31] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,

and E. Merlo, "Recovering traceability links between code

and documentation," Software Engineering, IEEE Transac-

tions on, vol. 28, pp. 970-983, 2002.

[32] D. Cubranic and G. C. Murphy, "Automatic bug

triage using text categorization," presented at Conference on

Software Engineering and Knowledge Engineering

(SEKE'04), 2004.

[33] R. C. Prim, "Shortest connection networks and

some generalisations," Bell System Technical Journal, pp.

1389–1401, 1957.

[34] B. Cleary and C. Exton, "The Cognitive Assign-

ment Eclipse Plug-in (ICPC 06)," presented at Internation

Conference on Program Comprehension, Athens, Greece,

2006.

[35] B. Cleary and C. Exton, "CHIVE - a program

source visualisation framework," presented at 12th IEEE

International Workshop on Program Comprehension, Bari,

Italy, 2004.

[36] A. LeGear, B. Cleary, J. Buckley, J. J. Collins, and

C. Exton, "Making a Reuse Aspectual View Explicit in Ex-

isting Software," presented at Linking Aspect Technology

and Evolution Co hosted with Aspect Orientated Software

Development (ASOD 05), Chicago, USA, 2005.

[37] N. Anquetil and T. C. Lethbridge, "Recovering

software architecture from the names of source files," Journal

of Software Maintenance, vol. 11, pp. 201-221, 1999.

32

A tool-supported environment for knowledge feedback cycle

in software development

Noriko Hanakawa

Faculty of Management Information, Graduate school of Corporation information

Hannan University, Japan

hanakawa@hannan-u.ac.jp

Abstract

We propose a software development environment

including knowledge feedback cycle. A feature of the

environment is to support the cycle with tools and

researchers. Developers in the environment can

acquire knowledge of past projects and experiences

without additional efforts of making summaries about

past projects. Moreover, the knowledge feedback cycle

includes the transfer from parts of tacit knowledge to

explicit knowledge. Researcher and tools are assigned

to important roles in the knowledge transfer. Therefore,

the environment concept will be useful to the semi-

automatic knowledge transfer.

1. Introduction

Recently, software development scale becomes

bigger, and software quality’s impact to our society is

significantly increasing. On the other hand, lifetime of

software is getting shorter. In order to develop

software with certain qualities in a limited time,

developers require various knowledge such as cost

estimation or risk management, as well as other

software engineering techniques and technologies.

Some of such knowledge should be extracted and

accumulated through their own experiences. However,

acquiring and accumulating such knowledge require

long time and large efforts. In other words, it is very

difficult for developers to become matured engineers

in a short period.

In order to help knowledge acquirement and

accumulation for novice software engineers, we

propose an environment for cycling knowledge among

experienced developers, software engineering

researchers and novice developers. We call it KFC

(Knowledge Feedback Cycle). In the KFC

environment, knowledge, mainly concerning risk

management and cost estimation, is extracted from past

experiences for future reuse. A feature of the

environment is semi-automatic. Mainly three tools,

EPM (Empirical Project Monitor), Project Replayer,

and Project Simulator, are used to capture and circulate

knowledge in KFC. EPM[1] is a tool to automatically

collect project data from source code repository, bug-

reports and e-mails. Project Replayer is a tool used to

review data of past projects. Project Simulator is used

to provide actual feedback to developers.

In this proposal, we mainly present the tool-

supported environment for KFC. Especially, we show

how knowledge is semi-automatically feedback though

the environment.

2. A semi-automatic environment for KFC

Developers understand an importance of transfer of

past experience for future project. Managers have

often experienced bug reports caused by same

problems such as insufficient communication with

customers. Managers said “Last year, I received

similar bug reports caused by insufficient

communication”. Developers answered “I was not here.

I worked at another project last year”. This is a typical

case in which knowledge and experiences did not

transfer to future projects. Because knowledge and

experience are shut into personal memories,

knowledge and experiences can not be reused as an

organization. Of course, many trials of knowledge

transfer have been proposed in knowledge engineering

field [2]. Tacit knowledge of individuals should be

explicit, after that, the explicit knowledge is shared in

an organization. However, if people transfer manually

from tacit knowledge to explicit knowledge, for

example, making rule documents, it will take long time

and large efforts. Because of nuisance of making the

documents, manual knowledge transfer is problematic.

Therefore, we propose a software development

environment supporting a semi-automatic transfer of

knowledge.

The purpose of KFC is to circulate knowledge and

experience of past projects to future projects.

Developers are supposed to acquire new knowledge

33

while experiencing software development projects. To

establish automatically the cycle, KFC employs three

tools; EPM (Empirical Project Monitor), Project

Replayer and Project Simulator (See Figure. 1). A

typical scenario in the KFC would be as follows;

Step1: Various development data (records of code

modification, bug tracking, and emails) is

automatically captured by EPM during the

project enactment.

Step2: Researchers analyze the collected data to

construct various simulation models using the

Project Replayer and analysis tools.

Step3: Using the Project Replayer, developers review

past projects. Events and accidents that are not

recorded by EPM are also clarified in interview

with developers.

Step4: Regarding results of reviews and interviews,

researchers refine their simulation models that

were made in Step2. The models are embedded

into the Project Simulator.

Step5: Using the Project Simulator, novice developers

learn complicated phenomena in past projects.

Developers can also utilize the Project

Simulator to make their next project plans. The

planned project is regarded as the target of

Step1 of the next cycle.

3. A benefits from the environment

It is a most characteristic feature of the environment

that the tools and researchers support the knowledge

feedback cycle. At first, while developers make usually

software, development data (records of code

modification, bug tracking, and email logs) is recorded

automatically. Knowledge and experiences are

implicitly buried under miscellaneous development

data. Developers can not identify even their-own

knowledge in the development data. After researchers

have to analyze the development data, researchers

extract knowledge and experiences. In short,

researchers transfer from parts of tacit knowledge in

the development data to explicit knowledge. The

explicit knowledge is embedded to a simulation model.

The formulas of the simulation models present the

explicit knowledge. Of course the extraction of

knowledge from the development data is difficult.

Project Replayer is useful to extract knowledge[3].

Next, by implementing the simulation model to the

Project Simulator, the explicit knowledge becomes

available to developers. Virtual projects in the Project

Simulator behave based on the simulation model.

While novice developers are utilizing the Project

Simulator, the developers can learn phenomena that

occurred in past projects. That is, the novice

developers can acquire knowledge of past projects. In

KFC, developers do not need any tasks of making the

development documents in order to transfer the past

knowledge. Developers do only usual development

tasks and learning on the Project Simulator. Although

researchers have to make simulation models with

analyzing the development data, the knowledge

transfer is semi-automatic for developers who are true

“users” of the environment.

3. Summary

A concept of a semi-automatic environment for

knowledge feedback cycle has been proposed. The

EPM and the Project Replayer have been already

developed. In future, after the Project Simulator will be

built, we will confirm the usefulness of the

environment.

References
 [1] Masao O., et. al., “Empirical Project Monitor: A System

for Managing Software Development Projects in Real Time”,

in Proceeding of ISESE2004, Vol.2 , 2004, pp. 37-38.

[2]Nonaka I, “A Dynamic Theory of Organizational

Knowledge Creation”, Organization Science, Vol.5-1, Feb.

1994.

[3]Goto K., Hanakawa N., Iida H., “Project Replayer-An

Investigation Tool to Revisit Process of Past Projects”,

Proceeding of International Software Process Workshop and

International Workshop on Software Process Simulation and

Modeling, May 2006, pp72--pp79.

Parts of tacit

knowledge

Project

Replayer

Project

simulator

EPM
Gnats: bug reports

CVS: source code

Mailman: e-mail logs

Project Data
Supply

comments

Review

Developer
Researcher

Bug Tracking data

Version Management data

Communication logs

Building

simulation models

Figure. 1. An environment for Knowledge Feedback Cycle

Project behaviors

& details

Project Execution Training

Parts of tacit

knowledge

Project Data

Summary

Explicit

knowledge

Simulation models

Explicit

knowledge

34

Social Network Analysis on Communications for Knowledge Collaboration
in OSS Communities

Takeshi Kakimoto Yasutaka Kamei Masao Ohira Ken-ichi Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama Ikoma Nara Japan 630-0192
{takesi-k, yasuta-k, masao, matumoto}@is.naist.jp

Abstract

Knowledge collaboration is the key for success of open
source software (OSS) communities, because not all mem-
bers have knowledge and skills necessary for software de-
velopment. Generally, members in OSS communities com-
municate for knowledge collaboration using communica-
tion tools (e.g. mailing lists, discussion forums, bug track-
ing systems, and so on) so that geographically distributed
members collaborate and coordinate their work. In this pa-
per, we apply social network analysis to the data accumu-
lated in communication tools. We analyzed relationships
between the density of social networks and OSS releases
by time series analysis of 4 OSS communities in Source-
Forge.net, in order to investigate the quality of communi-
cations for knowledge collaboration. The analysis results
showed that communications among community members
with a variety of roles are active before/after OSS release in
communities where knowledge collaboration is going well.

1. Introduction

Nowadays software developers continuously require a
considerable amount of new and diverse knowledge about
technologies for software development such as program-
ming languages and components libraries, since such tech-
nologies have been evolving from day to day and the past
knowledge about them cannot be used soon. In this sit-
uation, an individual developer cannot possess every kind
of knowledge about latest technologies needed for software
development. Knowledge collaboration [11] is not desirable
but necessary for modern software development.

Especially, open source software (OSS) development
communities rely on knowledge collaboration among com-
munity members who have a variety of roles such as com-

munity leaders, developers, bug reporters, passive users and
so forth [7, 12], because OSS communities, differently from
traditional software development organizations, cannot re-
cruit members who have sufficient skills and knowledge re-
quired for building software systems in advance.

In typical OSS communities where community mem-
bers are geographically distributed, knowledge collabora-
tion takes place through using collaboration tools such as
version control systems, bug tracking systems, and mail-
ing lists. Based on the data stored in the collaboration tools,
prior studies discussed the model of collaboration processes
in distributed environments [10], the efficiency of commu-
nication and coordination in distributed software develop-
ment [4], the benefits of OSS style software development
[6], communications metrics for knowing the quality of
group work [2] and so forth.

In this paper, we would like to investigate the quality
of communications for knowledge collaboration by analyz-
ing the data from communication tools used for distributed
software development and the data denoting the success and
failure of knowledge collaboration (e.g. number of software
releases and number of software downloads). In OSS de-
velopment, community members rarely meet to discuss but
communicate heavily using electronic media (e.g. mailing
lists and forums). So, we supposed that we might com-
prehend the success and failure of knowledge collabora-
tion from the quality of communications among community
members through collaborative communication media.

As an approach to inspecting the quality of communica-
tions for knowledge collaboration, we use social network
analysis (SNA) [8, 9], especially the density of social net-
works which is a measure to know the quality of social rela-
tionships among people (e.g. intimacy or solidarity among
people). In this paper, we applied SNA methods to the com-
munication data stored in forums for OSS communities in
SourceForge.net (SF.net) 1.

1SourceForge.net, http://sourceforge.net/

35

In what follows, in Section 2 we hypothesize on com-
munications for knowledge collaboration, more specifically,
how knowledge collaboration in OSS communities is con-
ducted using electronic communication media. Section 3
describes density of social networks, which is a measure for
SNA. In section 4 we analyze 4 OSS communities in SF.net.
Section 5 is the results of our analysis. We discuss the re-
sults and our hypothesis in Section 6. Section 7 concludes
the paper.

2. Communications for Knowledge Collabora-
tion in OSS Communities

In this section, we discuss communications for knowl-
edge collaboration in OSS communities. Typical OSS com-
munities where community members are geographically
distributed and rarely meet to discuss together, heavily re-
lies on collaboration tools such as version control systems
and bug tracking systems and electronic communication
media such as mailing lists and forums to precede their
knowledge collaboration. Yamauchi et al. [10] had con-
ducted two case studies to investigate how OSS develop-
ment communities achieve smooth coordination and effec-
tive collaboration. One of the findings of the case studies
was that collaboration and communication tools (e.g. CVS,
TODO lists and Mailing lists) were used in a good balance
between centralization and spontaneity [10].

In this paper we would like to focus on the quality of
communications for knowledge collaboration through com-
munication media. In OSS development, communications
for knowledge collaboration involve a variety of people. For
instance, software developers discuss technological prob-
lems, bug reporters point out bugs of released software, end-
users request developers to add new features and so forth.
It is important for knowledge collaboration to involve such
a variety of community members because “voice” from bug
reporters and end users often makes OSS reliable and in-
novative, and motivates OSS developers to develop further
OSS[3].

Figure 1 shows a simple model on a cycle of knowledge
collaboration in OSS development. Before OSS released,
OSS developers discuss their products and related problems
(development period). After OSS released, users ask ques-
tions on usage of the products to other users or developers
and also report bugs or requests of a new features to de-
velopers (feedback period). Again, developers discuss the
reported bugs and requested features, and then modify and
refine their products. This would be a simple view of a cycle
of OSS development but an important aspect of knowledge
collaboration, because an end user would not use the prod-
ucts if s/he can get help from other community members,
a bug reporter would not report bugs if developers do not
modify reported bugs, and developers would not continue

Figure 1. Cycle of Knowledge Collaboration

to create software products if no one use them. Here we
can make a hypothesis on communications for knowledge
collaboration in OSS development communities as follows.

