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ABSTRACT 

This paper describes an empirical study to reveal factors influencing defect 

correction effort in software development. In the study we collected various 

attributes (metrics) of defects found in a typical medium-scale, multi-vendor 

information system development project in Japan over a six-month period. We 

then statistically analyzed the relationship between the defects’ attributes and 

the correction effort. The analysis confirmed the well-known principle “defects are 

the more expensive the later they are detected” by revealing that defects detected 

in the “system test” were 4.88 times more expensive than those detected in the 

“coding/unit test”. Another principle “defects are more expensive the longer they 

survive in software” was also confirmed by revealing that defects, which survived 

two or more development phases, were 4.44 times more expensive than those 

detected immediately. We also identified other factors, such as defect repeatability, 

severity, and the cause of detection delay, that had a significant influence on the 

correction effort.  
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1. INTRODUCTION 

Defects in software development, such as bugs, specification changes, and design 

changes, are a major cause of excessive cost (effort) and delivery slippage. 

Analysis methods have thus been proposed to investigate the number of defects 

found in each development phase and/or in each functionality and to reveal 

relations with the causes of the defects. One such example is orthogonal defect 

classification (ODC) [2][3][8]. This method identifies phases and processes that 

require improvement by classifying each defect into one of several categories 

based on failure reports and then by looking for variation in the numbers of 

defects of each type between phases and processes. Another example is defect 

causal analysis (DCA) [7][18][20]. This method collects detailed information on 

each defect and then hierarchically classifies causes of defects using cause-effect 

diagrams (fishbone diagrams)[15]. However, focusing on the number of defects is 

not sufficient for process improvement. In fact, there is a great deal of variance in 

the effort required to correct defects[16]. Even a single defect could cause a serious 

excess of correction effort or delay delivery. 

In this paper we analyze the relationship between the defect correction effort 

(person-hours) and the characteristics of defects, as well as the reasons why the 

defects were not detected upstream of development. Our goal is to avoid excessive 

correction cost (effort) and delivery slippage in software development. We 

collected attributes of the defects, such as the cause of a defect's introduction and 

the functionality of the module where the defect was found, as well as phases 

where the defect was introduced and detected. In the analysis, we statistically 



detected the factors that influence the defect correction effort and then analyzed 

each factor in detail using box plots. Afterwards, we conducted further analysis on 

the relation between the phase where a defect is introduced and the phase where 

it is detected. This was done to validate the results of past research, such as the 

finding that the longer a defect survives in software the greater its correction 

effort becomes [11]. We also used information obtained from detailed descriptions 

of failure reports and interviews with the developers to interpret analysis results. 

This paper targets a multi-vendor development, which is the most typical type of 

information systems development in Japan today. Specifically, the target was an 

information system development project consisting of about 330K steps (SLOC) of 

C/C++ source code, carried out with the support of Japan's Ministry of Economy, 

Trade and Industry (METI). In this project, several core Japanese software 

companies carried out development, while the Nara Institute of Science and 

Technology's EASE Project 1  and Japan’s SEC 2  of the Information-Technology 

Promotion Agency collaboratively created a data-collection scheme and analyzed 

the obtained data. Development was carried out using a waterfall process. A user 

company defined requirements, and development companies each developed 

subsystems under the supervision of a project-management company. After each 

company conducted an intra-company unit test and integration test, an 

inter-company integration test was performed, followed by an inter-company 

                                                 

1 EASE : Empirical Approach to Software Engineering 

http://www.empirical.jp/project/index.html 

2 SEC : Software Engineering Center http://sec.ipa.go.jp/index.php 



system test. 

The difference between the analysis described in this paper and ODC/DCA is that 

here we used statistical analysis. Since defect counts are a per-project attribute, 

the statistical analysis that can be performed using this attribute within a single 

project is extremely limited. In contrast, defect correction effort is a per-defect 

attribute. This means that it can be used for statistical analysis even on a single 

project (given a large number of defects). A long-standing principle states that 

defects are more expensive the later they are removed[11]. Nevertheless, there 

exists almost no report that specifically identifies how much correction effort 

increases. The only such examples were done in the 1970s and early 80s by Boehm 

[5][6], Fagan[12], Daly[9] and Hiemann[13]. However, the systems in those 

examples are quite old; thus, the development/testing environment may be 

different from today's style of development. Also, the above papers did not 

describe relations to other defect characteristics, such as the cause of detection 

delay, defect repeatability and defect severity, etc. More detailed analysis on 

typical modern projects is required.  

