
A SCALABLE SENSOR APPLICATION FRAMEWORK BASED ON
HIERARCHICAL LOAD-BALANCING ARCHITECTURE

Yoji Onishi † , Hiroshi Igaki‡ , Masahide Nakamura‡ , and Ken-ichi Matsumoto†

† Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, 630-0192 Japan

email:{yoji-o, matumoto}@is.naist.jp
‡ Graduate School of Engineering, Kobe University
1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan

email:{igaki, masa-n}@cs.kobe-u.ac.jp

ABSTRACT
Many integrated services with sensors and its appliances

become common in our daily life. In most of those
services, the application and sensors are tightly-coupled.
This causes the implementation of the application becomes
more complicated. Moreover, network load between the
application and the sensor and processing load to evaluate
the sensor data increase severely. As the number of sensors
to connect increases, the problems become more serious.

In this paper, we propose a scalable sensor application
framework. Using a standardized API, applications can ac-
cess any sensors without implementing any sensor-specific
procedure. Furthermore, the application delegates a part of
evaluation process of the trigger conditions to the sensor.
Due to the delegation, network load is minimized because
the application communicates with the sensor only when
the status of the registered condition is changed. Using
these methods, we evaluate this framework qualitatively us-
ing sequence diagrams of sensor applications.

KEY WORDS
sensor driven service, sensor middleware, event based inte-
gration, loose-coupling, load-balancing

1 Introduction

With the emerging ubiquitous technologies, various objects
including appliances and sensors have been equipped with
network functionalities. Appliances mutually connected
through the network provide users with value-added inte-
grated services. Especially, integrated services consisting
of sensors and appliances are expected to realize more so-
phisticated service behavior based on the states of environ-
ment, appliance and human.

For example, the sensor light[1] and the automatic
door[2] use a human-detect sensor to activate a light and
a door. The automatic climate control[3] and the automatic
sensor faucet[4] use temperature sensors and a hand sen-
sor. As a more complicated example, [5] proposes an auto-
mated living assistance system focusing on the support of
handicapped and elderly people in their own homes with

monitoring user’s health condition. This kind of ubiquitous
applications (hereafter, we call this kind of application a
sensor application) is mainly installed in a home network
system or a building management system.

In most of these applications, the application and sen-
sors aretightly-coupled. Each application includes sensor-
specific descriptions to access and interpret the sensor data
within the implementation. As the numbers and variety of
the sensors grow, the implementation of the application be-
comes more complicated. Excessive complexity of imple-
mentation causes lowering the software quality about main-
tainability, extensibility, etc.

Low scalabilityis another problem. Sensors monitor
the values of environmental attributes continually. Simi-
larly, the sensor application has to meet the changing values
of sensors, and select adequate behaviors from pre-defined
rules continually. If the numbers of applications and sen-
sors increase, network load between the application and the
sensor and processing load to evaluate the sensor data also
increase severely.

In this paper, we propose a scalable sensor applica-
tion framework to support development of various sensor
applications using multiple sensors and appliances. In our
framework, to avoid the tightly-coupled problem, we wrap
the sensor device with a service layer. The service layer
includes sensor-specific descriptions and publicizes stan-
dardized API using Web Service[6]. Applications based on
any platforms and programming languages can access any
sensors through the API without implementing any sensor-
specific procedure.

Next, we focused on trigger conditions in sensor-
driven services. If a trigger condition becomes true, the
application activates corresponding actions based on pre-
defined rules. The condition is commonly expressed as a
threshold condition of the sensor property (For example, in
the case of a temperature sensor, as a threshold condition,
”if temperature becomes more than 27” is used).

In our framework, the application delegates a part of
evaluation process of the trigger conditions to the service
layer. The application registers a trigger condition to the
sensor which is related to the condition. Each service layer

598-178 37

debbie
SE 2008

evaluates the registered conditions continuously with the
value of the sensor. If states of any condition are changed,
the service layer notifies their states to the application. In
this architecture, network load is minimized because the
application communicates with the sensor only when the
status of the registered condition is changed. Since a part
of the trigger condition is evaluated by each service layer,
the processing load is also decreased.

