
Fine-grained Analysis of Global Software Development Process

Shuji Morisaki, Tomoko Matsumura, Kimiharu Ohkura, Kyohei Fushida,
Shinji Kawaguchi, Hajimu Iida

Graduate School of Information Science, Nara Institute of Science and Technology,

8916-5 Takayama, Ikoma, Nara, Japan

Abstract

This paper proposes a method for micro process
analysis of ongoing distributed software development.
Micro process analysis firstly identifies process
instances by matching logs of software development
tools with pre-defined micro (fine-grained) process
models. Micro process metrics can be measured from
identified process instances. In distributed or multi-
sited software development environment, micro
process metrics provide project manager with more
visibility to precise process execution and also to
precise monitoring. As an empirical study, we
retrospectively applied micro process analysis to bug
fixing process in organizations attending a multi-site
project of commercial software development. In the
study, process instances are extracted from histories of
CVS (a source code configuration management
system) and GNATS (a bug tracking system) based on
a bug fixing procedure predefined in the project. We
confirmed that extracting and visualizing process
instances helps to identify accuracy of process
executions as well as accuracy of logging.

1. Introduction

Multi-site software development becomes more and
more popular. In multi-site software development, low
visibility to the development process easily lead to low
software quality or delivery slippage. Thus, methods
and tools to visualize product status and change
histories in distant site have been proposed. Froehlich
et al. proposed Augur [2] in order to provide more
visibility and insight by visualizing source code
produced date for providing visibility in distributed
software development team. Zimmerman et al.
proposes ROSE[6] that visualizes source code version
history. While such practices are broadly made to
product itself, procedural aspects of the product
manipulations as fine-grained software process were

not sufficiently studied in realistic situations. One
major reason is that collecting process data
automatically, including efforts and durations of
activities, is difficult and process data are mainly
identified and manually collected.
Meanwhile, studies of evaluating or assessing software
process executions fall into two categories. One is the
qualitative assessment approach like CMMI [1] which
requires highly trained assessors. The other is
quantitative evaluation of process execution histories
based on artifacts such as change management log or
daily activity reports. However, granularity and
resolution of the target process are limited by those of
the documents as the data source.
In the article [4], we are proposing retrospective (i.e.,
after development project has finished) analysis of the
fine-grained process as micro process analysis We
refer to a set of execution histories, generated by
software development tools such as configuration
management systems and integrated development
environments, as fine-grained activity log. Applying
grammatical process model to the activity log leads to
formal and quantitative analysis of software process.
This paper proposes applying micro process analysis to
ongoing distributed, or multi-sited, software
development in order to provide visibility and
opportunities to ask accurate process executions and
monitoring. We applied our methods to a commercial
multi-sited project data and extracted process instances
(process fragments identified in an activity log) By
visualizing the process instances, we found that there
were one issue of logging and two issues of process
executions in the project. The activity logs in the study
are collected from CVS (a configuration management
system) and GNATS (a bug tracking system). The
process model in the study is based on the bug fix
procedure determined in the project. We used a
prototype tool for extraction and visualization of
process instances.

2. Micro process analysis
2.1 Activity log and Software Process Model

In this subsection, the definition of the activity log
is given. Activity log E is defined as a set of sequential
events. Each event e is observed and collected through
execution of software development. An event e)(E∈
consists of 3-tuple <t, s, a> where t represents a time
stamp of the event e occurred, s represents a type name
of the event e, and a (={a1, a2,…an}) represents a set
of attributes of event e. Members in a depends on the
type of e. We don’t set strict assumptions to type and
granularity of events. An event is just assumed to be
collected and recorded automatically by software
development tools, so that every event has a type
associated to its data source, such as change
management log of intermediate and delivered product.
Below is an example of a notation in an activity log of
a document change management tool.

