
Analyzing Factors of Defect Correction
Effort in a Multi-Vendor Information System
Development

Tomoko Matsumura
Nara Institute of Science and Technology
Keihanna Science City, 630-0192 Japan
tomoko-m@is.naist.jp
Tel. +81-743-72-5318
Fax +81-743-72-5319

Akito Monden
Nara Institute of Science and Technology,
Keihanna Science City, 630-0192 Japan
akito-m@is.naist.jp

Shuji Morisaki
Nara Institute of Science and Technology,
Keihanna Science City, 630-0192 Japan
morisaki@empirical.jp

Ken-ichi Matsumoto
Nara Institute of Science and Technology
Keihanna Science City, 630-0192 Japan
matumoto@is.naist.jp

Analyzing Factors of Defect Correction Effort in
a Multi-Vendor Information System

Development

ABSTRACT

This paper describes an empirical study to reveal factors influencing defect

correction effort in software development. In the study we collected various

attributes (metrics) of defects found in a typical medium-scale, multi-vendor

information system development project in Japan over a six-month period. We

then statistically analyzed the relationship between the defects’ attributes and

the correction effort. The analysis confirmed the well-known principle “defects are

the more expensive the later they are detected” by revealing that defects detected

in the “system test” were 4.88 times more expensive than those detected in the

“coding/unit test”. Another principle “defects are more expensive the longer they

survive in software” was also confirmed by revealing that defects, which survived

two or more development phases, were 4.44 times more expensive than those

detected immediately. We also identified other factors, such as defect repeatability,

severity, and the cause of detection delay, that had a significant influence on the

correction effort.

KEYWORDS Defect Classification, Statistical analysis, Failure Report, Testing

1. INTRODUCTION

Defects in software development, such as bugs, specification changes, and design

changes, are a major cause of excessive cost (effort) and delivery slippage.

Analysis methods have thus been proposed to investigate the number of defects

found in each development phase and/or in each functionality and to reveal

relations with the causes of the defects. One such example is orthogonal defect

classification (ODC) [2][3][8]. This method identifies phases and processes that

require improvement by classifying each defect into one of several categories

based on failure reports and then by looking for variation in the numbers of

defects of each type between phases and processes. Another example is defect

causal analysis (DCA) [7][18][20]. This method collects detailed information on

each defect and then hierarchically classifies causes of defects using cause-effect

diagrams (fishbone diagrams)[15]. However, focusing on the number of defects is

not sufficient for process improvement. In fact, there is a great deal of variance in

the effort required to correct defects[16]. Even a single defect could cause a serious

excess of correction effort or delay delivery.

In this paper we analyze the relationship between the defect correction effort

(person-hours) and the characteristics of defects, as well as the reasons why the

defects were not detected upstream of development. Our goal is to avoid excessive

correction cost (effort) and delivery slippage in software development. We

collected attributes of the defects, such as the cause of a defect's introduction and

the functionality of the module where the defect was found, as well as phases

where the defect was introduced and detected. In the analysis, we statistically

detected the factors that influence the defect correction effort and then analyzed

each factor in detail using box plots. Afterwards, we conducted further analysis on

the relation between the phase where a defect is introduced and the phase where

it is detected. This was done to validate the results of past research, such as the

finding that the longer a defect survives in software the greater its correction

effort becomes [11]. We also used information obtained from detailed descriptions

of failure reports and interviews with the developers to interpret analysis results.

This paper targets a multi-vendor development, which is the most typical type of

information systems development in Japan today. Specifically, the target was an

information system development project consisting of about 330K steps (SLOC) of

C/C++ source code, carried out with the support of Japan's Ministry of Economy,

Trade and Industry (METI). In this project, several core Japanese software

companies carried out development, while the Nara Institute of Science and

Technology's EASE Project 1 and Japan’s SEC 2 of the Information-Technology

Promotion Agency collaboratively created a data-collection scheme and analyzed

the obtained data. Development was carried out using a waterfall process. A user

company defined requirements, and development companies each developed

subsystems under the supervision of a project-management company. After each

company conducted an intra-company unit test and integration test, an

inter-company integration test was performed, followed by an inter-company

1 EASE : Empirical Approach to Software Engineering

http://www.empirical.jp/project/index.html

2 SEC : Software Engineering Center http://sec.ipa.go.jp/index.php

system test.