Furthermore, we propose a meta-sensor framework
for more complicated sensor-driven service. The compli-
cated services require evaluating more complicated condi-
tions including multiple sensors. The meta-sensor frame-
work provides hierarchical combination of multiple service
layers. For instance, the following service can be devel-
oped. ”if temperature ≥ 28 and humidity ≥ 70%,
air conditioner is set to 25 degrees”

In this paper, we classify problems of the conven-
tional sensor applications, and describe the proposed sensor
application framework to solve the problems. We qualita-
tively evaluate the framework using sequence diagrams.

2 Preliminary

2.1 Sensor Driven Service

In a sensor-driven service, various sensors (e.g., a temper-
ature sensor, a humidity sensor, a human-detect sensor, an
IR distance sensor and a light sensor) are used. Each sensor
has a single property and monitors environmental attributes
within the specification limits for the property1.

We definesi ∈ S(1 ≤ i ≤ n) as a sensor, and every
sensorsi has one propertypi which has a property typeti.
pi can take a valuevi which must be of typeti. In gen-
eral, everyvi is derived from an environmental attribute
ei. Note, however, thatpi takes a value depending on the
implementation ofsi. Thus, sensors developed by differ-
ent vendors usually represent different property values for
the same environment attribute. Also, thevi is not nec-
essarily the same as the actual value ofei. Usually, each
si assumes a functionfi, which translates the measured
vi into ei (i.e., ei = fi(vi)). For instance, temperature
sensor of Phidget[7]sp has a propertypp. pp can take a
valuevp. vp indicates values within the limits of typetp
(int {40..700}). If an application wants to get a tempera-
tureep, the application has to translatevp into ep with the
functionfp(vp) = (vp − 200)/4.

The main role of sensors in sensor applications is to
get current value of the environmental attribute. The ap-
plication manages subscribedenvironmental conditionsto
activate pre-defined actions of sensor-driven services. To
evaluate whether the conditions become true or not, the ap-
plication communicates with sensors continually. In this
paper, we define the environmental condition as follows.

1For simplify, we regard a sensor with two or more properties as mul-
tiple sensors with single property

Application

Sensor Device A
10Get the current value vi Get ・・・

Sensor Device B Sensor Device C

vA
fA
eA

vB
fB
eB

vC
fC
eC

13 14Get 0.5Read ・・・0.4 0.7ReadRead trueGet ・・・false trueGetGet
API file API

Figure1. Conventional sensor applications

Let E = {e1, e2, ..., en} be a given set of environ-
mental attributes. Anatom(ei) is any logical formula with
respect toei. Theatom(ei) is regarded as an atomic con-
struct for environmental conditionscondE. Every envi-
ronment conditioncondE is defined as a condition over
atom(ei)’s (1 ≤ i ≤ n), specifically given by the follow-
ing BNF.

condE ::
condE && condE (AND)
condE || condE (OR)
! condE (NOT)
(condE)
atom(ei)

A sensor-driven service is defined as a com-
bination of the environmental condition and actions.
For instance, a sensor light service has acondE :
”human detect == true&&brightness < 10” and an
action”turn on the light”.

Generally, the action executed by the application con-
sists of a set of method invocation, such as appliance in-
tegrated services or other service APIs. In this paper, we
don’t focus on details of the actions.

2.2 Conventional Sensor-Applications

Figure 1 shows a typical example of conventional sen-
sor applications with sensor-driven services (e.g., the sen-
sor light[1], the automatic door[2], the automatic climate
control[3], the automatic sensor faucet[4], and the auto-
mated living assistance system[5]).

As shown in the figure, different sensor requests dif-
ferent way for accessing from the application. Further-
more, differentfi is required for translationvi of each sen-
sor intoei. These differences between each sensor affect
the implementation of the application directly. Therefore, a
developer of the applications faces the following two prob-
lems.