In Section 2, we outline the data collected for use in analysis; Section 3 describes 

the analysis procedure. Section 4 presents the results of the analysis at each step; 

Section 5 describes related research; and in Section 6, we summarize our findings 

and discuss future work.  

 



Table 1 Attributes of Defects 

Attribute 
(Description) 

Categories # of
defects

Attribute
(Description) 

Categories # of
defects

 Module type 
(Module type 
with respect 
to reuse) 

Newly made 963 Priority
(The priority 
of correcting 
a defect)

High 320
Modified 12 Medium 611
Reused w/o change 2 Low 46

Detected 
phase 
(The project 
phase in 
which a 
defect was 
detected) 

Blank 13 Defect type
(Type of 
defect  
causes) 

Blank 47  
Coding/unit test 650 Logic 288 
Integration test 279 Computation 52
System test 33 Interface/timing 56

Project 
activity  
(The activity 
in which a 
person 
reporting a 
defect was 
involved)   

Analysis 108 Data handling  361
Testing 827 Scope of data 

incorrect 
30

Review 42 Data problem 17
Incorrect 
document 

27

Document 
quality 

2

Enhancement 20
Function 
type 
(Function 
type of a 
module in 
which a 
defect was 
detected) 

Checking input 
data 

105 Performance 8

Computation 111 Interoperability 3

Data handling 254 Standards   
conformance 

1
File update 15
Data output 176 Hardware 

problem
0

Linked processes 17 Mis-operation 24
Border processing 4 Mis-judgement 

(not a defect) 
7

Sensing external  
anomalies 

2

Unknown 3
Others 293 Others 31

Repeatability 
(How easy to 
reproduce 
the failure) 

Recurring 704 Cause of 
Detection 
delay 
(Cause/reason 
why the 
defect was not 
detected in 
the phase 
where the 
defect was 
introduced or 
should be 
detected) 

Blank 331
Intermittent 94 Not reviewed 3
One time 
occurrence 

35 Overlooked in 
the review 

35

Unknown 144 Overlooked in 
checking the 
revised program  

12 
Severity 
(How severe 
the impact of 
the failure is 
on the 
program 
operation) 

High 340

Medium 503 Lack of 
communication 

1 

Low 132 Lack of test 
cases

26 

Test casesnot 
executed  

6

Testing was 
carried forward 
to later phase 
due to  a testing 
environment 

11

Introduced 
phase 
(The project 
phase in 
which the 
cause of 
defect was 
introduced) 

Blank 41
Architecture design 1
Detail design 86
Coding/unit test 789 Mis-judged 

result of test 
5

Integration test 57 Others 547
System test 3

 



2. COLLECTED DATA 

2.1. Outline of Target Project 

We analyzed a project to develop a probe-information system carried out by 

members of the COSE3, with the support of METI. Six companies participated in 

the development: one company was tasked with project management, and the 

other five with development. Two of the five companies each conducted 

development at two different sites, with the result that the development was 

conducted at seven physically separated sites. From the start of the project, 

researchers from the EASE project and the SEC attended regular project 

meetings and were tasked with the creation of a data-collection scheme and data 

analysis. A facility was also set up where periodic meetings could be held with 

individual companies in order to report the analysis results to the developers. 

EASE and SEC researchers used these meetings to give feedback on analysis 

results and conduct interviews. 

The size of the developed system is approximately 330K steps (SLOC), and almost 

all of the source code was written in C/C++ language. The number of subsystems 

is 38 and the number of files including shell script, batch, etc. is approximately 

1400. 

2.2. Defect Data and its Collection Process 

First, the defect attributes to be collected were determined through pre-project 

discussions, referring to failure reports actually used by the six participating 

                                                 

3 COSE : COnsortium for Software Engineering 



companies and the classification for software anomalies in IEEE Standard 

1044-1993 [1]. If collected data is not accurate, complete, and consistent across 

the company, then incorrect results may be derived[13]. Thus, we discussed 

until all participants (project managers and quality assurance staffs) accepted 

and understood the definition of attributes. Nearly all of the companies ended 

up collecting attributes that were different from those they had traditionally 

collected. For example, two of the companies had never collected data on 

correction effort. 