Hypothesis: Communications are actively encouraged
before/after OSS released, especially among commu-
nity members with a variety of roles but not among
particular members.

We thought that we might be able to know the success
and failure of knowledge collaboration or “health condi-
tion” in OSS communities by analyzing the quality of com-
munications among community members before/after OSS
released. The next section describes use of the density of
social networks which is our approach to investigating the
quality of communications in OSS communities.

3. Density of Social Networks

Using the density of social networks in social network
analysis (SNA) is a simple way to know the quality of so-
cial relationships among people [8, 9]. Social relationships
can be graphed as social networks, which consist of persons
(nodes) and their relationships (edges).

The density of social networks is defined as the number
of lines (edges) in social networks, expressed as a propor-
tion of the maximum possible number of lines [8, 9]. The
formula for the density of social networks is

ND =
2l

n(n − 1)
(1)

where l is the number of lines (edges) in the networks and
n is the number of nodes in the networks. The values of ND
(network density) can be from 0 to 1.

If social networks show low density, the social relation-
ships tend to be “open” which means a large, open, di-
verse, and externally focused relationships [1]. If social

36

Figure 2. Calculation methods for the density

networks indicate high density, the social relationships of-
ten have characteristics of “closed” which means a small,
closed, homogeneous, and internally focused network [1].

In this paper we apply SNA to the communication data
stored in communication tools such as mailing lists and fo-
rums (bulletin board systems) to know the quality of com-
munications for knowledge collaboration in OSS develop-
ment. In this case, social relationships can be defined by
posts and replies. Community members (e.g., developers,
end-users, bug reporters, and so on) discuss issues related
to OSS development. If a member (A) posts a message to a
forum for a community (Ci) and a member (B) replies the
message, then it can be assumed that there is a social rela-
tion between A and B in Ci. Therefore, the density of the
social relationships (i.e. social networks) will be high when
community members mutually discuss a topic in a forum,
but it will be low when no one post a reply message even if
there are a number of posted messages in a forum.

Although the activeness of an online community, in gen-
eral, can be measured by the amount of communications
among community members, we do not use the number of
posted messages to a forum to know the quality of commu-
nications from the above reason. We also do not use the
number of replies to know how community members mutu-
ally discuss issues because only a handful of members of-
ten reply to posted messages in an online forum [5]. We
expect that the density of social networks is better to know
whether communications for knowledge collaboration are
going well or not.

4. Analysis on The Quality of Communications
for Knowledge Collaborations

4.1. Dataset

We collected the data involving public forums and OSSs
released in 4 OSS communities for the time interval be-
tween December 1, 1999 and December 31, 2005. These
communities were selected as target communities for anal-
ysis because they indicated characteristic measurements re-
sults (e.g. a large number of developers, downloads, or
posts). We did not collect the data of mailing lists because
the mailing lists were not used for communications among
community members but mainly for announcements of OSS
releases or archives of CVS logs. The data on public fo-
rums includes ID of each posted message, user’s name who
posted messages, the date of messages posted, ID of each
replied message, and ID of each OSS community. The data
on released OSS includes the number of developers in each
community, the start date of each community, the number
of downloads, the number of average downloads per a day,
version numbers of released OSS, the release date of OSS,
and ID of each OSS community.

4.2. Analysis Procedure

The followings show the procedure of our analysis using
social network analysis (SNA) [8, 9].

Preparation Before calculating the density of social
networks, firstly we need to define social networks in

37

Table 1. Characteristics of target communities
Num. of Density of Num. of Date of Num. of Num. of average

developers all periods posts communities downloads downloads
Community started per a day

Community A 138 0.022 174 04-Jun-01 28,265 16.92
Community B 1 0.013 165 07-Oct-04 7,734,629 17188.06
Community C 11 0.007 766 05-Dec-99 26,000,000 11878.12
Community D 3 0.500 203 29-Dec-03 156 0.21

the context of our analysis. As described before, our
aim of using the density of social networks is to know
the quality of communications for knowledge collab-
oration. We use the communication data made from
discussions (messages) in forums.

From messages in forums for a target community2, we
identify who posted a message to the forums (node A)
and who replied to the message (node B). Then we
regard the relation between the poster (node A) and
the respondent (node B) as an edge, by threading rela-
tionships between posts and replies as social networks.
Repeating this for all messages in forums of a target
community, we can graph the relationships as social
networks and calculate the density of the social net-
works.

Calculations of network density by a certain period

Calculating the density of social networks from all
the data is inadequate, because the density is calcu-
lated from a snapshot of structures of social networks
at a certain point while structures of social networks
change over time. Therefore, time series analysis is
necessary to know changes of the quality of communi-
cations among community members, that is, changes
of the density of social networks. In order to see tem-
poral changes of the density of social networks, we
have to fix a particular time interval.

We calculate the density of social networks from social
networks for a period P in a way that slides a P

2 inter-
val (sliding time method) in this paper. Figure 2 shows
calculation methods for the density of social networks.
The density of a social network for a certain period is
calculated from the structure of the network at the end
of the period.

The sliding time method in this paper is sensitive to
changes of network structures than method (1) and (2)
which not overlap neighboring periods. For example,
communications are active in the period of P2 + P3.

2A community can have several forums for different purposes of dis-
cussions

However, method (1) can not reflect such the active-
ness. Method (2) which divides the period in half also
can not reflect the activeness because it can only show
small changes.

In this paper, the density of social networks is calcu-
lated by one and a half month (P = 3 months). The
reason why we fix 3 months is we considered that one
topic in a forum is finished about 3 months. We need
further consideration for this period or a way to fix an
appropriate period.

Time series analysis We analyze relationships between
the density of social networks and OSS releases in or-
der to verify our hypothesis. Changes of the density
of social networks in time series are used in the analy-
sis. The number of posters who posted messages (i.e.
nodes), links among posters (i.e. edges), and posted
messages are also used.

4.3. Target Communities

In this paper, we analyze 4 characteristic communities.
Table 1 shows the measurement results of each community.
In what follows, we describe an overview of each commu-
nity, which consists of characteristic measurement results,
developing software, and usages of forums.

Community A Community A has a number of develop-
ers. This community has been developing an operating
system for controlling small electronic devices. The
posted messages to the forum of community C consist
of questions on implementation from developers. This
community is currently working on own web site but
not on SF.net.

Community B Community B has only one developer
but provides a tool downloaded by a large number of
users. This community provides windows installers for
image manipulation software which is originally de-
veloped for UNIX. The posted massages are only from
users.

38

Community C The tool created in community C is
downloaded by a large number of users. Community
C has been providing a CD ripping tool. The posted
messages to the forums of the community consist of
posts regarding implementation of software, questions
on released software, bug reports, and requests for new
features. Both developers and users often post to the
forums. Anonymous users who do not have user ID of
SF.net also use them.

Community D The characteristic measurement results
of community D are that the network density is very
high and the number of downloads and posters is very
small. Community D creates an OpenGL viewer with
command line tools. The forums of this community
are used only by developers excepting one post by a
user.

5. Analysis Results

Figure 3 shows time series graphs for 4 target communi-
ties. The horizontal axis shows time sequence, the vertical
axis at the right side is values of the density of social net-
works, and the vertical axis at the left side is the number
of posters, links among posters and posts for each period.
Dashed lines mean the date of OSS release.

Community A The following pattern of the changes of
the density in community A was repeated. At the ini-
tial phase of the community started, values of the den-
sity became high. Then, values of the density were de-
creased as the community progressed. Finally, values
of the density became zero. Version 0.6.0 and version
1.0 were released when values of the density became
zero. Values of the density before OSS releases were
higher than that for OSS release periods excepting ver-
sion 0.6.1. The number of posts after OSS releases
was larger than that for OSS release periods. Posted
messages before OSS releases were mainly from de-
velopers and posted messages after OSS releases were
from users.

Community B In community B, when the density was
increasing or high, new versions were released in a
short interval. On the other hand, when the den-
sity was decreasing, new versions were released in a
long interval. Values of the density after OSS releases
were higher than that for OSS released periods in most
cases. When the number of posts was small in a long
interval, community B did not release software prod-
ucts. Developers did not post a message. All messages
were posted by users.

Community C In community C, values of the density
before OSS releases were higher than that for released

periods in all cases. Values of the density after OSS
releases were also higher than that for released peri-
ods excepting version 1.50. The degree of incenses of
density values after releases is decreasing as the com-
munity progressed. The number of posts after OSS re-
leases was larger than that before OSS releases. Posted
messages before OSS releases were from developers
and that after OSS releases were from develoepers and
users.

Community D The number of posters is small against
the number of posts in the community D. All messages
were posted by developers. In the version 0.1 release,
values of the density after the release were higher than
that for the released period. No developers posted mes-
sages after September 2004.

6. Discussion

The analysis results excepting community D showed that
values of the density before OSS releases are high in the
community that has a number of posts from developers
(community A, C). And, values of the density after OSS re-
leases are high in the community that has a number of posts
from users (community B, C).

In the community C that meets both the conditions, val-
ues of the density before and after OSS releases are higher
than values of the density for released periods. In other
words, communications among community members are
active before and after released periods in community C.
On the other hand, community D that is not the case with
these conditions seems be stagnant as the number of down-
loads and posters was very small and OSS was released after
the version 0.1. Therefore, we consider that our hypothe-
ses are true for communities where knowledge collabora-
tion among community members with a variety of roles is
going well.

One of the advantages of using the density of social net-
works is that we can know community members mutually
discuss issues. If the number of posts is large but the den-
sity is low, it would mean that many members post messages
but dose not receive replies from other members. The den-
sity may be used for an indicator which reflects a state of
knowledge collaboration in their community. So commu-
nity leaders or managers can help others discuss when the
density is very low.

However, we need to note that values of the density
are very sensitive against changes of the number of nodes
(posters in this paper). Values of the density often show ex-
treamingly high when the number of nodes is very small.
It was very difficult to understand what high values of the
density mean in our case study. For instance, the first lo-
cal peak of the density value (08/25/01) in community C

39

Figure 3. Analysis Results

40

does not mean knowledge collaboration is going well be-
cause only a small number of particular members discuss.
This is applicable to community D while community D has
a number of posts. In the future, we need to improve this
difficulty in using the density.

7. Conclusions and Future Work

In this paper, we investigated the quality of communi-
cations for knowledge collaboration by time series analy-
sis using the density of social networks. From the results
of analyzing changes of the density in 4 OSS communi-
ties, our hypothesis (communications are actively encour-
aged before/after OSS released, especially among commu-
nity members with a variety of roles but not among particu-
lar members.) was partly verified.

In the future, we will analyze the data by separating de-
velopers from end users to distinguish between develop-
ment periods and feedback periods in more detail. And, weh
we also need to analyze the data by considering structures
of social relationships among community members though
we did not include them in this paper.

Acknowledgments We would like to thank Shinsuke
Matsumoto for helping us analyze OSS communities. This
work is supported by the EASE (Empirical Approach to
Software Engineering) community in the Comprehensive
Development of e-Society Foundation Software program
and Grant-in-aid for Scientific Research (B) 17300007,
2006 and for Young Scientists (B), 17700111, 2006, by the
Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan.

References

[1] W. E. Baker. Achieving Success Through Social Capital.
John Wiley & Sons Inc., 2000.

[2] A. H. Dutoit and B. Bruegge. Communication metrics for
software development. IEEE Transactions on Software En-
gineering (TSE), 24(8):615–628, 1998.

[3] J. Feller and B. Fitzgerald. Understanding Open Source
Software Development. Addison-Wesley, 2002.

[4] J. D. Herbsleb and A. Mockus. An empirical study of speed
and communication in globally distributed software devel-
opment. IEEE Transactions on Software Engineering (TSE),
29(6):481–494, June 2003.

[5] K. R. Lakhani and E. von Hippel. How open source soft-
ware works: “free” user–to–user assistance. Research Pol-
icy, 32(6):923–943, June 2003.

[6] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309–346, 2002.

[7] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye. Evolution patterns of open-source software sys-
tems and communities. In Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE’02),
pages 76–85, New York, NY, USA, 2002. ACM Press.

[8] J. Scott. Social Network Analysis: A Handbook. SAGE
Publications, 2000.

[9] S. Wasserman and K. Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, 1994.

[10] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida.
Collaboration with lean media: how open-source software
succeeds. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work (CSCW’00), pages
329–338, New York, NY, USA, 2000. ACM Press.

[11] Y. Ye. Dimensions and forms of knowledge collabora-
tion in software development. In Proceedings of the 12th
Asia-Pacific Software Engineering Conference (APSEC’05),
pages 805–812, Taipei, Taiwan, December 2005. IEEE
Computer Society.

[12] Y. Ye and K. Kishida. Toward an understanding of the mo-
tivation open source software developers. In Proceedings of
the 25th International Conference on Software Engineering
(ICSE’03), pages 419–429, Washington, DC, USA, 2003.
IEEE Computer Society.