<2006/12/2 13:07, update, {file name
= ”detailed_design_function_document.doc”,
submitted by =”Smith”, comment = “fixes on
the item 0004 in 2nd inspection”>

Event set E can be obtained directly from development
tools logs. Project monitoring environment such as
EPM [5] and Hackystat[3] enable automatic collection
of such activity logs. EPM provides histories of CVS,
GNATS and Mailman by default without specific
modification to each tool, while Hackystat provides
more detailed histories including keystroke logging by
adding sensors to each tool.
We represent a software process as a grammar of
activity sequences. Process model in Fig.1 shows an
example of software process model described as an
activity diagram. The model describes that activity A
involves sequential sub-activities B and C.
2.3 Extracting Process Instances
A process instance is an actual sequence of activities
that happened in the project. Process instances are
extracted by parsing activity log based on a specified
process model. Events corresponding to begin-end pair
or whole execution of activities should be collected in

activity log. Fig. 1 shows an example of process
instance extracted according to the process model in
Fig. 1. In this case, each event in the activity log
corresponds to activity begin/end of A, or whole
execution of B or C. We see that event at 11:08 as A-
begin and event at 13:21 is an A-end. The events for B
and C are observed between A-begin and A-end.
Micro process metrics, such as number of activity
omissions or incorrect sequence, can be obtained from
identified instances. They are useful for evaluating
quality of the process as well as the quality of the
logging itself.
Though there are limitations in interpreting and
extracting process instances due to ambiguity and
uncertainty that naturally exist in software processes,
micro process metrics enables to assess quality of
software process automatically and intuitively.
2.4 Analyzing distributed on-going projects
Micro process analysis can be applied to project in
progress as well as retrospective project. Especially in
distributed software development, micro process
analysis provides valuable opportunities to improve
remote process and also to improve quality of activity
log at low cost.
Fig. 2 shows an overview of distributed software
development using micro process analysis. Fig. 3
shows activity diagram of the procedures of on-time
analysis. First, project manager and development sites
agree to follow the prescriptive process models.
Agreed process models are distributed to each site.
Second, each site collects activity log and sends them
to the project manager periodically. Process instances
are extracted from those activity logs. If project
manager recognizes degrade of process quality such as
omissions of activity, or incorrect sequence, s/he can
ask the site members to refer the specified process
model, or s/he may reconsider the process model itself.
Project manager can also recognize degrade of
collected activity log, e.g. many logs are recorded at
one time (not on-time), or many mismatch of
begin/end of the activities are found. In such cases,
manager

・・・
2006/11/24 11:08 Event A
2006/11/24 11:34 Event B
2006/11/24 13:15 Event C
2006/11/24 13:21 Event A
2006/11/24 18:10 Event A
2006/11/24 18:11 Event B

・・・

・・・
2006/11/24 11:08 EventA1begining

2006/11/24 11:34 Event B1
2006/11/24 13:15 Event C1

2006/11/24 13:21 Event A1end
2006/11/24 18:10 Event A2begining

・・・

Activity log Process model

A

C

B

Process instance

Fig. 1 Process instance extraction from process model and activity log

should check tool settings or operational prescription
for activity logging in the target site.

3 Example Study
3.1 Activity log and process model
As an example study, we applied the micro process
analysis to a commercial software development project
that follows traditional water fall model. The software
was developed by five companies in six distributed
development sites (One company had two sites and the
others had one site). We have analyzed the activity
logs collected from one of those sites. Used process
model was preliminary defined and committed by
those companies.
The activity logs consist of update histories of CVS
(source code configuration management tool) and
state-change histories of GNATS (bug tracking tool)
that were integratedly collected by EPM[5]. Duration
of the target process is approximately one month
including later steps of coding phase followed by unit
testing and integration testing phases. The process
model in Fig. 4 is described based on the bug fixing
procedures to which the members were requested to
follow during the debugging process. The process
consists of code fixing activities corresponding to
operation to CVS and registration and closing of a bug
entry corresponding to operations to GNATS.
Table 1 shows attributes to be registered by developers
in each activity in Fig. 4. When a developer finds a
bug, s/he registers statements of bug (“register to
GNATS” in Fig. 4). A statement includes detected date
time, assigned developer, description of bug and
priority. A unique identifier is automatically assigned
to the bug and status is set to be “get started” by
GNATS. The assigned developer checks out source
code from CVS to fix the problem if necessary (“check