Data were collected separately at each of the seven development sites. All but 

one of the sites introduced the GNATS4. The remaining site supported the 

scheme by customizing its standard in-house tool. The collected defect data 

were stored in a database at the SEC and analyzed using the Empirical Project 

Monitor (EPM) [21]. Data were collected from all seven sites; however, we 

excluded data from one site because data reliability was low, according to an 

interview with the developers, and the data had an unusual distribution. It 

was because each development site outsourced multiple organizations and in 

such complicated structure it often is difficult to manage developers’ 

activities[16][18]. 

The phases of development for which data were collected - that is, the phases 

where defects were detected - were those from coding/unit test to system test 

(in this project, coding and unit tests are considered parts of the same phase). 

                                                 

4 GNATS : GNU Bug Tracking System http://www.gnu.org/software/gnats/ 



In this project, testing was carried out in the following stages: first, each site 

conducted the unit test and integration test internally; next, inter-company 

integration and system tests were conducted, integrating the products of all 

companies in an integrated environment. 

Defects introduced after the architecture-design phase were analyzed. For this 

project, errors and changes to the requirements specification were excluded 

from analysis, since they are managed by a different management procedure.  

Table 1 lists the collected defect attributes that were used for this paper. There 

were also free-description reports, such as descriptions of the symptoms as 

well as details on a defect's cause, disposition, and confirmation, but these do 

not appear in the table because they were not used for the statistical analysis. 

For the purposes of statistical analysis, we refer to each attribute in Table 1 as 

a variable. This paper refers to defect correction effort as a dependent variable 

and to other variables as independent variables. Each possible value of a 

variable is called a category. For example, the variable severity has three 

possible categories: “high”, “medium”, and “low”.  

2.3. Summary of Collected Data 

Table 2 shows the statistics of defect correction effort. Available data, i.e. the 

number of defects whose correction efforts were recorded, amounted to 978. We 

excluded the remaining 39 from the analysis because they were either left blank 

or zero was input as the correction effort. While the mean correction effort was 

about 2 person-hours, the median value was just 1 person-hour, showing variance 

in the value distribution. The highest correction effort was 92 person-hours, 



corresponding to about 3.8 person-days. 

3. PROCEDURE OF DATA ANALYSIS 

We carried out the analysis using the following steps: (1) data preprocessing; (2) 

analysis of relationship between each variable and correction effort; and (3) 

analysis of relations between variables. We used information obtained from 

detailed descriptions of failure reports and interviews with the developers to 

interpret the analysis results. Each step is described in detail below. 

Table 2 Statistics of Defect Correction Effort (person-hours) 

# of defects  Available 978

Not Available 39
Mean 2.13
Median 1
Standard Deviation 4.58
Variance 20.96
Minimum 0.08
Maximum 92
Percentile 25 0.75

50 1
75 2

 

3.1. Data Preprocessing 

Before conducting the analysis, we preprocessed the data as follows: 

 Handling of blank fields: “Blank” values in Table 1 were all treated as missing 

values. 

 Adding detection delay: We created a new independent variable called 

detection delay, indicating the delay between the phase where the defect was 

introduced (hereinafter called introduced-phase) and the phase where it was 

detected (hereinafter called detected-phase). This was a measure to confirm 

existing research showing that the longer a defect remains in a product, the 



more expensive it is to remove[11]. 

3.2. Analysis of Relation between Each Variable and Defect Correction 

Effort  

First, we analyzed the relations between the variables in Table 1 and correction 

effort, as well as the strength of these relations. We statistically analyzed the 

existence of a relation by using ANOVA(Analysis of Variance) and a t-test for the 

difference in the means of correction effort between defects belonging to a given 

category and those belonging to other categories for each independent variable. 

The criterion for significance was 1% (p < 0.01). Variables and categories having 

(significant) relations with correction effort were identified by using this t-test for 

all categories of all variables. The difference between the means of correction 

effort was used to determine the strength of a relation. Variables and categories 

with small differences (fewer than 1.0 person-hour) were excluded from the later 

analysis, even if they had significant deviation according to the t-test. 