41

The Flow of Knowledge in Free and Open Source Communities

Daniel M. German

Software Engineering Group

Department of Computer Science

University of Victoria

Victoria, Canada

dmgerman@uvic.ca

Abstract

In this paper we present a survey of the methods used
by a selection of successful free andopen source projects to
exchange, store and retrieve knowledge. In particular, we
look into mailing lists, Internet Relay Chat, conferences,
and code reviews. We explore how historical records left
during the development become stored knowledge that can
be subsequently retrieved. We also discuss the existence
of meta-communities (composed of members of different
communities) that allow knowledge to flow fromone com-
munity to another.

1. Introduction

Free and open source software (FOSS) development
has established itself as an effective way to develop soft-
ware. Perhaps one of its most radical features is that
its members are willing to give away knowledge with-
out any direct remuneration1. This is particularly strik-
ing in an era in which intellectual property (mainly in
the form of copyright and patents) is highly protected
for its economic value. For this reason FOSS has been
frequently compared to science where its participants
publish their findings into a commons for the benefit
of everybody [24].

The “community” is an important concept in FOSS
development. It refers to the individuals and organiza-
tions that participate in the development of a FOSS
application. Some participants are totally passive (by

1 There are many individuals who are paid by a third party
to contribute to a FOSS project. In this case we can con-
sider these individuals as “proxies” of the organization who
hire them. These organizations are, therefore, contributing
knowledge without expecting a direct remuneration for their
contributions–but there are most likely seeking indirect bene-
fits.

strictly using an application without ever participat-
ing in its development) to totally active (the so called
“core” developers who are responsible for most of the
contributions to the project. The ways in which a mem-
ber of the community can participate in the develop-
ment of a project are extremely wide. Table 1 lists
various types of knowledge contributions that indi-
viduals can make. Organizations (beside paying de-
velopers to contribute to a FOSS projects) can con-
tribute knowledge directly to FOSS projects. For ex-
ample the original source code of Mozilla was donated
by Netscape Corporation; and IBM has pledged to li-
cense 500 patents to open source projects [9]).2.

One of the main challenges that FOSS projects have
is the need to attract and nurture new members. It is,
therefore, important to reduce the learning curve of
newcomers to ease their integration into the develop-
ment process and to encourage them to start contribut-
ing to the application as easily as possible.

In this paper we are interested in answering the fol-
lowing research questions:

• What are the methods used by a FOSS commu-
nity to share, store, and diffuse knowledge?

• Is knowledge exchanged between communities, if
so, how?

The methodology we have used is based on three
main components:

• A literature review regarding how knowledge is
created and diffused in FOSS communities.

• A qualitative analysis of the following success-
ful FOSS projects: Apache, Evolution, Linux,
GNOME, Mozilla, gcc and postgreSQL.

2 Organizations can also indirectly contribute knowledge in the
form of training and diffusion, and by paying employees to be-
come contributors.

42

Type of contribution Description
Source code This is perhaps the most visible contribution.
Documentation In the form of Web sites, user and developer manuals, magazine and Web arti-

cles, books, FAQs, etc.
Internationalization Translations of the software and documentation into different languages.
Code Reviews The discussion and improvement of source code contributions.
Testing and debugging Formal or informal testing and debugging.
Bug reports Submit bug reports that can be used by the development team to track and fix

defects.
Configuration management
and build process

Tasks required to maintain the environment necessary for multiple developers to
participate.

Distribution of binaries Preparation of binaries for download by any user interested to try the software.
Suggestions Ideas on how to improve the product.
Answers to developer’s ques-
tions

They help other developers who are contributing.

Answers to user’s questions They help individuals who are trying to use the software.
Release management Dedicated to prepare and advertise new releases.
Legal They provide information regarding legal issues, such as licensing, and other in-

tellectual property issues.
Web site development and
maintenance

These contributions usually gather knowledge from other sources and make sure
it is persistent. It can also include those who contribute to wikis.

“Pointers” to knowledge Perhaps the smallest type of contribution it involves answering a question by
“pointing” to another source of information (such as a Web site or a research
article).

Distribution packaging Knowledge needed to prepare packages to be included in distributions (such as
SUSE, Red Hat, Fedora, etc).

Table 1. Type of Knowledge Contributions to a FOSS project

• The experiences of the author as a contributor to
several FOSS projects 3.

The paper is divided as follows. Section 2 addresses
the question of how knowledge is shared, stored and
diffused within a FOSS community. Section 4 analyzes
how knowledge is exchange across FOSS communities.
We conclude with a discussion of our findings and di-
rections for future research.

2. How does knowledge flow within a

FOSS community?

Research has shown that two important motivations
that individuals have to become FOSS software devel-
opers are to: 1) improve their career perspectives (by
acquiring and refining skills) and 2) be recognized in
the meritocracy of a FOSS community[14, 8]. This im-
plies the existence of knowledge flow in FOSS com-
munities from those who have it to those who seek

3 Theauthor is currently one of the core developers of Panotools.
Panotools is a group of tools to combine two or more pho-
tographs into a panoramic one, see panotools.sourceforge.
net.

it. Given the variety of knowledge required to pro-
duce software (programming skills, application domain,
management skills, marketing skills, etc) individuals
might become both a producer and a consumer of
knowledge depending on the skills that they bring to
a given project (and the skills that they are particu-
larly interested in learning and improving).

The flow of knowledge from one individual to an-
other requires the creation and development of an in-
frastructure that supports it. It is also necessary to
create mechanisms that permit its short and long term
storage and retrieval.

From its beginning the Internet and FOSS have co-
existed in a symbiotic manner: the Internet was born
thanks to the sharing of source code and source code
has thrived as the Internet matures. It is undeni-
able that the Internet is the main channel over which
knowledge flows within a FOSS community. Project-
sponsored conferences (see section 2.3) are perhaps the
only form of exchange of knowledge in FOSS that does
not require the Internet (although it uses it for its or-
ganization).

As FOSS projects evolve their communities evolve
as well: new members join, some leave. At the same

43

time some of its members shift their roles, depending
on many factors, including the time they can invest to
the project [18]. Nakakoji et. al use Legitimate Periph-
eral Participation theory (LPP) to explain this evolu-
tion: “a community of professionals evolves by repro-
ducing itself when peripheral new members (i.e. ap-
prentices) become fully qualified members (i.e. mas-
ters). The process of becoming a master is the pro-
cess of learning. [...] the community member acquires
the skills and knowledge embodied in the community
by interacting with master members” [18]. One impor-
tant conclusion of the study by Nakakoji et. al is that
the evolution of FOSS communities is determined by
two factors: “the existence of motivated members who
aspire to play roles with large influence, and the so-
cial mechanism of the community that encourages and
enables such individual role changes” [18].

Like in any other software development team, mem-
bers of a FOSS community eventually leave it for mul-
tiple reasons (these can range from lack of motivation
or available time, to passing away). Without a con-
stant influx of new members, any FOSS community will
eventually collapse. A FOSS community, therefore, re-
quires the flow of knowledge from one member to an-
other, and the storage (temporary and permanent) of
that knowledge so it can be retrieved and reused by new
members (this knowledge becomes the project’s com-
munity memory).

2.1. Email

Email is ubiquitous as a medium for the flow of
knowledge in FOSS. A project usually starts with a
mailing list that links developers and users (active–
those that contribute to the discussions–and passive–
those that only use the product without contributing
anything in return). In an empirical examination of 100
FOSS projects Krishnamurthy found that most of them
have very few contributors and, on the average, have 2
mailing lists [13]. As a FOSS community grows its dis-
cussions are split into different types of mailing lists.

The most commonly found lists are those dedicated
to announcements, users, and developers. In the large
projects that we analyzed we found that mature, widely
used projects tend to have highly specialized mailing
lists (Mozilla, for example, has 81). We discovered that
there exist five main types of mailing lists:

• Announcements. Typically a low traffic, moder-
ated list, it is intended to be used for announce-
ments regarding the status and evolution of the
project.

• Users support. Mailing lists dedicated to help
members who have questions regarding how to use
the product.

• Development. Developers use them to discuss the
development of the project. Some project tend to
have very specialized development lists (for exam-
ple, Apache has a packagers- list for the discus-
sion of issues related to how apache is packaged,
distributed and made available to users).

• Software process related. The messages in these
lists are usually produced by tools that support the
development process (for example, a version con-
trol mailing list that has one message per source
code commit, or a bug mailing list that has one
message per bug reported).

• Documentation. These lists are dedicated to the
discussion of documentation and the Web sites of
a project.

We also found that all the surveyed projects archive
their mailing lists and the majority provide some type
of searching mechanism to them.

2.2. IRC

IRC (Internet Relay Chat) is an old Internet pro-
tocol that supports many-to-many instant communi-
cation. IRC has been widely used to link communi-
ties even before the advent of the World-Wide Web.
Although it is rarely reported, many FOSS projects
have IRC channels where different contributors can
meet and exchange knowledge. Apache, for example,
uses the IRC channel #Apache in irc.freenode.net4.
The flow of knowledge in the Apache IRC channel is
demonstrated by Rich Bowen (who is a member of the
Apache Foundation and contributes documentation to
the server). He writes a monthly column based on his
experiences in the Apache’s IRC channel[1].

GNOME has its own IRC server that hosts more
than three dozen channels 5. Similarly Mozilla main-
tains its own IRC server with more than two dozen
channels (almost 60% of them are in languages differ-
ent from English) 6.

IRC channels provide a very informal place to ex-
change information at all different levels. Perhaps
its main drawback is that its discussions are rarely

4 irc.freenode.net holds several hundred IRC channels for
FOSSprojects, includingpostgreSQL, theFreeSoftwareFoun-
dation, RedHat, and mySQL http://freenode.net/primary
groups.shtml.

5 http://gnomesupport.org/wiki/index.php/IrcChannels

6 http://irc.mozilla.org/

44

archived. They are similar to informal verbal con-
versations happening in the offices and halls of an
organization.

2.3. Conferences

Several FOSS projects are organizing conferences
where developers can meet face to face. Conferences
are usually organized around presentations that are in-
tended to exchange knowledge, or to train other con-
tributors. They are also a place where discussions re-
garding the future of the project usually take place.
From the projects that we surveyed these organize con-
ferences:

• GUADEC. This is the GNOME Developers con-
ference (it has taken place once every year since
2000)7.

• ApacheCon. The Apache Conference, like
GUADEC, has run every year since 2000. This
year it has three versions: Europe, Asia and US8.
GUADEC and ApacheCon are two of the old-
est running conferences organized by a FOSS
community.

• PostgreSQL Anniversary Summit. The 10 year an-
niversary of PostgreSQL is being marked with the
project’s first conference.9

2.4. Code reviews

Code reviews or code inspections were introduced
by Fagan as a formal process in which the development
team invests time and energy to review the code being
produced [3]. In the most formal approach, code re-
views are conducted during meetings for which the de-
velopers are expected to prepare. These meetings can
result in the detection of defects or in recommenda-
tions on how the source code can be improved.

Because FOSS developers are usually geographi-
cally dispersed they are unable to conduct formal code
reviews. Instead they conduct asynchronous reviews
using email as the main communication channel. In
an empirical study of software inspections Johnson
and Tjahjono found no significant differences between
meeting-based, and asynchronous code reviews. They
did, however, found that the total effort required in
meeting-based reviews was significantly higher when
compared to asynchronous reviews (and hence the ef-
fort to find a bug was higher in meeting-based reviews)
[10]. In FOSS code reviews have two main objectives:

7 http://guadec.org/

8 http://apachecon.com

9 http://conference.postgresql.org/

• They minimize defects and provide better, cleaner
code with less total effort.

• They improve the skills and knowledge of the re-
viewers and authors of the code.

Few FOSS projects have a formal process for code
reviews, and those that do are usually mature, and
expected to be reliable. From the projects we stud-
ied only Apache, Mozilla and Linux include code re-
views as part of their development process. Mockus et.
al found that Apache had a similar defect density than
several commercial products. They argued that “fewer
defects are injected into the [Apache’s] code, or that
other defect-finding activities such as inspections are
conducted more frequently or more effectively.” [17].

In Mozilla every contribution should be reviewed by
at least two independent reviewers. The first type of re-
view is conducted by the module owner or the module
owner’s peer (every module has an owner and a set of
peers–individuals who are knowledgeable on that mod-
ule). This review catches domain-specific problems. A
patch that changes code in more than one module must
receive a review from each module. The second type of
review is called a super review. The goal of the super
review is to find integration and infrastructural prob-
lems that may effect other modules or the user inter-
face10. By requiring both types of reviews Mozilla en-
sures that someone with domain expertise and some-
one else with overall module and interface knowledge
have approved the patch.

The Mozilla maintainers acknowledge that super re-
views are a good way for “intermediary and advanced
training”, but “are a terrible mechanism for training in
basic practices”. The main concerns Mozilla maintain-
ers have is that super-reviewers are very few and do not
have the time to train other contributors: “[a] super-
review [should] be the last stop for training.” [23].