The difference between the analysis described in this paper and ODC/DCA is that

here we used statistical analysis. Since defect counts are a per-project attribute,

the statistical analysis that can be performed using this attribute within a single

project is extremely limited. In contrast, defect correction effort is a per-defect

attribute. This means that it can be used for statistical analysis even on a single

project (given a large number of defects). A long-standing principle states that

defects are more expensive the later they are removed[11]. Nevertheless, there

exists almost no report that specifically identifies how much correction effort

increases. The only such examples were done in the 1970s and early 80s by Boehm

[5][6], Fagan[12], Daly[9] and Hiemann[13]. However, the systems in those

examples are quite old; thus, the development/testing environment may be

different from today's style of development. Also, the above papers did not

describe relations to other defect characteristics, such as the cause of detection

delay, defect repeatability and defect severity, etc. More detailed analysis on

typical modern projects is required.

In Section 2, we outline the data collected for use in analysis; Section 3 describes

the analysis procedure. Section 4 presents the results of the analysis at each step;

Section 5 describes related research; and in Section 6, we summarize our findings

and discuss future work.

Table 1 Attributes of Defects

Attribute
(Description)

Categories # of
defects

Attribute
(Description)

Categories # of
defects

 Module type
(Module type
with respect
to reuse)

Newly made 963 Priority
(The priority
of correcting
a defect)

High 320
Modified 12 Medium 611
Reused w/o change 2 Low 46

Detected
phase
(The project
phase in
which a
defect was
detected)

Blank 13 Defect type
(Type of
defect
causes)

Blank 47
Coding/unit test 650 Logic 288
Integration test 279 Computation 52
System test 33 Interface/timing 56

Project
activity
(The activity
in which a
person
reporting a
defect was
involved)

Analysis 108 Data handling 361
Testing 827 Scope of data

incorrect
30

Review 42 Data problem 17
Incorrect
document

27

Document
quality

2

Enhancement 20
Function
type
(Function
type of a
module in
which a
defect was
detected)

Checking input
data

105 Performance 8

Computation 111 Interoperability 3

Data handling 254 Standards
conformance

1
File update 15
Data output 176 Hardware

problem
0

Linked processes 17 Mis-operation 24
Border processing 4 Mis-judgement

(not a defect)
7

Sensing external
anomalies

2

Unknown 3
Others 293 Others 31

Repeatability
(How easy to
reproduce
the failure)

Recurring 704 Cause of
Detection
delay
(Cause/reason
why the
defect was not
detected in
the phase
where the
defect was
introduced or
should be
detected)

Blank 331
Intermittent 94 Not reviewed 3
One time
occurrence

35 Overlooked in
the review

35

Unknown 144 Overlooked in
checking the
revised program

12
Severity
(How severe
the impact of
the failure is
on the
program
operation)

High 340

Medium 503 Lack of
communication

1

Low 132 Lack of test
cases

26

Test casesnot
executed

6

Testing was
carried forward
to later phase
due to a testing
environment

11

Introduced
phase
(The project
phase in
which the
cause of
defect was
introduced)

Blank 41
Architecture design 1
Detail design 86
Coding/unit test 789 Mis-judged

result of test
5

Integration test 57 Others 547
System test 3

2. COLLECTED DATA

2.1. Outline of Target Project

We analyzed a project to develop a probe-information system carried out by

members of the COSE3, with the support of METI. Six companies participated in

the development: one company was tasked with project management, and the

other five with development. Two of the five companies each conducted

development at two different sites, with the result that the development was

conducted at seven physically separated sites. From the start of the project,

researchers from the EASE project and the SEC attended regular project

meetings and were tasked with the creation of a data-collection scheme and data

analysis. A facility was also set up where periodic meetings could be held with

individual companies in order to report the analysis results to the developers.

EASE and SEC researchers used these meetings to give feedback on analysis

results and conduct interviews.

The size of the developed system is approximately 330K steps (SLOC), and almost

all of the source code was written in C/C++ language. The number of subsystems

is 38 and the number of files including shell script, batch, etc. is approximately

1400.