out source code” in Fig. 4). The developer locates and
corrects the defect then confirms the fix by testing. If
the developer decides that the bug is fixed, s/he checks
in the modified source code to CVS (“check in source
code” in Fig. 4). The bug identifier assigned at
“Register to GNATS” activity is manually specified as
a comment of checking in. The developer changes the
bug status in GNATS to “resolved” (activity Change
status in GNATS to “resolved” in Fig. 4).
3.2 Visualization of process instances
Fig. 5 is visualized output of process instance
extraction tool. In Fig. 5, vertical axis and horizontal
axis represents date time and bug identifier
respectively. The process instances are plotted
according to bug ID and date of the start time. Events
in each process instance are plotted according to time
stamp obtained from activity log. Diamonds, squares,
triangles and Xs in Fig. 5 represent “Remember
detected date time”, “Register to GNATS”, “Check in
source code” and “Change status in GNATS to
resolved” respectively. Each valid (no omission or
miss-ordering) process instance is identified as a
sequence of these four marks.
Both of quality of process executions and quality of
logging were observed in extracted instances. Fig. 5(a)
is an example of low quality of logging. Process data
for bugs no. 96 through no. 108 were recorded at once
though each bug is actually detected, fixed and closed
at different date time. Fig. 5(b) and (c) are examples of
low quality of process executions. The process
instance surrounded by dotted box (b) in Fig. 5 is an

Project
manager

Collecting
tool

Process model

Process
instance
viewer

Activity
logs

Site A

Collecting
tool

Site B

Activity
log

Activity
log

Fig. 2 Overview of real time process analysis

Define process model

Distribute process model

Collect activity log

Project manager Development site

Apply micro
process analysis

Request more
precise logging

[incorrect sequence, omission]
Improve logging quality

Improve process quality

[problem with logging quality]

Request more
precise process

Fig. 3 Activity diagram of multi-site process
analysis

Table 1 Attributes of processes (in part)
Activity Manually provided attributes.
Activity 1
Record detected
date / time

Detected date/time
(not automatically logged,
to be passed to activity 2)

Activity 2
Register to
 GNATS

Bug ID, bug description,
date/time, priority,
assigned developer, etc.

Activity 3
Check in source
code

Bug ID

omission of an activity (checking in modified source
code). Fig 5 (c) is an incorrect sequence of checking in
modified source code and changing status to
“resolved”.

3.3. Discussion
Through the example studies, we confirmed that micro
process analysis can extract process instances and
measure micro process metrics such as omissions of
activity or incorrect sequence. Process instances in the
study were extracted and visualized after the project
had finished. However, process instances can be
extracted and visualized during project is in progress.

Extracting and visualizing process instances lead to
increase visibility and opportunities to improve quality
of process executions and logging especially in
distributed software development. Quality of process
executions is measured by followings:
• Omissions of activities
• Incorrect sequence of activities, and
• Invalid attributes
Quality of logging is inferred from followings:
• Inputs in a lump, and
• Missing inputs or operations (leave status