In this paper, ANOVA and a t-test are thoroughly used for statistical analysis; 

they assume that a data set is normally distributed. However, an investigation of 

correction effort distribution by a normal P-P plot showed that the distribution is 

not normal. We then confirmed that correction effort did follow a normal 

distribution after logarithmic transformation, so ANOVA and t-tests were 

conducted after the transformation. 

Next, we analyzed in detail each phase-related variable (i.e. introduced-phase, 

detected-phase, and detection delay). Box plots for each phase-related variable 

showed the impact that different phases had on correction effort.  



3.3. Analysis of Relations between Variables 

In order to reveal the main factors affecting correction effort, it is necessary to 

analyze the relations. In this paper, we addressed only the relations between 

introduced-phase and detected-phase due to space limitations. We categorized the 

defects by all combinations of introduced-phase and detected-phase, in the 

manner of ODC, and then analyzed statistically the differences in the means of 

correction effort among the combinations.   

Table 3 Categories that Showed Significance in t-test 

Independent 
Variables 

Categories  # of 
Defects

Mean of Defects 
Correction Effort 

Detected 
phase 

Coding/unit test 650  1.70
System test 33  8.29

Introduced  
phase 

Detail design 86  3.89

Detection 
delay  

0 Phase 639  1.70
2 Phases 54  7.54
3 Phases 5  4.80

Cause of 
detection 
delay 

Lack of test cases 26 5.84 
Testing was carried forward to later 
phase due to a testing environment

11 7.55 

Mis-judged result of test 5 4.00 

Defect Type Mis-judgement (not a defect)  7  0.75

Other 31  1.15
Repeatability Intermittent 94  3.70

One time occurrence 35  0.44 

Severity Low 132  0.88 
Project 
Activity 

Review 42  0.99

(Ex)All Defects 978 2.13

4. RESULTS 

4.1. Relation between Each Variable and Defect Correction Effort 

Firstly, based on ANOVA, we excluded the variable Module Type from our further 



analysis since it did not have significant relationship with defect correction effort 

(assuming 1% significance level). Table 3 lists the categories found to be 

significant by the t-test and having a significant difference of at least 1.0 

person-hour from the mean of the other categories. The table columns show, from 

left to right, the independent variable, its category, number of defects in that 

category, and the mean correction effort. Below, we describe the results for each 

variable and/or category in the table in detail. 

[Detected Phase] When the Detected-phase was “coding/unit test,” the mean 

correction effort was small (1.7 person-hours), but when it was system test, it was 

large (8.29 person-hours). Figure 1 shows box plots of correction effort in each 

phase. The amount of effort required to correct a defect tended to increase when it 

was detected in a later phase. 

[Introduced phase] When the Introduced-phase was “detail design,” the mean 

correction effort was large (3.89 person-hours). Figure 2 shows box plots of 

correction effort in each phase. 

 

Figure 1 Defect Correction Effort in Each Detected-Phase 



 

Figure 2  Defect Correction Effort in Each Introduced-Phase 

 

Figure 3  Defect Correction Effort in Each Detection Delay 

 [Detection delay and its causes] When the detection delay was zero (i.e. 

Introduced-phase and Detected-phase were the same), the mean correction effort 

was low (1.7 person-hours). When the detection delay was two phases, this value 

increased to 7.54 person-hours, and at three phases it reached 4.80 person-hours 

(note, however, that only five defects had detection delays of three phases). Figure 



3 shows box plots of relations between detection delay and defect correction effort. 

The figure shows that although there is almost no difference in correction effort 

between delays of 0 and 1 phase, at two phases the value suddenly surges. 

Next, let us draw our attention to the causes of detection delay. Table 3 shows that 

the correction effort increases when the reason is “testing was carried forward to 

later phase due to a testing environment” (7.55 person-hours). This cause 

indicates cases where tests were required, but testing was delayed because a 

testing environment would not be available until the integration test or system 

test, thereby causing the detection of the defect to be delayed. The other causes, 

“lack of test cases” and “mis-judged result of test,” also increased the correction 

effort to 2 or 3 times more than the mean correction effort of all defects. 

[Defect type] Although there were not many such cases (only 7), the correction 

effort of defects caused by “mis-judgement” (defect reported but actually there was 

no defect) was low (0.75 person-hours). No significant relations were found 

between correction effort and other causes (of which there were many, including 

“logic,” “computation,” and “data handling” issues). Additionally, defects in the 

“others” category tended to require lower correction effort, but no breakdown of 

this category was done. 