Problem P1: Tightly-coupling between sensors and appli-
cations

Problem P2: Low Scalability

38

The kind of sensors used in the application depends
on contents of the services. To update the services and
exchange sensors, a developer must update sensor-specific
description and condition evaluator within the application.
So, problem P1 increases complexity of the applications
and prevents developers from flexible customization of the
services.

Problem(P2) of low scalability is originated from net-
work load and processing load in the application. As the
number and the variety of the service grow, sensors used in
the application increase. As shown in the figure 1, the ap-
plication has to get the value from the sensors continuously.
Namely, the application has to keep monitoring the sensed
values and evaluating the environmental conditions to ex-
ecuteatcions corresponding to the sensor-driven services.
As a result, too many sensors weigh heavily in performance
of the applications severely.

In the following section, we introduce our sensor ap-
plication framework to resolve these problems.

3 Sensor Application Framework Based on
Hierarchical Load-Balancing Architecture

3.1 Key Ideas

We propose the following three key ideas to solve problems
of the application development for sensor-driven services.

(K1) Standardized API and Loose Coupling for Sensor De-
vice

In order to use a sensorsi, the following procedures
are needed. (1)Access and acquire the datavp of the
sensor. (2)Translatevp into ep based onfi. Conven-
tionally, these procedures differ for every application
and every sensor. Then, we wrap each sensor device in
a service layer with standardization APIs of the proce-
dures of (1) and (2). The service layer based on Web
Service[6] doesn’t depend on implementation of ap-
plications and sensors.

(K2) Delegation of Evaluation Process for Environmental
Conditions

The continuing evaluation process for environmental
conditions wastes the throughput of a network and a
processor. In our framework, evaluation of environ-
mental conditions is delegated to the service layer.
The service layer continues monitoring valuesei of
the sensorsi and replies true or false of the condi-
tions, only when its evaluation result changes. This
hierarchical load-balancing architecture improves the
network and processing load.

(K3) Meta Sensor for Complex Environmental Conditions

The service layer denoted by K1 and K2 wraps only
one sensor. Therefore, the environmental condition

Application

Sensor Device

Get the current value ei

Service Layer
vi

eigetStatus()
fi ei

Figure2. Standardized Interface of Propsed Sensor Frame-
work

Application

Sensor Device

ID2:trueTell me when“brightness < 10”, ID:2

Service Layer
subscribe()

notify()

ID condE List Last Condition1 brightness>12 true2 brightness<10 false… condE evaluator
ei

Subscribed Conditions

Figure3. Subscribe and Notify Process in Service Layer

which consists of two or more environmental at-
tributes must be evaluated by the application. In or-
der to support a sensor application development which
copes with complex environmental conditions, we
propose ameta-sensorframework. The framework
consisting of the service layer and a meta sensor can
correspond tocondE including multiple environmen-
tal attributes. The meta sensor dividescondE per
atom(ei) and evaluate wholecondE based on notifi-
cation from the service layer of the sensor correspond-
ing to theatom(ei). This meta-sensor framework also
adopts the hierarchical architecture. The processing
and network load are distributed to the meta-sensor
and the service layer of the sensors hierarchically.

3.2 Standardized API and Loose Coupling

Figure 2 shows a service layer with standardized API. Ev-
ery service is wrapped by the service layer. The service
layer changesvi of the sensor intoei of the environmental
attribute. An application can acquire the processed dataei

of the sensorsi with standardized APIgetStatus(). The
API of the service layer is realized by Web Service. Proce-
dure to call the API doesn’t depend on development plat-
forms or programming languages of the application.

As a result, loose coupling between the application
and the sensor is achieved by this service layer.

3.3 Delegation of Evaluation Process

The service layer denoted in Section 3.2 enables every ap-
plication to access with standardized procedure. However,

39

the application has to continue callinggetStatus() and
evaluate environmental conditions continually. For load-
balancing of network and processors, we realize hierarchi-
cal delegation of evaluation process for environmental con-
ditions.