Over the years Apache has experimented with dif-
ferent types of code reviews. Apache currently uses
a Commit-Review model, where core developers are
allowed to commit changes that are then expected
to be reviewed. The review takes place in the devel-
opers mailing list, an open environment where any
contributor can participate. In an empirical study of
code reviews on Apache we found that 9% of post-
reviewed commits generated a discussion [21]. Apache
post-commit reviews are not only useful as a way to
find and eliminate defects, but because they happen in

10 Mozilla’s core review process requires the identification of in-
dividuals as module owners, module peers, and super review-
ers. We can consider these as “knowledge” roles. Research is
needed to understand how are these roles filled and who fills
them.

45

a public forum (a mailing list) they also create aware-
ness and diffuse knowledge, even to those who are not
active participants in the review.

Code reviews practices in FOSS have started to in-
fluence industry. In [15] Lussier described how his com-
pany development process was (unexpectedly) influ-
enced by their experiences participating in an FOSS
community. Lussier was surprised that the code review
practices of the Wine project resulted in better code,
always ready to be released. His company decided to in-
troduce a similar process in-house.

3. Storing and Retrieving Knowledge

As a software project evolves, a wealth of informa-
tion is created (some automatically, some manually).
Some of this information records communications be-
tween its contributors and users; other explains how the
software system is evolving. We have previously demon-
strated that historical records can be used to success-
fully reconstruct how a software system evolves [5].

In our research into the evolution of FOSS projects
we have found that developers of mature FOSS projects
value these records and ensure, often through pol-
icy, that these records be maintained; they form what
Cubranic calls the “community memory” [2] of the
project. In a study of historical records kept by FOSS
communities we have observed the following types [7]:

• The source code itself. Version control systems al-
low developers to inspect the state of a file at any
given time in the past, helping them understand
how the system evolves. Source code sometimes
is used as a communication medium, where notes
and TODO lists are embedded as source code com-
ments (such as the ones described in [25]).

• Defect tracking databases, such as Bugzilla, are
frequently found in large FOSS projects. They pro-
vide a valuable source of information regarding de-
fects (and their fixes) and feature requests.

• ChangeLogs are files that are usually updated
when the system is changed, and provide a descrip-
tion of the given change. The Free Software Foun-
dation requires all its projects to have a Change-
Log file. In those projects that have them, we have
discovered that they are almost always properly
updated [6].

• The Version Control logs of mature projects tend
to have large, meaningful explanations. In the
project Evolution, the average size of a log is 306
bytes, in Apache 1.3 it is 160 bytes, and in Post-
greSQL it is 160 bytes, to cite just a few.

• Email is seen as an important source of discussion
about the way software evolves.

• Code reviews are valuable discussions that pro-
vide good insight on why certain changes are per-
formed the way they do. [21]. In contrast, ver-
sion control logs and comments are shorter, usu-
ally omitting discussion of less satisfactory solu-
tions. Having a link to a discussion might save
the maintainer many hours in code comprehen-
sion and avoids time wasted trying to figure out
why a given part of the system was implemented
in a certain way.

• Documentation, including Web sites and wikis.
FOSS projects are frequently using version control
systems to store this type of information, which
will allow contributors to inspect their state at any
given date.

Some sources of information have a well defined for-
mat, such as version control logs and ChangeLogs, and
are easy to correlate to lines of affected code. Correlat-
ing Bugzilla and source code is more difficult. It usu-
ally involves textual analysis of the description of the
version control log. For example in [6], we describe reg-
ular expressions that were useful in the extraction of
Bugzilla numbers from CVS commit logs. Correlating
email messages is even more difficult. For Apache, we
have been successful in creating automated and manual
heuristics that help in the correlation of messages dis-
cussing code reviews [21]. Code reviews often involve
diffs that contain the version in the repository against
which the diff was made. However, general email dis-
cussions are much more difficult to correlate. Problems
include determining the context of the discussion, re-
constructing message threads, and resolving names to
email addresses.

In [7] we proposed the concept of Evolutionary An-
notations (EA), documentation that describes how a
software system is evolving. EAs are information ex-
tracted (some automatically, some manually) from his-
torical software development records. The purpose of
evolutionary annotations is to explain why a project
evolves in the way it does (contrary to documentation,
that explains what the “current” system is doing). We
proposed methods to retrieve them and correlate them
to the source code, and described the design and imple-
mentation of a prototype for Eclipse that can filter and
present these annotations alongside their correspond-
ing source code.

46

3.1. How are communities using historical
records?

Without controlled experiments it is difficult to de-
termine how contributors use the historical informa-
tion of a project, mainly because it is difficult to iden-
tify when a contributor access historical records, and
for what purposes.

We have found, however, evidence that the infor-
mation is being used by developers. Figure 1 shows
excerpts from 2 email messages in which an question
is answered by providing a link to older email discus-
sions. One particular service that appears to be useful
to contributors of FOSS is Gmane.org. Gmane is ded-
icated to provide three main services to FOSS mail-
ing lists: archiving of messages (including permalinks),
presenting email lists with a Web interface (including a
blog-like option, and RSS feeds), and a powerful search
engine. As the examples in figure 1 show the service
provided by Gmane is being used by FOSS communi-
ties to retrieve and reuse the knowledge stored in their
mailing lists.

The existence of tools intended to extract in-
formation from version control logs (such as Bon-
sai11, cvschangelog12, CVS History13, CvsGraph14,
ViewVC15 and many others) suggests that ver-
sion control logs are useful to the developers. Un-
fortunately there have been no studies that try to
understand how contributors (in both FOSS or pro-
prietary systems) extract knowledge from version
control repositories, in which circumstances it is use-
ful, and how this extraction can be improved.

4. Is knowledge exchanged between

communities?

One of the greatest assets that a FOSS project has
is the size and diversity of its community.

In the proprietary software world knowledge is ex-
changed between organizations in very few ways. For
example, a organization hires an employee from an-
other organization, or by creating “knowledge ex-
change” contracts where an organization is willing
to exchange its knowledge with another in ex-
change for some consideration. FOSS exchange of
ideas and knowledge is often compared to that of sci-
ence, where knowledge is created and exchanged with-
out any requirement for compensation16 [24].

11 https://www.mozilla.org/bonsai.html

12 http://cvschangelog.sourceforge.net

13 http://cvshist.sf.net/

14 http://www.akhphd.au.dk/∼bertho/cvsgraph/

15 http://www.viewvc.org/

Most FOSS communities have as their main goal the
creation of a FOSS product, and the exchange and flow
of knowledge and information is a side effect of it. While
it is true that most FOSS projects have very small com-
munities (one main contributor, with very few users),
some communities have been able to achieve large num-
bers. The larger the community, the larger the pool of
knowledge available to it. Even though most contri-
butions come from few developers, any given knowl-
edge contribution can have an important impact on
the project. These contributions take many different
forms: for example, pointers to sources of information
(a person posts to a mailing lists a URL to knowledge
stored by another project) or domain knowledge (in
many cases users are more knowledgeable about the
domain of an application than the core developers).
Even just a note saying: “this program works great un-
der ‘such’ operating system” might provide valuable
knowledge.

FOSS projects are usually part of a larger FOSS
ecology. They depend on other applications, and other
applications might depend on them17. This creates a
meta-community, where contributors and users from
one community contribute (directly or indirectly) to
the other communities. It is not uncommon for con-
tributors of one project to subscribe to mailing lists in
another project to gain awareness of where the project
is and how it is evolving. In [22] Spinellis and Szypersky
described how the Xine multimedia player18 required
11 different libraries. Xine developers, therefore, re-
quired to know what these libraries did, and changes in
these libraries would have had an effect on Xine, mak-
ing them stakeholders (and users) in their development.
Madey et al [16] used network analysis to demonstrate
that FOSS projects create large clusters (a project is re-
lated to another project if they share at least one com-
mon contributor). They found that the largest cluster
in Sourceforge connects 35% of its projects. Research
is needed to find out if and how knowledge flows from
one community to another via its common contribu-
tors.

16 In recent years it is more frequent to find researchers who are
opting for patenting their ideas before they make them public.

17 In some cases commercial applications are part of this ecology.
panotools is a library and collection of applications that are
used by some commercial applications (PTGui and PTassem-
bler). These applications are very interested in fixing bugs and
improving panotoolsandhavecontributed to its development;
furthermore, the users of those commercial applications are in-
direct users of panotools–which benefits from their bug re-
ports and suggestions.

18 http://xinehq.de/

47

[..]

> We switched physical mail servers and in transferring our ezmlm

> mailing lists and the vpopmail/qmailadmin installation ran into some

> problems. First, all mailing lists are freezing when receiving an

> e-mail from a subscriber with the following message in qmail-send

> log: "Sorry,_substitution_of_

> target_addresses_into_headers_with_#A#>_or_#T#>_is_unsafe_and_not_permitted./"

This thread may help you :

http://article.gmane.org/gmane.mail.ezmlm/4297

http://article.gmane.org/gmane.mail.ezmlm/4298

[..]

[..]

> I have seen several posts for this but none resolve my issue.

You haven’t been looking hard enough ;-)

http://www.lowagie.com/iText/faq.html#jsp

http://article.gmane.org/gmane.comp.java.lib.itext.general/8850

[..]

Figure 1. Excepts from mail messages that reference older discussions.

4.1. The Slashdot Effect

Blogs have an influence in the exchange of knowledge
among the FOSS communities. Slashdot (slashdot.org,
“News for Nerds, Stuff that Matters”) is a blog dedi-
cated to the discussion of technology news, particularly
those of interest to FOSS communities [19]. News en-
tries are usually submitted by readers. Its infrastruc-
ture enables readers to post comments to the entries
and to rank those submitted by their peers (in an ef-
fort to improve the signal-to-noise ratio of comments).
A special section called “Ask Slashdot” invites read-
ers to submit questions that might be of general in-
terest, expecting other readers to post answers to the
questions. Slashdot conducts interviews and publishes
book reviews too.

Slashdot provides a place where members of differ-
ent FOSS communities can gather and discuss issues
that might be of their interest. Slashdot is particularly
useful to provide awareness, e.g. what other FOSS com-
munities are doing, and issues that affect FOSS in gen-
eral. It also serves as a place to advertise important
advancements in a FOSS project.

Another site worth mentioning is Groklaw19.
Groklaw specializes in the discussion of intellec-
tual property law and its effects on the FOSS world.
It was formed in 2003 as a response to the legal chal-

19 http://groklaw.net

lenges brought by SCO against IBM and other orga-
nizations with regard to some intellectual property
found in the Linux Kernel (for an overview of the le-
gal case see [4]). Groklaw’s model is very similar
to Slashdot’s, although it maintains stronger edito-
rial control, resulting in higher quality of entries and
comments. Groklaw demonstrates that a Web site
can link two different communities (in this case typ-
ical FOSS contributors and legal experts) to create
an environment where knowledge is shared, ex-
changed and enhanced between them. This is encap-
sulated in a comment by its creator, Pamela Jones:
“Some of the volunteers knew things I didn’t, espe-
cially about the code issues, but they didn’t realize
what they knew was useful legally. [...] People are hun-
gry to understand legal news, and they want to help.”
[11].

5. Discussion and Future Work

This paper reports preliminary results on how
knowledge flows in FOSS communities. We have
found that FOSS communities have developed mul-
tiple methods to communicate and exchange knowl-
edge. None of the projects surveyed has exactly the
same methods. This can be due to one or several fac-
tors: for example, their application domains are
different; or their communities work better with dif-
ferent methods.

48

We require a lot of research in this area. We need to
perform quantitative empirical studies on how FOSS
projects generate, share, store and retrieve knowledge.
We also need to perform controlled experiments to
compare methods and to understand their advantages
and disadvantages, and under which scenarios they can
be useful. The results from these studies can help FOSS
communities to select the methods better suited for
their particular needs. We need to explore new meth-
ods to exchange and store knowledge, and equally im-
portant, how to make it easier to find knowledge (ei-
ther who has it, or by finding and retrieving it).

Acknowledgments

The author would like to thank the anonymous re-
viewers for their suggestions to improve this paper.
This research is supported by the National Sciences
and Engineering Research Council of Canada.

References

[1] R. Bowen. A day in the life of #apache. O’Reilly ON-
Lamp.com Apache DevCenter, 2003-2005. Montly col-
umn.

[2] D. Cubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: A case study for software
development. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, pages 82–91,
2004.

[3] M. Fagan. Advances in software inspections. IEEE
Transactions on Software Engineering, 12(7):744–751,
1986.

[4] L. Geppert. Battle of the Xs. Spectrum, 40(8):16–17,
Aug. 2003.

[5] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance
and Evolution: Research and Practice, 16(6):367–384,
2004.

[6] D. M. German. An empirical study of fine-grained soft-
ware modifications. Journal of Empirical Software En-
gineering, 2005. Accepted for publication Sept 25, 2005,
to appear in the Special Issue of Best Papers of ICSM
2004.

[7] D.M.German, P.Rigby, andM. A. Storey. UsingEvolu-
tionary Annotations from Change Logs to enhance Pro-
gramComprehension. In3rd InternationalWorkshop on
Mining Software Repositories (MSR 2006), May 2005.