[Repeatability] Correction effort was somewhat higher when repeatability was 

low (i.e. “intermittent”) (3.70 person-hours). We believe that this may be because 

defects with low reproducibility (where it was difficult to identify the location of 

the defect) took longer to debug. The correction effort of defects that never 

reoccurred (i.e. “one time occurrence”) was low, but the majority of them were 

defects detected during source code reviews, which do not execute the code, so 



these defects never “occurred” in the program execution. 

[Severity/priority] Correction effort tended to be lower when the severity was low 

(0.88 person-hours). No difference was found between high and medium severities. 

We conjecture that this may be because the engineers selected “low” if they 

thought it was easy to find the location of the defect and how to correct it. 

Meanwhile, no relation was found between priority and defect correction effort. 

[Project activity] The correction effort was somewhat low when the detection 

process was (code) review (0.99 person-hours). We believe that this is because 

defects detected during reviews do not require a regression test. 

[Other variables] No relations were found between correction effort and the other 

two variables: module type and function type. 

We believe that no significant difference was found for module type because 

almost all defects were detected in newly developed areas (“newly made”), while 

nearly no defect was found in reused portions of the code. The system includes a 

large amount of modified and reused code, but there were few defects because the 

majority of the system was diverted from other highly reliable systems. 

More defects were detected in “data handling” of function type than any other. 

This was followed by “data output,” “computation,” and “checking input data,” in 

that order, but there was no significant difference in the mean correction effort per 

defect. 

 

 

 



Table 4 Results of t-test for Phase-related Variables 

Introduced phase  # of 
Defects

Mean of Defect 
Correction Effort 

p-value 

Detected phase=”Coding/unit test” 
Detail design 47 2.74 0.307 
Coding/unit test 587 1.64 0.911 

Detected phase=”Integration test” 
Detail design 33 5.50 0.000 
Coding/unit test 171 2.02 0.016 
Integration Test 50 2.53 0.160 

Detected phase=”System test” 
Detail design 5 4.80 0.797 
Coding/unit test 21 10.74 0.143 
Integration test 6 3.67 0.388 

4.2. Relations between Variables 

We calculated the mean defect correction effort for each combination of introduced 

phases and detected phases and statistically compared them. For each detection 

phase, Table 4 shows, from left to right, categories of introduced phase, the 

number of defects in each introduced phase, the mean defect correction effort 

within the phase, and p-value of a t-test (between each target phase and others). 

Assuming the 1% significance level, there was no influence of introduction phase 

on defects detected in “coding/unit test” or “system test”(p>0.01). On the other 

hand, for defects detected in “integration test,” correction effort significantly 

increased when defects were introduced in “detail design” (5.5 person-hours). 

According to the results in the previous section 4.1, defects introduced in the 

earlier phase (i.e. “detail design”)  required more effort for correction than those in 

later phases (3.89 person-hours). However, Table 4 shows that, even though 

defects were introduced in the design phase, they did not require so much effort 

when they were detected in the next phase, i.e. “coding/unit test”(2.74 

person-hours), compared to when they were detected in the later phase, i.e. 



“integration test” (5.50 person-hours). On the other hand, even though defects 

were detected in the “integration test,” they required a small effort when they 

were introduced in the “coding/unit test”(2.02 person-hours). This confirms the 

results of the previous section 4.1, i.e. that a defect correction effort remarkably 

increased when detection delay involved two or more phases. 

Moreover, defects detected in the “system test” required much more effort than 

those detected upstream regardless of their introduced phase, according to Table 

4. 

These results indicate the following: 

 “Design defects” are best detected by the unit test. If they are detected in the 

integration test phase, the correction effort will become much greater. 

 “Coding Defects” are best detected in the code review or unit test phase; 

however, it would not seriously increase the correction effort even if they were 

detected in the integration test phase. However, correction effort surges when 

they are detected in the system test phase. 

 Defects detected in the “system test” require much more effort than others 

regardless of their introduced phase. 

Based on the interviews with the developers and the questionnaires they 

completed, we confirmed the following reasons for increased effort in system 

testing. 

 When finding a defect in the system test, the engineer had to locate the vendor 

or development site at which the cause of the defect was introduced. 