Figure 3 is the improved service layer. The
subscribe() method of the service layer receives subscriber
id and the environmental condition related to the environ-
mental attributeei of the sensorsi as inputs.

Generally, a simple sensor-driven service is pro-
vided in form of if(condE == true)then{action} or
while(condE == true){action}. In if -based service,
the service layer has to notify the evaluation result to the
application only whencondE becomes true. On the other
hand, inwhile-based service, the application needs a noti-
fication, not only whencondE becomes true, but when it
becomes false.

So, the service layer evaluates the subscribed envi-
ronmental conditions continuously based on the value of
ei, and notifies evaluation results(true/false) and subscriber
id to the corresponding application only when the results
change.

Since continuous polling by the application to the sen-
sor becomes unnecessary, and the load of condition evalu-
ator is distributed by the multiple service layers used in the
application, a network load and processing load of the ap-
plication are reduced.

For instance, we consider a sensor-driven service
”while(brightness < 10){turn on the light}”. First,
the application subscribes the conditionbrightness <
10 with a subscriber ID to the sensor. So the
service layer immediately evaluates the environmental
conditions(brightness < 10), and notifies the current
condition status”false” to the application. The service
layer continuously monitorsbrightness and evaluate the
subscribed conditions. If the evaluation result changes to
”true”, the service layer notifies the application of the re-
sult and subscriber ID. After that, if the result changes to
”false”, the service layer notifies again. Like this, the ap-
plication can always receive the newest evaluation result
from the sensor. In this example, the application contin-
ues to run{turn on the light} only when the notification
from the sensor is”true”.

3.4 Meta Sensor for Complex Environmental Condi-
tions

The framework described by Section 3.3 can enable a de-
veloper to create easily the application forcondE which
contains only one kind ofei. However, it is difficult to
cope with complexcondE includes multiple environmen-
tal attributes by the application based on the framework. In
this section, we explain a meta-sensor framework for pro-
cessing complicated environmental conditions.

Figure 4 shows our meta-sensor framework. The
framework consists of the service layer and a meta-sensor.
The service layer is completely the same as what is de-

Service Layersubscribe()

Applicationnotify()

Meta Sensor
Service Layersubscribe()

notify()

getStatus()

Service Layersubscribe()

condE evaluator

human_detect== true

condE

brightness<10

condE
condE LastID List Condition1 sIdA && sIdB true2 sIdA || sIdC false…

divider

SubscriberID atom(ei)sIdA human_detect== truesIdB brightness<10…
ei sihuman_detect HDS(http://HDS/wsdl)brightness BS (http://BS/wsdl) updateSubscribed Conditions

Registered Sensors

Atomic Conditions

(1)(2)
(3)

(2)
Human DetectSensor（HDS) Brightness Sensor（BS)

Figure4. Proposed meta-sensor framework

scribed in Section 3.3. It receivescondE and subscriber ID
as inputs ofsubscribe(). condE is evaluated by the service
layer and the evaluation result is notified to the application
only when the result changes.

The meta-sensor manages correspondence between
sensorsi(in form of WSDL[8]) andei in condE, and per-
forms the following three procedures.

(1) dividescondE peratom(ei)

(2) calls subscribe() of si corresponding toei in the
atom(ei) to register the atomic construct.

(3) updates the status(true/false) ofatom(ei) in condE
managed in the service layer whenever notification
from si is received.

Wheneveratom(ei) is updated by the meta-sensor,
the service layer evaluates the wholecondE.