2.2. Defect Data and its Collection Process

First, the defect attributes to be collected were determined through pre-project

discussions, referring to failure reports actually used by the six participating

3 COSE : COnsortium for Software Engineering

companies and the classification for software anomalies in IEEE Standard

1044-1993 [1]. If collected data is not accurate, complete, and consistent across

the company, then incorrect results may be derived[13]. Thus, we discussed

until all participants (project managers and quality assurance staffs) accepted

and understood the definition of attributes. Nearly all of the companies ended

up collecting attributes that were different from those they had traditionally

collected. For example, two of the companies had never collected data on

correction effort.

Data were collected separately at each of the seven development sites. All but

one of the sites introduced the GNATS4. The remaining site supported the

scheme by customizing its standard in-house tool. The collected defect data

were stored in a database at the SEC and analyzed using the Empirical Project

Monitor (EPM) [21]. Data were collected from all seven sites; however, we

excluded data from one site because data reliability was low, according to an

interview with the developers, and the data had an unusual distribution. It

was because each development site outsourced multiple organizations and in

such complicated structure it often is difficult to manage developers’

activities[16][18].

The phases of development for which data were collected - that is, the phases

where defects were detected - were those from coding/unit test to system test

(in this project, coding and unit tests are considered parts of the same phase).

4 GNATS : GNU Bug Tracking System http://www.gnu.org/software/gnats/

In this project, testing was carried out in the following stages: first, each site

conducted the unit test and integration test internally; next, inter-company

integration and system tests were conducted, integrating the products of all

companies in an integrated environment.

Defects introduced after the architecture-design phase were analyzed. For this

project, errors and changes to the requirements specification were excluded

from analysis, since they are managed by a different management procedure.

Table 1 lists the collected defect attributes that were used for this paper. There

were also free-description reports, such as descriptions of the symptoms as

well as details on a defect's cause, disposition, and confirmation, but these do

not appear in the table because they were not used for the statistical analysis.

For the purposes of statistical analysis, we refer to each attribute in Table 1 as

a variable. This paper refers to defect correction effort as a dependent variable

and to other variables as independent variables. Each possible value of a

variable is called a category. For example, the variable severity has three

possible categories: “high”, “medium”, and “low”.

2.3. Summary of Collected Data

Table 2 shows the statistics of defect correction effort. Available data, i.e. the

number of defects whose correction efforts were recorded, amounted to 978. We

excluded the remaining 39 from the analysis because they were either left blank

or zero was input as the correction effort. While the mean correction effort was

about 2 person-hours, the median value was just 1 person-hour, showing variance

in the value distribution. The highest correction effort was 92 person-hours,

corresponding to about 3.8 person-days.

3. PROCEDURE OF DATA ANALYSIS

We carried out the analysis using the following steps: (1) data preprocessing; (2)

analysis of relationship between each variable and correction effort; and (3)

analysis of relations between variables. We used information obtained from

detailed descriptions of failure reports and interviews with the developers to

interpret the analysis results. Each step is described in detail below.

Table 2 Statistics of Defect Correction Effort (person-hours)

of defects Available 978

Not Available 39
Mean 2.13
Median 1
Standard Deviation 4.58
Variance 20.96
Minimum 0.08
Maximum 92
Percentile 25 0.75

50 1
75 2

3.1. Data Preprocessing

Before conducting the analysis, we preprocessed the data as follows:

 Handling of blank fields: “Blank” values in Table 1 were all treated as missing

values.

 Adding detection delay: We created a new independent variable called

detection delay, indicating the delay between the phase where the defect was

introduced (hereinafter called introduced-phase) and the phase where it was

detected (hereinafter called detected-phase). This was a measure to confirm

existing research showing that the longer a defect remains in a product, the

more expensive it is to remove[11].

3.2. Analysis of Relation between Each Variable and Defect Correction

Effort

First, we analyzed the relations between the variables in Table 1 and correction

effort, as well as the strength of these relations. We statistically analyzed the

existence of a relation by using ANOVA(Analysis of Variance) and a t-test for the

difference in the means of correction effort between defects belonging to a given

category and those belonging to other categories for each independent variable.