[8] G. Hertel, S. Niedner, and S. Hermann. Motivation
of software developers in open source projects: An
Internet-based survey of contributors to the Linux ker-
nel. Research Policy, 32:1159–1177, 2003.

[9] IBM Corporation. IBM Statement of Non-Assertion of
Named Patents Against OSS. http://www.ibm.com/

ibm/licensing/patents/pledgedpatents.pdf, Jan.
2001.

[10] P. M. Johnson and D. Tjahjono. Does every inspection
really need a meeting? Journal of Empirical Software
Engineering, 5(3):9–35, 1998.

[11] P. Jones. EOF: open legal research. Linux J.,
2004(121):13, 2004.

[12] B. Kogut and A. Metiu. Open-source software develop-
ment and distributed innovation. Oxford Review of Eco-
nomic Policy, 17(2):258–264, 2001.

[13] S. Krishnamurthy. Cave or Community? An Empirical
Examination of 100MatureOpenSourceProjects. First
Monday, 7(6), June 2002.

[14] K. R. Lakhani and B. Wolf. Perspectives on Free
and Open Source Software, chapter Why Hackers Do
WhatTheyDo:UnderstandingMotivation andEffort in
Free/Open Source Software Projects, pages 3–21. MIT
Press, 2005.

[15] S. Lussier. New tricks: How open source changed the
way my team works. IEEE Software, 21(1):68–72, 2004.

[16] G. Madey, V. Freeh, and R. Tynan. Free/Open
Source Software Development, chapter Modeling the
F/OSS Community: A Quantitative Investigation, in
Free/Open Source Software Development. Idea Pub-
lishing, 2004.

[17] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case
Studies of Open Source Software Development: Apache
and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):1–38, July 2002.

[18] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida,
and Y. Ye. Evolution patterns of open-source software
systems and communities. In IWPSE ’02: Proceedings
of the International Workshop on Principles of Soft-
ware Evolution, pages 76–85,NewYork,NY,USA, 2002.
ACM Press.

[19] N. Poor. Mechanisms of an online public sphere: The
website Slashdot. Journal of Computer-Mediated Com-
munication, 10(2), 2005.

[20] E. Raymond. The Cathedral & the Bazaar. O’Reilly,
1999.

[21] P. Rigby and D. M. German. A preliminary examina-
tion of code review processes in open source projects.
Technical Report DCS -305-IR, University of Victoria,
2006.

[22] D. Spinellis and C. Szypersky. How is Open Source Soft-
ware Affecting Software Development. IEEE Software,
21(1):28–33, Jan-Feb 2004.

[23] The Mozilla Foundation. Frequently Asked Ques-
tions about mozilla.org’s Code Review Process.
http://www.mozilla.org/hacking/code-review-
faq.html, June 2006.

[24] J. Willinsky. Unacknowledged convergence of open
source, open access, and open science. First Monday,
10(8), August 2005.

[25] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code
that talks: an exploration of eclipse task comments and
their implication to repositorymining. InMSR ’05: Pro-
ceedings of the 2005 International Workshop on Mining
software repositories, pages 1–5, New York, NY, USA,
2005. ACM Press.

49

Using SNS Systems to Support Knowledge Collaboration

Masahiko Ishikawa

Software Research Associates, Inc.

masahiko@sra.co.jp

Abstract

SNS (Social Networking Service/Social Networking

Site) is known as a tool for promoting social

relationships, and has recently attracted a lot of

attentions from both academic researchers and

industrial practitioners. This paper describes the

current status of SNS, and delineates the requirements

and action items for applying SNS as a tool to support

knowledge collaboration.

1. Introduction

According to a report by the Japanese Ministry of

Internal Affairs and Communications, the total number

of users who has registered in one of SNS systems has

reached about 3,990,000 in 2005[1]. The mixi site, a

major SNS site in Japan, has more than 2,000,000

registered users by Dec 2005. In addition to

homegrown domestic SNS sites, many SNS providers

from abroad also have established operations in Japan.

Orkut is one of the most notable examples. It was

reported that the Cyworld, a major SNS provider from

Korea has started its business in Japan since Dec. 2005.

Driven by the rapid development of SNS systems,

research efforts for analyzing the SNS systems and

users have also stepped up. For example, Takai and

Kawaguchi have conduct experiments with the ACS

system that they have developed and evaluated the

system’s impacts on various human relationships [2][3].

2. Problems of general SNS systems

For new members to join, most SNS systems

require invitations by friends who have already

participated in the system. Consequentially, SNS users

tend to think it is safe and comfortable because many

of their friends have joined and they are invited by

their trusted friends, and are willing to collaborate with

other users.

Although SNS systems are good at managing and

promoting human interaction and communications, a

general SNS system is insufficient to support

knowledge collaboration. As a user of and developer

for SNS systems, I found few cases that meaningful

output has been produced by collaboration among

members in SNS systems.

It is especially hard for SNS users to engage in

knowledge collaboration because of the lack of

following support in SNS systems:

1. Personal space area cannot be easily used as a

repository of individual knowledge.

2. There is no easy way to trace the discussions

among members.

3. It is difficult to store an individual’s

knowledge in a group space.

3. Motivating people to contribute

Knowledge collaboration makes progress through

providing and receiving knowledge among knowledge

workers. Ideally, each knowledge worker should be

able to act evenly as both a knowledge provider and a

knowledge receiver. However, in reality, only a few

knowledge workers are providing knowledge and most

users act only as knowledge receivers. This fact points

to the need of incorporating into SNS systems

mechanisms of motivating more members to become

active knowledge providers. For example, if an SNS

system has the functionality of evaluating contributions

made by its members and of ranking SNS users

according to their contributions, SNS system might be

able to become a more apt environment for knowledge

collaboration among its members.

4. Integration with traditional software

tools

In the field of software development, software

developers have been using many collaboration tools,

such as:

1. Bug tracking systems: Bugman, Gnats,

Kagemai

2. Full text search engines: Namazu

3. Configuration management tools: CVS,

Subversion.

50

However, my survey of existing SNS systems has

found that no systems have tried to learn from those

collaboration tools or attempted to integrate with such

tools.

5. Research agenda

There is still a long way for utilizing SNS system to

support knowledge collaboration. In this section, I try

to identify a few action items that need to be addressed.

5.1. Resource synchronization between SNS

systems and local computers

Nowadays, many user have a powerful PC with rich

resources (large amount of memory, disk storage,

gigabit Ethernet and powerful CPU). They often make

their documents on their local computers and then

upload them into SNS sites. Once they upload the files,

the same file exists both in the SNS system and in the

local computer. Once they made modification to the

files in one place, those files tend to become different.

Most current SNS systems do not support

synchronization of user files.

5.2. Utilizing cell-phones as input devices

As cell phones become more ubiquitous and move

increasingly toward the role of personal digital

assistant, many users use such potable devices as a

place to write notes and to keep their ideas, and then

upload them into SNS sites. An easy transfer of

documents between portable devices and SNS systems

is needed.

5.3. Connecting to other systems

Some users prefer to use IRC systems like MS-chat,

and if they happen to have generated interesting ideas

during the chat, they cannot easily make connection

into SNS systems and share their newly gained insights

with others.

5.4. Inter-SNS collaboration

No SNS systems support inter-site connection with

other SNS systems. When different organizations use

different SNS systems, inter-organization collaboration

then becomes impossible.

6. Summary

In this position paper, I try to summarize the

problems to use SNS systems to support effective

knowledge collaboration from the perspectives of both

a user and a developer.

8. References

[1] Ministry of Internal Affairs and Communications,

Number of Registered Users of Blogs and SNSs”

http://www.soumu.go.jp/s-news/2005/051019_2.html

[2] K. Takai and N. Kawaguchi, “ACS: A Social

Networking System for Various Human Relations”

The 20th Annual Conference of JSAI, 2006

[3] K. Takai and N. Kawaguchi, The Specification

and Construction of the Academic Community

System.”

51

Building the Knowledge Network in Software Project

Atsushi Inuzuka

Japan Advanced Institute of Science and Technology, Japan.

ainuzuka@jaist.ac.jp

Abstract

One of the most important coordination techniques

for software development is to build the effective

knowledge network in a software project. The

knowledge network, in this paper, refers to inter-

functional relationships for obtaining customer needs.

We investigated the knowledge networks employing a

survey instrument to collect data from a variety of

product processes in a Japanese SI (Systems

Integration) firm. Our results indicate that we must

take a contingency view into consideration to build an

effective knowledge network in a software project.

1. Introduction

Information systems theory literature stress the

importance of coordination, which refers to “the

integration or linking together of different parts of an

organization to accomplish a collective set of tasks”

[1]. Since software development is a highly

information-intensive work activity, a successful

software requires tight coordination among the various

efforts involved in the software development cycle [2].

However, the main concern of studies on project

coordination so far have been the mechanisms or

actions taken in projects (e.g., decentralization,

formalization), not the actual interaction within

projects.

In this paper, we tried to identify inter-functional

relationships for obtaining customer needs in software

development, what we call a knowledge network. We

used the term “knowledge” because of that customer

needs do not fit a specific mold. The interpretation of it

is highly subjective and socially constructed and has

much tacit dimension. For this reason, the term

“knowledge network” may fit more to represent the

personal interaction than the term “information

network.”

The structure of inter-functional relationships has

had much attention in management studies. However,

the knowledge network we report here is different

from these studies in two respects. First, we are

concerned only with the interactions of obtaining

customer (client) needs. Today, identifying client

requirements is critical to the success of a software

project, especially for which offers solutions for their

customer. It is apparent that personal interactions are

critical for a success, however, prior studies have

discussed the extent of the interaction among functions

and then, what content of information is actually

exchanged is not apparent. Limiting the content of

interaction as customer needs will help clarify the

effectiveness or efficiency of relationships.

Second, we took a contingency view in this

problem by investigating which different knowledge

networks are actually used and how they affect the

success or failure of obtaining customer needs under

specific conditions. The information-processing model

introduces the concept of organizational information

processing as an explanation for why context and

structure should match for optimum organizational

performance [3][4]. The consensus is that

organizational performance is accomplished by the

match or fit between the amount of information needed

and the organizational information-processing capacity.

However, taking the tacit dimension in customer needs

into consideration, attention should be focused on

knowledge processing not just information processing.

Then, proving into the knowledge network under each

condition can help to establish ideas for designing

configurations that produce optimal performance.

The rest of the article is organized as follows. In the

next part, we present a theoretical background for this

problem. Subsequently, we empirically show the

knowledge network and levels of obtaining or

reflecting customer needs by a survey. Comparing the

results under each environment, we then show the

necessity of a contingency view for building a

knowledge network within a firm.

52

2. Background

2. 1. Coordination Mechanisms for Software

Development

Coordination mechanisms in software projects have

been the focus of a number of investigations.

Researchers identified several specific coordination

mechanisms, including standards, hierarchies, targets

or plans, slack resources, vertical information systems,

direct contact, liaison roles, task forces, and integrating

goals. Sabherwal classified these mechanisms into four

main categories, as shown in Table 1 [5].

Table 1. Categories of Coordination Mechanism

Coordination

Category

Examples

Standard Compatibility standards

Data dictionaries

Design rules

Error tracking procedures

Modification request procedures

Plans Delivery schedules

Project milestones

Requirements specifications

Sign-offs

Test plans

Formal Mutual

Adjustment

Code inspections

Coordination committees

Design review meetings

Hierarchies

Liaison roles

Reporting requirements

Status review meetings

Informal Mutual

Adjustment

Co-location

Impromptu communication

Informal meetings

Joint development

Transition teams

Though many types of coordination exist, the

importance of personal interaction is unshaken. Kraut

and Streeter empirically investigated under what

conditions various coordination techniques for

software development work well and concluded that

personal communication was the critical factor for

success [2]. The importance of personal

communication would be more apparent when taking

our concern, obtaining customer needs, into

consideration. That is because customer needs have

much tacit dimension in itself, and then, sharing of it is

expected to require much personal interaction.

Additionally, since software development is a highly

social and interactive process, project coordination

strategies must exhibit communication mechanisms

that match or fit the task and social context associated

with specific work units and project phases [6].

Therefore, characteristics (e.g., structure or density) of

a knowledge network could vary in accordance with

organizational environments such as customer type,

task characteristics, or management constraints faced

by organizations.

2.2. Contingency Factors for Coordination

What types of interactions are appropriate under

what conditions is the primary concern for contingency

theorists. The term contingency theory was coined by

Lawrence and Lorsch [7], who argued that the amount

of uncertainty and rate of change in an environment

impacts the development of internal features in

organizations. To cope with these various

environments, organizations must create specialized

sub-units with differing structural features: e.g.,

differing levels of formalization, centralized vs

decentralized, planning time horizon [8]. Taking the

contingency view into software development,

appropriate inter-functional interaction (coordination)

must be taken in accordance with environmental

factors.

Kraut and Streeter abstracted several characteristics

that may affect coordination in software development

[2]. Scale is a fundamental characteristic of many

software systems. If a software system is small,

effective coordination can occur because a single

individual or small group can direct its work and keep

all the implementation details in focus.