For example, we explain about executing the follow-
ing sensor-driven service.

condE : ”human detect == true&&
brightness < 10”

while(condE){action : ”turn on the light”}
This service uses two sensors, a human-detect sen-

sor and a light sensor. The human-detect sensor corre-
sponds to the environment attribute ”humandetect”, and
the light sensor corresponds to the environment attribute
”brightness”. First, the application subscribes thecondE
to the service layer of a meta-sensor, and waits notifica-
tion about thecondE. The meta-sensor divides thecondE
into two atomic constructs,human detect == true and
brightness < 10. Thesubscribe() of each sensor related
to each construct is called by the meta-sensor. Then, the
meta-sensor updates state of the atomic constructs within
condE in the service layer whenever the meta-sensor re-
ceives a notification from each sensor. The service layer
also evaluates the wholecondE simultaneously. If the eval-
uation result ofcondE changes, the service layer notifies

40

Application SensorDevice
Check whether theatom(ei) changed
Get current viReturn the vi
Get current viReturn the viCheck whether theatom(ei) changed

Figure 5. Sequence diagram of sensor-driven service by
conventional sensor applicationApplication Service Layer SensorDeviceSubscribe atom(ei)with the subscriber ID

Notify changed statusand the subscriber ID

Return initial status
Check whether theatom(ei) changed
Check whether theatom(ei) changed

Get current viReturn the viGet current viReturn the vi
Get current viReturn the vi

Figure6. Sequence diagram of a simple sensor-driven ser-
vice by our sensor framework based application

the result to the application. Like this, the application can
perform the sensor-driven service with complex environ-
mental conditions easily.

4 Discussion

4.1 Qualitative Evaluation

Figure 6 shows a sequence diagram[9] of a simple sensor-
driven service by our proposed sensor framework based
application. The service contains only one environmen-
tal attribute. As shown in this figure, communication be-
tween the application and the sensor is performed only
when the state ofatom(ei) evaluated by the service layer
changes. Based on the notification, this framework guar-
antees that the application always has the newest state of
atom(ei). Figure 7 shows a sequence diagram in the case
of more complicated sensor-driven service with our meta-
sensor framework based application. In our meta-sensor
framework, complexcondE is divided per an atomic con-
struct, and processing of subscribe/notify is distributed per
a sensor. As mentioned above, even if the number of sen-
sors used in the application increases, processing load for
evaluation ofcondE is distributed to the meta-sensor and
the service layer of each sensor, appropriately.

On the other hand, conventional sensor applications

(Figure 5) have to check current data of the sensor and eval-
uatecondE continually to keep the newest state. In this
architecture, both network load and processing load con-
centrate on the application.

As the number of the applications increases, the sub-
jects about the standardized interface and load-balancing
become more significant. Based on these perspectives, our
hierarchical architecture based framework (meta-sensor
and single sensor) is very beneficial to develop the appli-
cations providing various sensor-driven services.

A limitation in our framework, the service layer can-
not evaluate the environmental conditions from which the
threshold value changes dynamically, such ascondE :
”ei > ej”. This is due to the limitation of the service layer
which wraps only one sensor device. We think about more
flexible architecture about the service layer which wraps
two or more sensor devices as the need arises.

4.2 Related Research

Sashima et al.[10] propose Sensor-Event-Driven Service
Coordination Middleware (SENSORD) to fill coordina-
tion gaps between higher-level services and lower-level
sensors. The SENSORD system obtains and stores sen-
sor data into an in-memory data container to achieve fast,
complex analysis of the sensed data. Shankar et al.[11]
propose a framework for policy-based management of a
ubiquitous computing system. In the framework, sensor-
driven services are defined as Event-Condition-Action-
Post-Condition rules. Policy-based management enables
the framework to detect interactions between services.
Though these systems help implementers of context-aware
application services to access sensor data with standardized
procedure, load of network and processing are concentrated
on the system. As a result, increase of the sensors affects
the performance of the whole of system severely.

The research in [12] proposes a publish/subscribe
based middleware for ubiquitous applications with sensors.
With using publish/subscribe message exchange pattern, to
some extent, the load of network and processing are dis-
tributed. The sensor notifies to the middleware only when
subscribed conditions become true. Namely, the complex
conditions including multiple sensors are not considered to
be evaluated in the middleware.