The criterion for significance was 1% (p < 0.01). Variables and categories having

(significant) relations with correction effort were identified by using this t-test for

all categories of all variables. The difference between the means of correction

effort was used to determine the strength of a relation. Variables and categories

with small differences (fewer than 1.0 person-hour) were excluded from the later

analysis, even if they had significant deviation according to the t-test.

In this paper, ANOVA and a t-test are thoroughly used for statistical analysis;

they assume that a data set is normally distributed. However, an investigation of

correction effort distribution by a normal P-P plot showed that the distribution is

not normal. We then confirmed that correction effort did follow a normal

distribution after logarithmic transformation, so ANOVA and t-tests were

conducted after the transformation.

Next, we analyzed in detail each phase-related variable (i.e. introduced-phase,

detected-phase, and detection delay). Box plots for each phase-related variable

showed the impact that different phases had on correction effort.

3.3. Analysis of Relations between Variables

In order to reveal the main factors affecting correction effort, it is necessary to

analyze the relations. In this paper, we addressed only the relations between

introduced-phase and detected-phase due to space limitations. We categorized the

defects by all combinations of introduced-phase and detected-phase, in the

manner of ODC, and then analyzed statistically the differences in the means of

correction effort among the combinations.

Table 3 Categories that Showed Significance in t-test

Independent
Variables

Categories # of
Defects

Mean of Defects
Correction Effort

Detected
phase

Coding/unit test 650 1.70
System test 33 8.29

Introduced
phase

Detail design 86 3.89

Detection
delay

0 Phase 639 1.70
2 Phases 54 7.54
3 Phases 5 4.80

Cause of
detection
delay

Lack of test cases 26 5.84
Testing was carried forward to later
phase due to a testing environment

11 7.55

Mis-judged result of test 5 4.00

Defect Type Mis-judgement (not a defect) 7 0.75

Other 31 1.15
Repeatability Intermittent 94 3.70

One time occurrence 35 0.44

Severity Low 132 0.88
Project
Activity

Review 42 0.99

(Ex)All Defects 978 2.13

4. RESULTS

4.1. Relation between Each Variable and Defect Correction Effort

Firstly, based on ANOVA, we excluded the variable Module Type from our further

analysis since it did not have significant relationship with defect correction effort

(assuming 1% significance level). Table 3 lists the categories found to be

significant by the t-test and having a significant difference of at least 1.0

person-hour from the mean of the other categories. The table columns show, from

left to right, the independent variable, its category, number of defects in that

category, and the mean correction effort. Below, we describe the results for each

variable and/or category in the table in detail.

[Detected Phase] When the Detected-phase was “coding/unit test,” the mean

correction effort was small (1.7 person-hours), but when it was system test, it was

large (8.29 person-hours). Figure 1 shows box plots of correction effort in each

phase. The amount of effort required to correct a defect tended to increase when it

was detected in a later phase.

[Introduced phase] When the Introduced-phase was “detail design,” the mean

correction effort was large (3.89 person-hours). Figure 2 shows box plots of

correction effort in each phase.

Figure 1 Defect Correction Effort in Each Detected-Phase

Figure 2 Defect Correction Effort in Each Introduced-Phase

Figure 3 Defect Correction Effort in Each Detection Delay

 [Detection delay and its causes] When the detection delay was zero (i.e.

Introduced-phase and Detected-phase were the same), the mean correction effort

was low (1.7 person-hours). When the detection delay was two phases, this value

increased to 7.54 person-hours, and at three phases it reached 4.80 person-hours

(note, however, that only five defects had detection delays of three phases). Figure

3 shows box plots of relations between detection delay and defect correction effort.

The figure shows that although there is almost no difference in correction effort

between delays of 0 and 1 phase, at two phases the value suddenly surges.

Next, let us draw our attention to the causes of detection delay. Table 3 shows that

the correction effort increases when the reason is “testing was carried forward to

later phase due to a testing environment” (7.55 person-hours). This cause

indicates cases where tests were required, but testing was delayed because a

testing environment would not be available until the integration test or system

test, thereby causing the detection of the defect to be delayed. The other causes,

“lack of test cases” and “mis-judged result of test,” also increased the correction

effort to 2 or 3 times more than the mean correction effort of all defects.