Sometimes this took much time because engineers were often unfamiliar with 

other vendors’ programs. 



 If the defect was related to more than one vendor's program, it took much time 

to modify the programs due to the need for excessive communication between 

vendors. 

 The correction of a defect detected in the system test had to be confirmed by 

regression testing in an environment where all vendors' programs were 

integrated, as well as the database and hardware. The necessary preparation 

for regression testing of the system test required much more time than for 

intra-company unit/integration tests. 

We also confirmed from the interviews that the above situations commonly 

occurred in many multi-vendor developments. 

5. RELATED WORKS 

Some studies have already analyzed the cost incurred by defects, e.g. Fagan's 

Study at IBM in 1976 [12], Daly's Study at GTE in 1977 [9], and Boehm's Study at 

TRW in 1974 [4]. Figure 4 shows a comparison of the these studies[6] with our 

study's results added. 

The horizontal axis shows the phases where a defect was detected, and the 

vertical axis shows the relative (logarithmic) effort of correcting defects, assuming 

the cost in the coding phase is 10. 



 

Figure 4 Boehm's Results[6] Vs. Japanese Multi-Vendor Project 

In the figure, the solid line shows the escalation in cost-to-fix versus phase at 

IBM[12], GTE[9],and TRW[4], and the dotted line shows the escalation for two 

smaller, less formal projects analyzed by Boehm[5]. As a result of the analysis, 

Boehm summarized: 

 The error (defect) is typically 100 times more expensive to correct in the 

maintenance phase on large projects than in the requirement phase[6]. 

 Although the effect on smaller projects is less pronounced, a 4:1 escalation in 

cost-to-fix between the requirement and the integration test is observed in 

Figure 4[5]. 



The results of our study, which are shown as rectangles in Figure 4, support these 

past results of the 1970s and 80s. In our study, defect correction effort in the 

system test is about four times larger on average than in the coding/unit test. 

6. SUMMARY 

This paper analyzed the factors that influence the defect correction effort and how 

these factors are related to each other, based on the defect data collected from a 

Japanese multi-vendor information system development project. Our findings 

include the following: 

 The well-known principle “defects are more expensive the later they are 

detected” was confirmed quantitatively. When defects were detected in the 

“coding/unit test” phase, the mean correction effort was small (1.7 

person-hours), but when detected in the ”system test” phase, it became much 

larger (8.29 person-hours). 

 Another principle, “defects are more expensive the longer they survive in 

software,” was also confirmed. When the detection delay (between defect 

introduced- and detected- phase) was zero, the mean correction effort was low 

(1.7 person-hours), but when the delay became two phases, it increased to 7.54 

person-hours. 

 Further analysis of defect introduced phase and detected phase revealed that 

defects detected in the “coding/unit test” have a low cost and those detected in 

the “system test” have a high cost regardless of their introduced phase. On the 

other hand, for defects detected in the “integration test,” correction effort 

significantly increased when they were introduced in “detail design” (5.5 

person-hours). These results suggest that “design defects” are best detected by 



the unit test and “coding defects” by the integration test phase. 

 Some causes of detection delay showed significant influences. The correction 

effort increased when the cause was “testing was carried forward to later 

phases due to the testing environment” (7.55 person-hours). 

 Two other factors, severity and repeatability, also influenced the defect 

correction effort. The mean correction effort for low-severity defects was low 

(0.88 person-hours) and that for low-repeatability defects was high (3.70 

person-hours). 

These results would be useful for project managers to select more cost-effective, i.e. 

higher ROI (Return on Investment), actions in development. For example, to 

decrease the cost by detecting ”design defects” before the integration test, a 

project manager might assign different engineers to design and programming in 

order to check for design defects in the coding phase. On the other hand, if some 

test cases were difficult to execute upstream due to the testing environment, a 

manager would have to weigh the risks of carrying the test forward.  

Moreover, we found that in the multi-vendor development the result has strategic 

value as organizational level[22], and it shows importance of total quality 

management(TQM) with top management support from data collection to process 

improvement[9]. 

The major limitation of this paper is that we focused only on defects introduced at 

and after the design phase, and thus requirement defects were out of the scope of 

the current work. However, since requirement defects are usually more expensive 

to remove, we need to analyze the factors of their correction effort in future study. 
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