Interdependence is based on the need for integrating

thousands of software modules to make them work

correctly.

Unlike manufacturing, software development is a

nonroutine activity. Zmud noted, “An important

insight to understanding the problems associated with

managing software development is that most

difficulties can be traced to the uncertainty that

pervades software development” [9]. Uncertainty, the

absence of complete information, stems from the

complexity of the environment and dynamism, or the

frequency of changes to various environmental

variables, or state-of-the-art technologies [9][10]. It

also increases because specifications of the

functionality of the software change over time.

Although many methods have been devised to cope

with the combination of large size and interdependence,

informal communication invariably has a valuable role

in consensus formation, information sharing, and other

activities for smooth coordination.

53

2. 3. Dimensions for Classifying Projects

Though there may be many aspects for contingency

factors, we focused on three dimensions: customer

type, technology-orientation, and management style.

These dimensions will affect knowledge networks for

the following reasons.

1. Customer Dimension

Competitive hostility, market turbulence, and the

ease of market entry all increase environmental

uncertainty. One way to cope with uncertainty is

to implement structural (often tight) mechanisms

that enhance information flow. Then, if some kind

of “match” or “fit” is expected, the more

uncertainty, the tighter a knowledge network must

be. In contrast, a weak knowledge network will be

found when a project faces relatively lower

uncertainty.

 The customer dimension adds uncertainty to

software developments. For example, the size of

systems used in government offices is often big,

and thus, such projects require many resources,

including time, money, many engineers, etc. Since

the firms which can offer these resources are

limited, market hostility is relatively low. By

contrast, private firms require high standards (e.g.,

low price, high-quality) for developers and often

functionality changes for specifications of the

system. Also, because the resource constraint is

relatively low, many firms can easily enter in this

market. Then, uncertainty becomes relatively high,

and a tight knowledge network should be expected

to confront the uncertainty in the market. This

discussion leads to our first hypothesis.

H1: The customer dimension (i.e., government

offices or private firms) is associated with the

density (tight or loose) of knowledge networks.

2. Technology-Orientation Dimension

The technology orientation serves as the

foundation for the interest in advanced technology,

which refers to the set of beliefs that puts

technological interest first, while excluding

customer needs. When the target customer is end

consumer, because the purposes of using product

vary person to person, the requirements for

developing systems cannot be easily identified. In

this situation, system developers tend to make

efforts to equip many functions into the products

to meet a variety of customer needs, instead of

determining the “true” customer needs.

For this reason, technology-oriented projects do

not need to determine customer needs as clearly as

demand-pull type projects which offer B-to-B

products. This leads to our next hypothesis.

H2: In technology-oriented projects, the density of

knowledge networks is relatively loose, and the

level of obtaining customer needs is relatively low.

3. Management Dimension

It must not be a good assumption that coordination

techniques are determined only by external factors.

Taking internal factors into consideration, the

differences of management style must create an

important aspect. The differences may appear in

many aspects. For example, when some projects

are being done in regional branches at the same

firm, whether it is in head office or regional

branches must affect the level of customer needs.

H3: The level of obtaining customer needs is

affected by whether the project is in head office or

regional branches.

3. Survey

3.1. Sample

To identify a knowledge network, we organized a

survey at a large Japanese firm which mainly provides

system integration services. All employees in this firm

were asked to respond to a questionnaire. After

excluding data from areas not directly associated with

product (system) development such as human

resources, we had 1,646 data, corresponding to a

response rate of 37.4%.

3.2. Knowledge Network

Each respondent was asked if to obtain information

related to customer needs with the following question:

Do you have a contact to [the process] to get

information related to customer needs? (Yes or No) In

this phrase, [the process] means each software

development stage: sales, analysis (system analysis),

design (system design), code, test, maintenance, and

customer as a source of customer needs. Since most of

the respondents were in charge of tasks corresponding

to two or more processes, the ratio of knowledge flow

was calculated by a weighted average by an inverse

number of processes overlapping of each respondent.

54

:

:

:

:

1

,

,

j

n

in

ij

n nPn n

in

ij

P

h

t

hh

t

j

3.3. Organizational Characteristics

 The level of obtaining or reflecting customer needs

were measured by asking how well the work groups of

respondents actually obtain or reflect customer needs.

The correspondence questions are as follows (the

response scale is: 1. strongly disagree - 7. strongly

agree; on a Likert-Scale).

(a) obtaining customer needs: “your working group

fully obtain customer needs.”

(b) reflecting customer needs: “your working group

fully reflect customer needs in your work.”

From the subtraction between the levels of these

variables, we can estimate the level of original effort

for embodying customer needs into their work. For

example, if the level of reflecting customer needs is

higher than that of obtaining customer needs, the

respondent is assumed to make his or her own efforts

into the work.

3.4. Division Classifications

For our purpose, it is suitable that projects in this

firm are classified. Though since so many projects are

running in the firm, it is impracticable to identify what

projects are under what conditions. Then, we

alternatively consider division classifications as shown

in figure 1, classifying 16 divisions in this firm into

four types to meet our concern.

(a) Demand-Pull (government offices)

The divisions categorized in this type are

offering made-to-order products, and their main

customers are government offices. The main

concern of customers is not the price or technical

advancement but that products work stabely. The

number of competitors is limited, and thus,

market turbulence seems to be relatively low.

(b) Demand-Pull (private firms)

The concerns of private firms for implementing

systems have a wide range of aspects: price,

delivery (deadline), quality, etc. Many

competitors exist in the market, and thus,

hostility between them is fierce. For this reason,

it is reasonably assumed environmental

uncertainty is higher than that of former type. In

reality, the reputation of products this type of

division offers is higher than that of other types.

ratio of knowledge flow from process-i to process-j

contact to process-i by respondent n (1 or 0)

number of processes overlapping of respondent n

a set of process-j involved

(c) Technology-Push

Compared to the demand-pull type offering B-to-

B products, the divisions in this type mainly offer

consumer products (B-to-C products) like

packaging softwares. The aim of these

technology-oriented divisions for this firm is to

pursue brand-new technologies that will be

needed or used for future products.

(d) Regional Branch

The firm we investigated has six branch offices

in Japanese regional area (head office is located

in Tokyo). The aim of regional branches is to

maintain close-ties with customers and deal with

their problems or complaints about the systems

as soon as possible. They offer a variety of

products of demand-pull-type as well as

technology-push-type that are also for

government offices as well as private firms. All

of the branches were initially operated by other

firms. Three of them were merged just a few

months before our survey was conducted. Other

two were merged no more than three years ago.

Thus, these branches must have been left old

management styles that were originally

developed by previous firms.

regional branches

govern-
ment

techno-

logy

push

Figure 1. Division Classifications

Pull Push

Demand/Technology

C
u

sto
m

er T
y

p
e branch

 head office

private
firms

55

4. Results

4.1. Case of Demand-Pull (government offices)

Figure 2 shows the extent to which process actually

contact to obtain customer needs for each side

communication. The arrows indicate the direction of

choices to obtain customer needs. Heavy, thin, dashed

arrows correspond to the extent of the knowledge flow.

The threshold levels that distinguish these arrow types

are settled by the average level in top order of 5-6th

(heavy-thin), 10-11th (thin-dash), 15-16th (dash-none)

knowledge flow using all data. The actual level of each

is 0.823, 0.647, 0.540, respectively.

In the figure, each process has direct passes from

‘customer’, and the structure is distinctly different

from the linear-processing model (i.e., water-fall

model). It implies that because customer needs is

somewhat ‘sticky’ in itself [11], downward processes

directly ask what the real meaning of customer needs is.

In addition, some back-flows exist at ‘design to

analysis’ and at ‘maintenance to analysis.’

Additionally, ‘sales’ is isolated from other processes,

showing that some kind of bottleneck exists between

‘sales’ and other processes. This is also confirmed in

Figure 3, which shows the average level of obtaining

and reflecting customer needs in each process. Both

levels in ‘sales’ are very low compared to other

processes. Moreover, the level of obtaining customer

needs in ‘sales’ is higher than that of reflecting

customer needs while inverse results are confirmed in

other processes. This implies that ‘sales’ does not try

to add an original effort into their work as compared

with other processes. Maybe it is because that the main

concern of sales persons is to maintain close-

relationship with customer, rather than to identify the

real customer needs or to convey it to other processes.

Figure 2. Knowledge Network (government offices)

Figure 3. Customer Needs (government offices)

4.2. Case of Demand-Pull (private firms)

 Comparing Figure 2 and 4, it is apparent whether

customers are government offices or private firms has

a great impact on a knowledge network. The

knowledge network in this case implies that projects

build tighter networks to face much environmental

uncertainty. Additionally, both the levels of obtaining

and reflecting customer needs in this type are higher

than in other types, and the levels at each process are

almost the same. Also, the down trend from ‘analysis

to code’ confirmed in Figure 3 does not exist in this

case.

customer

mainte

-nance
test

code

design

analysis

sales

knowledge flow(.823-)

(.647-)

(.540-)

customer

mainte

-nance
test

code

design

analysis

sales

knowledge flow(.823-)

(.647-)

(.540-)

Figure 4. Knowledge Network (private firms)

Figure 5. Customer Needs (private firms)

56

4.3. Case of Technology-Push

The low density in a knowledge network in the

case of the divisions of technology-push is caused

because they cannot directly ask what products their

customers (end consumers) need or want. They tend to

rely more on their feelings or experiences rather than

meeting with or hearing customers to estimate

customer needs. In terms of obtaining customer needs,

although the density of a knowledge network is loose,

the level of it is estimated relatively higher in this type,

which contradicts our hypothesis.

Figure 6. Knowledge Network (technology-push)

Figure 7. Customer Needs (technology-push)

4.4. Case of Regional Branches

In the case of regional branches, the density of the

knowledge network is almost at an average level.

However, the level of obtaining and reflecting

customer needs in this type is lower compared to that

in other cases. This result implies that differences of

management style (as we noted, regional branches

were initially operated by another firm and must

employ differing management styles) impact not on the

knowledge network but on the level of obtaining or

reflecting customer needs.

customer

mainte

-nance
test

code

design

analysis

sales

knowledge flow(.823-)

(.647-)

(.540-)

customer

mainte

-nance
test

code

design

analysis

sales

knowledge flow(.823-)

(.647-)

(.540-)

Figure 8. Knowledge Network (regional branches)

Figure 9. Customer Needs (regional branches)

4.5. Summary

The results are summarized in Table 2. We knew

the customer type affects the density or structure of the

knowledge network, supporting H1. Additionally, the

knowledge network is affected by the technology-

orientation, though the level of obtaining or reflecting

customer needs is not affected so strongly (H2 is partly

supported). It is assumed that employees in this type

must strongly rely on their own ideas for determining

customer needs. In addition, the supposable

management differences (i.e., head office or regional

branches) relate to the level of obtaining or reflecting

customer needs (H3 is supported). It implies that there

may be other organizational factors that determine the

level of customer needs than the knowledge network.

Table 2. Summary of Results

57

5. Discussion

Taking a contingency view into account, the

research problem becomes to be identifying the

structure that maximizes performances for a given

environment. Our first assumption is that the

knowledge network must be the most determinative

factor for the level of customer needs. Viewing

knowledge networks under some conditions, our

results show that it is partly true but there may be other

factors that impede or foster obtaining or reflecting

customer needs. Taking our results into consideration,

focusing on organizational ability or culture is

thinkable factor to interpret the backgrounder of this

problem.

Some scholars have pointed out that organizational

ability creates the basis for obtaining customer needs.

Cohen and Levinthal argued that firms need absorptive

capacity: the ability to recognize the value of new,

external information, assimilate it, and apply it to

commercial ends [12]. Kogut and Zander proposed a

concept of combinative capability, which refers to the

capacity of a firm to combine and recombine existing

knowledge [13]. Related arguments have been

discussed by many scholars [11][14][15]. Taking the

tacit dimension in customer needs into consideration,

the ability of abstracting meanings of customer needs

through personal interactions may be a strong factor

for determining the level of obtaining customer needs.

On the other hand, there is a standpoint that focuses

on organizational culture or climate, that puts

customer’s interest first, while excluding those of other

stakeholders such as owners, managers, and employees,

in order to develop a long-term profitable enterprise

[16]. A simple focus on information about the needs of

actual and potential customers is inadequate without

consideration of the more deeply rooted set of values

and beliefs that are likely to consistently reinforce such

a customer focus and pervade the organization. For

example, Deshpande, Farley, and Webster noted that

such a belief can be achieved only if it is

complemented by a spirit of entrepreneurship and an

appropriate organizational climate [17]. It is also

considered as manifest in many aspects of

organizational performance, and then, constructing

such an organizational customer or culture must be the

key antecedents of obtaining customer needs.

Whatever the standpoints are, organizational

abilities or cultures cannot to be established in just a

few years. In our analysis, the result in the case of

regional branches implies that. Although a merger

activity was done, the level of obtaining customer

needs cannot be enhanced so rapidly. It is also

expected that changing a knowledge network in a

software project also takes considerable time. We

therefore, had better to think that a long-time view is

needed to take an action in this problem.