unchanged)
Measuring execution time of each activity enables to
detect potentially missing activities. For example, if
duration from activity 3 exceeds twenty four hours,
manager may notify developer that activity 4 is
potentially omitted. Practically, actual notifications
should be limited depending on risks caused by
omission, because too many notifications are generally
unwilling.
The micro process analysis evaluates not only quality
of process instances but also feasibility of process
model and procedure. For example, order violations
between two activities activity1:”check-in source
code” and activity2:”close bug track,” suggest that
bug-track is closed before the source code was
checked-in. However, this many not be harmful if
these activities happened in a short time,. Therefore,
the manager may want to refine the model to accept
such sequence as valid.
Though we believe that micro process analysis
provides various valuable metrics at last, there are still
some limitations and issues to be addressed. First,
extraction of process instance doesn’t always succeed
and generally requires much computation. In the case
study, missing attribute at activity 2 (bug ID) caused
fails to extract process instance. Handling method for
erroneous or ambiguous sequence should be
considered for such cases. Also, the discussion of
generic or specific algorithm for automatic extraction
is required. Second, the accuracy of activity log should
be carefully considered. Reflecting actual activity in
activity logs depends on operation procedures of tools.
When process models and operation procedures are
defined, how far activity logs reflect actual activity
should be taken into consideration. Collection
environment that provides higher accuracy and better
granularity for micro process analysis should be
discussed.

Register
to GNATS

Modify
source code

Test for
modification

Check in
source code

Change status
to “resolved”

Bug detected

Check out
source code

Bug fixed

GNATS CVS
Record

detected
date time

Fig. 4 Activity diagram for bug-fixing
process model

4. Conclusion

In this paper, we proposed a method for micro process
analysis to distributed software development. Micro
process analysis provides project manager with
visibility of distributed sites. It also provides project
manager with opportunities to ask development
members to improve both quality of process executions
and quality of logging, if necessary. As an empirical
study, process instances are extracted from process
model and activity logs collected in commercial
software development. We confirmed that extracting
and visualizing process instances potentially lead to
identify issues in process executions by indicating an
omission of activities and incorrect sequences of
activities. We also confirmed that extracting and
visualizing process instances potentially lead to
identify issues in logging by indicating a chunk of
input.
We are currently proceeding micro process analysis to
a multi-vendored and distributed project to capture
organizational characteristics from the view point of
the process metrics. Future topics include evaluating
the proposed method in ongoing project and further
discussion for classification or limitation of process
model and micro process analysis at different process
model or different kind of activity logs.

Acknowledgement
Part of this research is supported by the
Comprehensive Development of e-Society Foundation

Software program of the Ministry of Education,
Culture, Sports, Science and Technology of Japan. The
authors would like to thank members of EASE project.

1. CMMI Product Team, “CMMI for Systems Engineering /

Software Engineering / Integrated Product and Process
Development / Supplier Sourcing. Version 1.2.,” CMU /
SEI-2006-TR-008 (2006)

2. Froehlich J. and Dourish P., “Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams,” Proceedings of International
Conference on Software Engineering, pp.387-396 (2004)

3. Johnson P. M., Kou H., Agustin J. M., Chan C., Moore C.

A., Miglani J., Zhen S., Doane W. E.: "Beyond the
Personal Software Process: Metrics collection and
analysis for the differently disciplined", In Proceedings of
the 2003 International Conference on Software
Engineering, pp. 641 (2003)

4. Morisaki S., Matsumura T., Ookura K., Fushida K.,
Kawaguchi S. and Iida H., “Micro Process Analysis for
Empirical Software Engineering Data,” 2006-SE-154-(2),
Information Processing Society of Japan, pp. 9-15, (2006)

5. Ohira M., Yokomori R., Sakai M., Matsumoto K., Inoue
K., Torii K., “Empirical Project Monitor: A Tool for
Mining Multiple Project Data,” Proceedings of
International Workshop on Mining Software Repositories,
pp. 42-46, (2004)

6. Zimmermann T., Weisgerber P., Diehl S., and Zeller A.,
“Mining Version Histories to Guide Software Changes,”
Proceedings of International Conference on Software
Engineering, pp.563-572, (2004)

(a) input in a lump

defined processdefined processdefined process

(b) omission

(c) incorrect sequence(c) incorrect sequence

Fig. 5 Visualized process model