[Defect type] Although there were not many such cases (only 7), the correction

effort of defects caused by “mis-judgement” (defect reported but actually there was

no defect) was low (0.75 person-hours). No significant relations were found

between correction effort and other causes (of which there were many, including

“logic,” “computation,” and “data handling” issues). Additionally, defects in the

“others” category tended to require lower correction effort, but no breakdown of

this category was done.

[Repeatability] Correction effort was somewhat higher when repeatability was

low (i.e. “intermittent”) (3.70 person-hours). We believe that this may be because

defects with low reproducibility (where it was difficult to identify the location of

the defect) took longer to debug. The correction effort of defects that never

reoccurred (i.e. “one time occurrence”) was low, but the majority of them were

defects detected during source code reviews, which do not execute the code, so

these defects never “occurred” in the program execution.

[Severity/priority] Correction effort tended to be lower when the severity was low

(0.88 person-hours). No difference was found between high and medium severities.

We conjecture that this may be because the engineers selected “low” if they

thought it was easy to find the location of the defect and how to correct it.

Meanwhile, no relation was found between priority and defect correction effort.

[Project activity] The correction effort was somewhat low when the detection

process was (code) review (0.99 person-hours). We believe that this is because

defects detected during reviews do not require a regression test.

[Other variables] No relations were found between correction effort and the other

two variables: module type and function type.

We believe that no significant difference was found for module type because

almost all defects were detected in newly developed areas (“newly made”), while

nearly no defect was found in reused portions of the code. The system includes a

large amount of modified and reused code, but there were few defects because the

majority of the system was diverted from other highly reliable systems.

More defects were detected in “data handling” of function type than any other.

This was followed by “data output,” “computation,” and “checking input data,” in

that order, but there was no significant difference in the mean correction effort per

defect.

Table 4 Results of t-test for Phase-related Variables

Introduced phase # of
Defects

Mean of Defect
Correction Effort

p-value

Detected phase=”Coding/unit test”
Detail design 47 2.74 0.307
Coding/unit test 587 1.64 0.911

Detected phase=”Integration test”
Detail design 33 5.50 0.000
Coding/unit test 171 2.02 0.016
Integration Test 50 2.53 0.160

Detected phase=”System test”
Detail design 5 4.80 0.797
Coding/unit test 21 10.74 0.143
Integration test 6 3.67 0.388

4.2. Relations between Variables

We calculated the mean defect correction effort for each combination of introduced

phases and detected phases and statistically compared them. For each detection

phase, Table 4 shows, from left to right, categories of introduced phase, the

number of defects in each introduced phase, the mean defect correction effort

within the phase, and p-value of a t-test (between each target phase and others).

Assuming the 1% significance level, there was no influence of introduction phase

on defects detected in “coding/unit test” or “system test”(p>0.01). On the other

hand, for defects detected in “integration test,” correction effort significantly

increased when defects were introduced in “detail design” (5.5 person-hours).

According to the results in the previous section 4.1, defects introduced in the

earlier phase (i.e. “detail design”) required more effort for correction than those in

later phases (3.89 person-hours). However, Table 4 shows that, even though

defects were introduced in the design phase, they did not require so much effort

when they were detected in the next phase, i.e. “coding/unit test”(2.74

person-hours), compared to when they were detected in the later phase, i.e.

“integration test” (5.50 person-hours). On the other hand, even though defects

were detected in the “integration test,” they required a small effort when they

were introduced in the “coding/unit test”(2.02 person-hours). This confirms the

results of the previous section 4.1, i.e. that a defect correction effort remarkably

increased when detection delay involved two or more phases.

Moreover, defects detected in the “system test” required much more effort than

those detected upstream regardless of their introduced phase, according to Table

4.

These results indicate the following:

 “Design defects” are best detected by the unit test. If they are detected in the

integration test phase, the correction effort will become much greater.

 “Coding Defects” are best detected in the code review or unit test phase;

however, it would not seriously increase the correction effort even if they were

detected in the integration test phase. However, correction effort surges when

they are detected in the system test phase.