6. Conclusion

The primary concern in this paper was to

investigate the knowledge network, and to determine

how and to what extent it relates to the level of

obtaining or reflecting customer needs. Although we

do not prove into the mechanisms between them in

detail, several results are worth highlighting.

The first point is that structures of the knowledge

networks are complex and not like a linear-processing

model (i.e., water-fall model). It suggests that

customers have to show (or to be asked) their needs or

wants to many processes. This implies that customer

needs are sticky and cannot easily to be absorbed into a

firm [11]. Taking the tacit dimension in customer

needs into consideration, the ability to convert

customer needs (often in tacit dimension) into software

requirements (often in explicit dimension) is a central

concern to attain effective network within a project.

Second, our analysis showed that the structure or

density of a knowledge network is strongly affected by

the environmental factors that each project faces. This

could be caused by environmental uncertainty or

technical orientation, and other factors. In addition, the

knowledge network is a strong antecedent of obtaining

customer needs, however, not a determining factor.

Our analysis showed the level of obtaining customer

needs is affected not only by knowledge networks but

also by some other organizational abilities, such as

absorptive capacity, organizational culture or climate,

etc. It implies that when we want to build an effective

knowledge network in a project, many factors must to

be taken into consideration.

In this paper, we have focused only on the problem

of knowledge networks or obtaining customer needs.

Naturally, there must be other concerns to build an

effective coordination or collaboration in software

development. Nonetheless, the importance of personal

interactions will have been a central issue. Until now,

many researchers have pointed out the importance of

this issue, however, in our view, it is not just a matter

of the frequency of interaction but of careful

coordination with environmental factors and

organizational abilities. When we want to attain an

effective collaborative works in software development,

it is recommendable not to underestimate many aspects

which we have taken up in this paper.

58

References

[1] Van de Ven, A. H., Delbecq, A. L., and Koenig, R.

Jr(1976), “Determinants of Coordination Modes

within Organizations,” American Sociological

Review, Vol.41, No.2, pp.322-338.

[2] Kraut, R. E. and Streeter, L. A.(1995),

“Coordination in Software Development,”

Communications of the ACM, Vol.38, No.3, pp.69-

83.

[3] Kim, K. K. and Umanath, N.(1992), “Structure and

Perceived Effectiveness of Software Development

Subunits: A Task Contingency Analysis,” Journal of

Management Information Systems, Vol.9, No.3,

pp.157-181.

[4] Premkumar, G. Ramamurthy, K., and Saunders, C.

S.(2005), “Information Processing View of

Organizations: An exploratory Examination of Fit in

the Context of Interorganizational Relationships,”

Journal of Management Information Systems,

Vol.22, No.1, pp.257-294.

[5] Sabherwal, R. (2003), “The Evolution of

Coordination in Outsourced Software Development

Projects: A Comparison of Client and Vendor

Perspectives,” Information and Organization,

Vol.13, No.3, pp.153-202.

[6] Andres, H. P. and Zmud, R. W. (2001), “A

Contingency Approach to Software Project

Coordination,” Journal of Management Information

Systems, Vol.18, No.3, pp.41-70.

[7] Lawrence, P. R. and Lorsch, J. W.(1967),

Organization and Environment: Managing

Differentiation and Integration, Harvard Business

School, Division of Research.

[8] Scott, W. R.(2003), Organizations: Rational,

Natural, and Open Systems(5th eds), Prentice Hall.

[9] Zmud, R.W. (1980), “Management of Large

Software Development Efforts,” MIS Quarterly,

Vol.4 (June), pp.45-55.

[10] Duncan, R.E.(1972), “Characteristics of

Organizational Environments and Perceived

Environmental Uncertainty,” Administrative Science

Quarterly, Vol.17, No.3, pp.313-327.

[11] von Hippel, E.(1994), “"Sticky Information" and

the Locus of Problem Solving: Implications for

Innovation,” Management Science, Vol.40, No.4

(April), pp.429-439.

[12] Cohen, W. M. and Levinthal, D. A. (1990),

“Absorptive Capacity: A New Perspective on

Learning and Innovation,” Administrative Science

Quarterly, Vol.35, pp.128-152.

[13] Kogut, B. and U. Zander(1992). “Knowledge of

the Firm: Combinative Capabilities, and the

Replication of the Firm,” Organization Science,

Vol.3, No.3, pp.383-397.

[14] Teece, D.J.(1977), “Technology Transfer by

Multinational Firms: the Resource Cost of

Transferring Technological Know-How,” Economic

Journal, Vol.8 (June), pp.242-261.

[15] Szulanski, G.(1996). “Exploring Internal

Stickiness: Implements to the Transfer of Best

Practice Within the Firm,” Strategic Management

Journal, Vol.17 (Winter Special Issue), pp.27-43.

[16] Hurtley, R.F. and Hult, G.T.M.(1999),

“Innovation, Market Orientation, and Organizational

Learning: An Integration and Empirical

Examination,” Journal of Marketing, Vol.62 (July),

pp.42-54.

[17] Deshpande, R., Farley, J. U. and Webster, Jr, F.

E.(1993), “Corporate Culture, Customer Orientation,

and Innovativeness in Japanese Firms: A Quadrad

Analysis,” Journal of Marketing, Vol.57 (January),

pp.23-37.

59

Coordinating Multi-Team Variability Modeling in Product Line Engineering

Deepak Dhungana Rick Rabiser Paul Grünbacher

Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University, 4040 Linz, Austria

{dhungana, rabiser}@ase.jku.at paul.gruenbacher@jku.at

Abstract

In product line engineering variability models cap-

ture the commonalities and variability of core assets

and guide product derivation. In large-scale systems

the knowledge that is required for creating and evolv-

ing variability models is typically distributed among

different heterogeneous stakeholders. For example,

sales people usually think in terms of features and

monetary resources while developers emphasize archi-

tectural elements, software resources, and configura-

tion parameters. This paper is based on experiences

from an ongoing industrial research project and pro-

poses an approach for sharing variability knowledge

in a multi-team development organization. Our ap-

proach allows different teams to create a variability

model from their point of view (e.g., for a subsystem

they are responsible for). Subsequently all created

models are combined to one integrated variability

model.

1. Introduction

It has been demonstrated that product line engineer-

ing (PLE) can reduce cost and increase productivity

and quality through consequent reuse of core assets

[8]. Variability management is a key concept in PLE to

express the commonalities and variability of core as-

sets and to understand dependencies among them [4].

Variability models can also be seen as building plans

for product instantiation and configuration.

Creating a variability model is not trivial as it relies

on information spread across the minds of numerous

heterogeneous stakeholders. Today’s software systems

are large and often different development teams are in

charge for different parts of the system. The dependen-

cies between the communication structure of a devel-

opment team and the technical structure of a system

have been addressed by Conway’s law [1, 5]. Working

with large-scale variability models requires mecha-

nisms that support the cooperation of different teams

building and evolving such models for the parts of the

system they are dealing with. We are facing these chal-

lenges in an ongoing research project with Siemens

VAI, the world leader in engineering and building

plants for the iron, steel, and aluminum industries. In

this paper we propose an approach for distributed edit-

ing and integration of variability knowledge.

2. Capturing Variability Knowledge

As part of our research in bridging the gap between

stakeholders in PLE, we have been developing an inte-

grated variability model [3]. Our model covers product

line assets (e.g., components, resources, features) and

decisions as shown in Figure 1.

Figure 1: Integrated variability model

Assets address different levels of variability includ-

ing customer visible properties expressed as features,

architectural elements such as components, and im-

plementation level details such as properties. Assets

can have structural (contributes to) and logical (con-

strains) dependencies. Decisions are used to link the

various model elements. A decision can be seen as a

variation point, where the user is given an option. The

decision taken by a user influences the selection of

assets. Decisions can also have dependencies. Visible

if models the situation that the selection of a certain

value makes another decision relevant. Decision can

also constrain other decisions.

While this model works well for capturing different

PLE aspects such as customer-oriented perspectives

60

and technical perspectives, it is unrealistic to assume

that such a model can be created and evolved by an

individual or by a small team for a real-world system.

Interaction with our industry partner confirmed that

teams typically have detailed knowledge of a small set

of subsystems and only rough knowledge about other

subsystems [2]. It is therefore important to support the

interaction of different teams via distributed variability

models linked through model connectors [7] to allow

teams to separately create and evolve models. Consis-

tency is ensured through the defined model connectors

which allow combining all individual variability mod-

els into one integrated variability model.

3. Sharing and Merging Variability Models

Our approach is based on concepts in architecture

description languages (ADLs) [6]. Such languages

support modeling of large-scale systems by defining

interfaces of subsystems and the interaction of subsys-

tems. While ADLs focus on architectural elements

such as components or connectors we extend this idea

to all elements of our integrated variability model. A

team working on a variability model can specify ele-

ments of the model (see Figure 1) as public to “export”

them. Variability models of other subsystems can then

“import” the public elements as part of their own vari-

ability model (e.g., when specifying constraints be-

tween subsystems). Private elements are internal to a

subsystem with no relationships to elements in other

models. Distributed teams building individual models

only have to know what other elements have an effect

on the elements they create. It is not necessary (and

often not possible) to know what effect a newly added

element has on elements in other models. When intro-

ducing a new component to a model, it is easier to de-

scribe which other components and resources are

needed by this component, rather than modeling where

this new component can be used.

Model 2

D1

Exports

Comp1

Imports

Comp3 Comp4

p1

Comp2

p2

D6

F1

F1
F2 F3

F5

ExportsImports

F5

F7

F9

D1
D9

D6

Model 1

D12

D13

Decision

Feature

Resource

Property

Assets
Component

Figure 2: Sharing and merging of variability models

The mapping between exported elements of one

model and imported elements of another model can be

automated. A match can be found for elements of the

same type and with the same name. As illustrated in

Figure 2, model 1 exports a decision d1 and a feature

f5, which are imported by model 2. By merging the

individual models a complete variability model is cre-

ated that guides the instantiation of products in PLE.

We have been developing an initial prototype of this

capability as part of our ongoing tool development.

References

[1] M.E. Conway, “How Do Committees invent?”, Data-

mation, 14 (4), 1968, pp. 28–31.

[2] D. Dhungana, R. Rabiser, P. Grünbacher, H. Prähofer,

C. Federspiel, and K. Lehner, „Architectural Knowledge in

Product Line Engineering: An Industrial Case Study“, Proc.

32nd Euromicro Conf. on Software Engineering and Ad-

vanced Applications, IEEE CS, 2006.

[3] D. Dhungana, “Integrated Variability Modeling of Fea-

tures and Architecture in Software Product Line Engineer-

ing”, Doctoral Symposium, 21st IEEE/ACM Int. Conf. on

Automated Software Engineering, Tokyo, Japan, 2006.

[4] J. Estublier and G. Vega, “Reuse and Variability in

Large Software Applications”, Proc. 10th European Soft-

ware Engineering Conference, Portugal, 2005, pp. 316–325.

[5] J.D. Herbsleb and R.E. Grinter, “Architectures, Coordi-

nation, and Distance: Conway's Law and Beyond”. IEEE

Software, 16 (5), 1999, pp. 63–70.

[6] N. Medvidovic and R.N. Taylor, “A Classification and

Comparison Framework for Software Architecture Descrip-

tion Languages”, IEEE TSE, 26 (1), 2000, pp. 70–93.

[7] N. Medvidovic, P. Grünbacher, A.F. Egyed, and B.W.

Boehm, “Bridging Models across the Software Lifecycle”,

Journal of Systems and Software, 68 (3), 2003, pp. 199–215.

[8] K. Pohl, G. Böckle, and F.J. van der Linden, “Software

Product Line Engineering: Foundations, Principles and

Techniques”, Springer-Verlag, 2005.

61

Learning Support by Reflection and Knowledge Collaboration
in a Team-based Software Engineering Project Course

- Position paper -

Atsuo HAZEYAMA
Department of Information Science, Tokyo Gakugei University

E-mail: hazeyama@u-gakugei.ac.jp

Abstract
Software development is a highly knowledge-intensive
and collaborative activity. Problem resolution
processes are performed iteratively during software
development. We propose a learning model that is
based on reflection and knowledge collaboration for
problem resolution in a software engineering project
course. We also describe an overview of a support
system based on this model.

1. Introduction
Software development is a highly

knowledge-intensive [8] and collaborative activity [1].
Problem resolution processes are performed
iteratively during software development. Individual
developers possess only a specific part of the
knowledge and expertise required for software
development. Therefore, they develop software and
simultaneously collect various types of information.
Some developers even consult experts [9]. Ye
emphasizes the importance of knowledge
collaboration in software engineering [9]. For this
purpose, he provides the following three types of
support facilities for a social platform: finding sample
programs, browsing the archives of previous
discussions, and posing questions to selected experts.