5 Conclusion

In this paper, we proposed a scalable sensor application
framework. This framework provides a standardized API
and a load-balancing architecture for sensor applications.
The API enables the application to access the data acquired
by the various kinds of sensors without depending on the
platforms or programming languages. The architecture im-
proves performance of the applications which provide var-
ious sensor-driven services including multiple sensors.

41

Subscribe each atom(ei) with the subscriber IDGet current viReturn the vi
Check whether theatom(ei) changed

Return initial status
Subscribe condEwith thesubscriber ID
Return initial status Notify changed statusand the subscriber ID

Notify changed statusand the subscriber ID

Meta Sensor Framework

Get current viReturn the viReturn initial statusGet current viReturn the vi

Check whether theatom(ei) changed
Get current viReturn the vi Check whether theatom(ei) changed

Get current viReturn the vi

Check whether theatom(ei) changed
Get current viReturn the viCheck whether thecondE changed Notify changed statusand the subscriber IDCheck whether thecondE changed Check whether theatom(ei) changed

Get current viReturn the vi Check whether theatom(ei) changed
Get current viReturn the vi

Sensor A Sensor B

Evaluate thecondE

Service Layer(Meta Sensor) MetaSensor ServiceLayer(Sensor) SensorDeviceApplication Service Layer (Sensor) SensorDevice

Figure7. The sequence diagram of a complicated sensor-driven service by our meta-sensor framework based application

In the future, we plan to develop several sensor-
applications which use dozens of sensor. Through the ac-
tual development, we compare conventional applications
with our framework-based applications, quantitatively.

Acknowledgements

This research was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-
Aid for Young Scientists (B) (No. 18700062), Start
Up (No.18800060), and Scientific Research (B) (No.
17300007), and by JSPS and MAE under the Japan-France
Integrated Action Program (SAKURA).

References

[1] Matsushita Electric Works Ltd. Katteni switch.
http://biz.national.jp/Ebox/kattesw/.

[2] Nabtesco Corp. Automatic entrance system.
http://nabco.nabtesco.com/english/doorindex.asp.

[3] Daikin Industries Ltd. Air conditioner.
http://www.daikin.com/globalac/.

[4] TOTO USA Inc. Sensor faucet.
http://www.totousa.com/prodcatalog.asp?cid=54.

[5] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm.
Living Assistance Systems: An Ambient Intelligence
Approach. InProc. of the 28th Int’l Conf. on Software
Engineering(ICSE’06), pages 43–50, 2006.

[6] World Wide Web Consortium. Web Services Activity.
http://www.w3.org/2002/ws/.

[7] S. Greenberg and C. Fitchett. Phidgets: Easy Devel-
opment of Physical Interfaces through Physical Wid-
gets. InProc. of the 14th Annual ACM Symposium on
User Interface Software and Technology(UIST’01),
pages 209–218, 2001.

[8] World Wide Web Consortium. Web Ser-
vices Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl.

[9] Object Management Group Inc. Unified modeling
language (uml), version 2.1.1. http://www.omg.org/
technology/documents/formal/uml.htm.

[10] A. Sashima, Y. Inoue, and K. Kurumatani. Spatio-
Temporal Sensor Data Management for Context-
Aware Services: Designing Sensor-Event Driven Ser-
vice Coordination Middleware. InProc. of the
1st Int’l Workshop on Advanced Data Processing in
Ubiquitous Computing (ADPUC’06), 2006.

[11] C. S. Shankar, A. Ranganathan, and R. Campbell. An
ECA-P Policy-Based Framework for Managing Ubiq-
uitous Computing Environments. InProc. of the 2nd
Annual Int’l Conf. on Mobile and Ubiquitous Sys-
tems(MOBIQUITOUS’05), pages 33–44, 2005.

[12] G. Gehlen, F. Aijaz, M. Sajjad, and B. Walke. A Mo-
bile Context Dissemination Middleware. InProc. of
the Int’l Conf. on Information Technology(ITNG’07),
pages 155–160, 2007.

42