 Defects detected in the “system test” require much more effort than others

regardless of their introduced phase.

Based on the interviews with the developers and the questionnaires they

completed, we confirmed the following reasons for increased effort in system

testing.

 When finding a defect in the system test, the engineer had to locate the vendor

or development site at which the cause of the defect was introduced.

Sometimes this took much time because engineers were often unfamiliar with

other vendors’ programs.

 If the defect was related to more than one vendor's program, it took much time

to modify the programs due to the need for excessive communication between

vendors.

 The correction of a defect detected in the system test had to be confirmed by

regression testing in an environment where all vendors' programs were

integrated, as well as the database and hardware. The necessary preparation

for regression testing of the system test required much more time than for

intra-company unit/integration tests.

We also confirmed from the interviews that the above situations commonly

occurred in many multi-vendor developments.

5. RELATED WORKS

Some studies have already analyzed the cost incurred by defects, e.g. Fagan's

Study at IBM in 1976 [12], Daly's Study at GTE in 1977 [9], and Boehm's Study at

TRW in 1974 [4]. Figure 4 shows a comparison of the these studies[6] with our

study's results added.

The horizontal axis shows the phases where a defect was detected, and the

vertical axis shows the relative (logarithmic) effort of correcting defects, assuming

the cost in the coding phase is 10.

Figure 4 Boehm's Results[6] Vs. Japanese Multi-Vendor Project

In the figure, the solid line shows the escalation in cost-to-fix versus phase at

IBM[12], GTE[9],and TRW[4], and the dotted line shows the escalation for two

smaller, less formal projects analyzed by Boehm[5]. As a result of the analysis,

Boehm summarized:

 The error (defect) is typically 100 times more expensive to correct in the

maintenance phase on large projects than in the requirement phase[6].

 Although the effect on smaller projects is less pronounced, a 4:1 escalation in

cost-to-fix between the requirement and the integration test is observed in

Figure 4[5].

The results of our study, which are shown as rectangles in Figure 4, support these

past results of the 1970s and 80s. In our study, defect correction effort in the

system test is about four times larger on average than in the coding/unit test.

6. SUMMARY

This paper analyzed the factors that influence the defect correction effort and how

these factors are related to each other, based on the defect data collected from a

Japanese multi-vendor information system development project. Our findings

include the following:

 The well-known principle “defects are more expensive the later they are

detected” was confirmed quantitatively. When defects were detected in the

“coding/unit test” phase, the mean correction effort was small (1.7

person-hours), but when detected in the ”system test” phase, it became much

larger (8.29 person-hours).

 Another principle, “defects are more expensive the longer they survive in

software,” was also confirmed. When the detection delay (between defect

introduced- and detected- phase) was zero, the mean correction effort was low

(1.7 person-hours), but when the delay became two phases, it increased to 7.54

person-hours.

 Further analysis of defect introduced phase and detected phase revealed that

defects detected in the “coding/unit test” have a low cost and those detected in

the “system test” have a high cost regardless of their introduced phase. On the

other hand, for defects detected in the “integration test,” correction effort

significantly increased when they were introduced in “detail design” (5.5

person-hours). These results suggest that “design defects” are best detected by

the unit test and “coding defects” by the integration test phase.

 Some causes of detection delay showed significant influences. The correction

effort increased when the cause was “testing was carried forward to later

phases due to the testing environment” (7.55 person-hours).

 Two other factors, severity and repeatability, also influenced the defect

correction effort. The mean correction effort for low-severity defects was low

(0.88 person-hours) and that for low-repeatability defects was high (3.70

person-hours).

These results would be useful for project managers to select more cost-effective, i.e.

higher ROI (Return on Investment), actions in development. For example, to

decrease the cost by detecting ”design defects” before the integration test, a

project manager might assign different engineers to design and programming in

order to check for design defects in the coding phase. On the other hand, if some

test cases were difficult to execute upstream due to the testing environment, a

manager would have to weigh the risks of carrying the test forward.

Moreover, we found that in the multi-vendor development the result has strategic

value as organizational level[22], and it shows importance of total quality

management(TQM) with top management support from data collection to process

improvement[9].