We tackle studies on a team-based software
engineering project course [3]. There it is important
for learners to acquire knowledge and skills on
software development. I propose to introduce
reflection support as well as knowledge collaboration
for the domain. Reid defined reflection as being a
process of reviewing an experience of practice in
order to describe, analyze, evaluate and so inform
learning about practice [6]. Sample programs,
discussions with respect to past problem solving,
and/or answers to questions will be important
information for a learner’s problem solving. In
addition, I believe reflection of his/her problem
solving and recording of the process enhance his/her
understanding. These processes correspond to
internalization and externalization of the SECI model
[5]. Furthermore by sharing the information that was
described as the result of reflection, it may be able to
contribute to problem solving of other learners. We
regard problem solving that occurs during software

development as a kind of learning. Therefore I think it
is also useful for software engineers to describe their
reflection process in professional software
development.

Hazzan described significance of introducing
reflective perspective [7] and studio concept into
software engineering education [4]. That paper
described the process, which facilitates reflection.
However, it did not clarify how results of reflection
are externalized and the supporting environment.

2. Proposal
This section proposes a conceptual framework for

learning support by reflection and knowledge
collaboration in a team-based software engineering
project course.

2.1 Conceptual model

When a person encounters a problem, the
following three problem solving patterns are
considered:

(1) Solving the problem by himself/herself
(2) Solving the problem over searching for related

information and referring to it
(3) Solving the problem by posing questions to

others
“To present sample programs” and “to browse past

archived discussions” out of the three facilities Ye
provided correspond to (2). “To pose questions to
selected experts” correspond to (3). This study
supports the abovementioned three patterns. Even if
which pattern is adopted, I ask the learner for
reflection and describing the result after problem
resolution. Through the process, I aim at enhancing
his/her knowledge. Especially when a learner solved
his/her problem by referring to past archived
discussions and/or sample programs other created, or
by advices from other learners, reflection improves
his/her understanding and it enhances the information
the learner referred. This process corresponds to
combination of the SECI model. This information is
valuable when another learner reuses it.

Figure 1 shows information structure for learning
support by reflection and knowledge collaboration. It
is consisted of five major objects, the problem

62

concerned and description by reflection for it, target
artifacts that included the problem and that the
problem has been fixed, external resources that were
referred for problem solving, discussion archives with
others, and other problems that were related to the
concerned problem. We adopted Shippaigaku’s
attributes for reflection [2]. Shippaigaku is a theory
whose goal is to learn from failures. It aims at
avoiding similar mistakes and/or accidents to past
ones by learning. Shippaigaku defines six attributes; a
problem description (event) and its accompanied
descriptions (background and progress), the
information toward problem resolution (cause and
disposition) and lessons learned from the problem
solving. In addition to the six attributes of
Shippaigaku, I manage the following information and
associate them with the problem-solving information:
the result of disposition as the target artifact object,
external resources, discussion archives, and other
related problems.

Figure 1. Information structure for our learning

.2 Knowledge sharing support

umulated in the
en

Summary
posed a learning model for the

pr

Acknowledgments
 thank anonymous reviewers

References
. German, D. Cubranic, and M-A. D.

y,

e, Kodansha,

cation Class on Design

ctive practitioner

ka, and H. Takeuchi, The

 already” Exploring a

he Reflective Practitioner: How

l
shop

ledg

support environment

2

As the volume of knowledge acc
vironment increases, it is difficult to retrieve

appropriate information in an efficient manner. Most
knowledge management systems utilize voting
information and/or access log information for this
purpose [10]. In addition, I associate a problem with
usecase, which is unit of a function a system has
because we suppose similar tasks may have similar
problems. We use a usecase name in order to specify
functionality.

3.
We have pro
oblem resolution process in a team-based software

engineering project course; this model integrates
reflection with knowledge collaboration. We will
implement this model and apply it to an actual
software engineering project course to validate the
proposed framework. We will also evaluate a

trade-off problem between the cost to describe the
reflection process and learning effectiveness.

The author would like to
for their comments to improve this paper. This study
is supported by the Grant-in Aid for No. (C)
18500701 from The Ministry of Education, Science,
Sports and Culture of Japan.

[1] D. M
Store “A Framework for Describing and
Understanding Mining Tools in Software
Development”, Proceedings of the 2nd International
Workshop on Mining Software Repositories (MSR
2005), pp. 95-99, ACM Press, 2005.
[2] Y. Hatamura, Shippaigaku no susum
2000 (in Japanese).
[3] A. Hazeyama, “An Edu

Other related
problem

Target artifact

External resource
for reference

Discussion
archives

Six attributes proposed
by “Shippaigaku”

(event, background, progress,
cause, disposition, lessons)

Other related
problem

Other related
problem

Target artifactTarget artifact

External resource
for reference

External resource
for reference

Discussion
archives

Discussion
archives

Six attributes proposed
by “Shippaigaku”

(event, background, progress,
cause, disposition, lessons)

Six attributes proposed
by “Shippaigaku”

(event, background, progress,
cause, disposition, lessons)

and Implementation of an Information System in a
University and Its Evaluation”, Proceedings of the
24th Annual International Computer Software and
Applications Conference (COMPSAC2000), IEEE CS
Press, pp. 21 - 27, October 2000.
[4] O. Hazzan, “The refle
perspective in software engineering education”, The
Journal of Systems and Software, Vol. 63, pp.
161-171, 2002.
[5] I. Nona
Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation,
Oxford University Press, 1995.
[6] B. Reid, “But we’re doing it
response to the concept of reflective practice in order
to improve its facilitation. Nurse Ed Today, Vol. 13,
pp. 305-309, 1993.
[7] D. A. Schon, T
Professionals Think in Action, Basic Books, 1983.
[8] Y. Ye, and K. Kishida, 1st Internationa
Work on Supporting Knowledge Collaboration in
Software Development, in Proceedings of the 12th
Asia-Pacific Software Engineering Conference
(APSEC2005), 2005,
http://l3d.cs.colorado.edu/%7Eyunwen/KCSD2005/.
[9] Y. Ye, “Socio-Technical Support for
Know e Collaboration in Software Development
Tools”, Proceedings of the Workshop on Integrating
Software Engineering and Usability, pp. 39-51, 2005.
[10] M. Zacklad, “Communities of action: a cognitive
and social approach to the design of CSCW systems”,
Proceedings of the 2003 International ACM
SIGGROUP Conference on Supporting Group Work,
pp. 190 - 197, ACM Press, 2003.

63

Knowledge Collaboration by Mining Software Repositories

Thomas Zimmermann
Saarland University, Saarbrücken, Germany

tz@acm.org

Abstract

We will give a short overview on recent approaches
to support developers by mining software repositories
and outline current and future challenges from which
knowledge collaboration can benefit.

1. Introduction

When people collaborate, they communicate and
create documents that are shared among each other. In
most projects these artifacts are collected and archived
in software repositories: For open source projects,
communications between developers are stored in mail-
ing lists, newsgroups, and personal archives. Changes
to the source code of software are recorded in version
archives such as CVS. Failures and feature requests are
submitted to and discussed in issue tracking systems
such as Bugzilla. Explicit knowledge such as documen-
tation and design documents is published on websites
or wikis.

Recently a new research area evolved that mines
software repositories. Although most approaches have
focused on understanding software and its evolution so
far, software repositories can be leveraged to support
developers and their collaboration.

In this paper, we will give a short overview on the
state-of-art of mining software repositories with respect
to collaboration (Section 2), before we outline ongoing
and future challenges from which knowledge collabora-
tion can benefit (Section 3).

2. Supporting Developers

In this section we present several examples how his-
toric data was used to support collaboration among
developers. Our overview is not complete since we
favored research that actually resulted in tools. For a
broader view on mining software repositories we refer
to the MSR workshop series [6].

Figure 1. After an initial change to a method,
eROSE recommends related code locations.

Project memory. The Hipikat tool by Cubranic et
al. [2] was the first one to combine artifacts from
different software repositories such as version ar-
chives, bug databases, documentation, and mailing
lists. Developers can explicitly query this project
memory for related artifacts after selecting an initial
artifact. Hipikat’s recommendations are especially
useful for newcomers to a software project.

Guiding developers. The eROSE tool by Zimmer-
mann et al. [10] guides programmers along related
changes by mining version archives. When a devel-
oper changes f() and other people have changed f()
together with g() in the past, eROSE will detect this
and suggest “Programmers who changed function
f() also changed function g()” (see Figure 1). In
contrast to Hipikat, eROSE makes recommendations
automatically and suggests specific actions (change,
add, or delete something).

Software navigation. The NavTracks tool by Singer et
al. [7] monitors the navigation history of a single
developer and use this data to support her future
navigation. DeLine et al. [3] extended this work in
their Team Tracks tool to multiple developers that
share navigation history.

All these tools leverage one or more software reposito-
ries to support developers by providing knowledge that
is obtained from the past. In the next section, we will
outline ongoing research challenges that will further
improve knowledge collaboration.

64

3. Challenges

The research on mining software repositories is cur-
rently in an early stage. There are several ongoing chal-
lenges that are relevant for knowledge collaboration.

Multiple data sources. Most research focuses only on
one data source such as version archives or bug da-
tabases. In recent research several software reposito-
ries have been combined (starting with Hipikat [2]).
This gives additional context to mining. For in-
stance, one can assess changes using bug databases,
thus getting a notion of good vs. bad knowledge.

Fine-grained changes. All tools discussed in Section 2
focused only on artifact level such as files, methods,
or bug reports. Recently, more fine-grained changes
were analyzed [4] and used to identify usage pat-
terns [5] or cross-cutting concerns [1]. Combined
with context information this will lead to tools that
can assess new changes based on knowledge that is
mined from software repositories (think of a self-
learning bad smell check across developers).

Collecting new data. Most research analyzed existing
software repositories. However, at some point the
information available will be exhausted. The Nav-
Tracks [7] and Team Tracks [3] tools pioneered a
new direction. Instead of taking existing repositories
they build their own repositories which are then ana-
lyzed. This way, one gets more and better data to
turn into knowledge. Related research in this area
includes waypointing and social tagging of software
as proposed by Storey et al. [8].

Mining across projects. Typically multiple projects
are mined at the same time for understanding soft-
ware evolution. However, when it comes to support-
ing developer, only single projects were investigated
so far. Xie and Pei were the first ones to mine
knowledge (usage patterns) across multiple pro-
jects [9]. By considering a large amount of projects,
one can build a huge knowledge base. The goal will
be to improve search engines for source code such
as Koders1 and smoothly integrate them into IDEs.

Although mining software repositories does not explic-
itly support collaboration, it creates knowledge that
helps developers. Since this knowledge is mined from
data that comes from different developers, one can
think of implicit knowledge collaboration: the knowl-
edge is collected in the background and shared among
developers.

1 http://www.koders.com/

4. References

[1] Silvia Breu and Thomas Zimmermann. “Mining Aspects
from History.” In Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE 2006), September 2006.

[2] Davor Cubranic, Gail C. Murphy, Janice Singer, Kellogg
S. Booth. “Hipikat: A Project Memory for Software Devel-
opment.” In IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 446-465, June 2005.

[3] Robert DeLine, Mary Czerwinski, George G. Robertson.
“Easing Program Comprehension by Sharing Navigation
Data.” In IEEE Symposium on Visual Languages and Hu-
man-Centric Computing (VL/HCC 2005), September 2005,
Dallas, USA. IEEE Computer Society, pp. 241-248

[4] Beat Fluri and Harald C. Gall. “Classifying Change
Types for Qualifying Change Couplings.” In Proceedings of
the International Conference on Program Comprehension
(ICPC), Athens, Greece, June 2006, pp. 35-45.

[5] V. Benjamin Livshits and Thomas Zimmermann. “Dy-
naMine: Finding Common Error Patterns by Mining Soft-
ware Revision Histories.” In Proceedings of the 10th Euro-
pean Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/SIGSOFT FSE 2005),
Lisbon, Portugal, September 2005, pp. 296-305.

[6] International Workshop on Mining Software Repositories
2004-2006, http://msr.uwaterloo.ca/

[7] Janice Singer, Robert Elves, Margaret-Anne Storey.
"NavTracks: Supporting Navigation in Software Mainte-
nance.” In Proceedings 21st IEEE International Conference
on Software Maintenance (ICSM'05), pp. 325-334, Septem-
ber 2005.

[8] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Peter
Rigby. “Waypointing and social tagging to support program
navigation.” In CHI '06: Extended Abstracts on Human Fac-
tors in Computing Systems. Montréal, Québec, Canada, April
2006. ACM Press, New York, NY, pp. 1367-1372.

[9] Tao Xie and Jian Pei. “MAPO: mining API usages from
open source repositories.” In Proceedings of the Interna-
tional Workshop on Mining Software Repositories (MSR
'06), Shanghai, China, May 2006. ACM Press, New York,
NY, pp. 54-57.

[10] Thomas Zimmermann, Peter Weissgerber, Stephan
Diehl, Andreas Zeller. "Mining Version Histories to Guide
Software Changes.” In IEEE Transactions on Software En-
gineering, vol. 31, no. 6, pp. 429-445, June 2005.

65

	W2-Cover1.pdf
	W2-Cover2.pdf
	kcsd2006-proceedings.pdf
	Cover.pdf
	blank1.pdf
	ToC.pdf
	blank2.pdf
	org.pdf
	blank3.pdf
	kcsd2006-v2.pdf