The major limitation of this paper is that we focused only on defects introduced at

and after the design phase, and thus requirement defects were out of the scope of

the current work. However, since requirement defects are usually more expensive

to remove, we need to analyze the factors of their correction effort in future study.

ACKNOWLEDGMENTS

This work is supported by the Comprehensive Development of e-Society

Foundation Software program of the Ministry of Education, Culture, Sports,

Science and Technology.

We thank the companies that belong to COSE (COnsortium for Software

Engineering), researchers at SEC (Software Engineering Center) and the EASE

Project for collaborating on the data collection and analysis.

REFERENCES

[1] IEEE Standard 1044-1993 IEEE Standard Classification for Software
Anomalies, 1993.

[2] Bassin, K.A., Kratschmer, T., and Santhanam. P., ”Objectively evaluating
software development,”, IEEE Software, 15(6), 1998, 66-74.

[3] Bhandari, I., Halliday, M., Traver, E., Chaar, D.B.J., and Chillarege. R.,
“A case study of software process improvement during development,”
IEEE Trans. on Software Engineering, 19(12), Dec, 1993, 1157-1170.

[4] Boehm, B.W., “Software engineering,” IEEE Trans. on Computers, 25(12),
1976, 1226-1241.

[5] Boehm, B.W., “Developing small-scale application software product: some
experimental results,” In Proceedings of IFIP (International Federation
for Information Processing) Congress, 1980, 321-326.

[6] Boehm, B.W, Software Engineering Economics, Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[7] Card, D., “Learning from our mistakes with defect causal analysis,” IEEE
Software, 15(1), January/February 1998, 56-63.

[8] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B.,
and Wong, M., “Orthogonal defect classification-a concept for in-process,”
IEEE Trans. on Software Engineering, 18(11), Nov. 1992, 943-956.

[9] Chow, W.S., Lui, K.H., "A structural analysis of the significance of a set of
the original TQM measurement items in information systems functions",
Journal of Computer Information Systems, 43(3), 2003, pp.81-91.

[10] Daly. E., “Management of software development,” IEEE Trans. on
Software Engineering, 3(3), 1977, 229-242.

[11] Endres, A., and Rombach, D., A Handbook of Software and Systems
Engineering, Empirical Observations, Laws and Theories, Pearson
Education Limited, UK, 2003.

[12] Fagan, M.E., “Design and code inspections to reduce errors on program
development,” IBM Systems Journal, 15(3), 1976.

[13] Fox, L. T., “Maintaining Quality in Information Systems,” Journal of
Computer Information Systems, 39 (1), 1999, 76-80.

[14] Hiemann, P., “A new look at the program development process,” In
Programming Methodology, Lecture Notes in Computer Science, 23,
1974.

[15] Ishikawa, K., What Is Total Quality Control? The Japanese Way,
translated by D. J. Lu, Prentice-Hall, INC., Englewood Cliffs, New Jersey,
1985.

[16] Kim, S., Chung, Y , “Critical success factors for is outsourcing
implementation from an interorganizational relationship perspective”,
Journal of Computer Information Systems 43(4), 2003, 81-90.

[17] Leszak, M. , Perry, D. and Stoll, D., ”A case study in root cause defect
analysis”, In Proceedings of the 22nd International Conference on
Software Engineering, 2000, 428-437.

[18] Leung, H., “Organizational factors for successful management of
software development,” Journal of Computer Information Systems, 42(2),
2002, 26-37.

[19] Mays, R., Jones, C., Holloway, G., and Studinski, D., “Experiences with
defect prevention,” IBM Systems Journal, 29(1), 1990.

[20] Nakajo, T., and Kume, H., ”A case history analysis of software error
cause-effect relationships,” IEEE Trans. on Software Engineering, 17(8),
Aug. 1991, 830-838.

[21] Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K., Barker, M.,
and Torii, K., “Empirical project monitor: A system for managing
software development projects in real time,” In Proceedings of 3rd
International Symposium on Empirical Software Engineering
(ISESE2004)}, 2004, 37-38.

[22] Subramanian, G.H., Nosek, J.T., “An empirical study of the measurement
and instrument validation of perceived strategy value of information
systems,” Journal of Computer Information Systems 41(3), 2001, 64-69.

