
An Over-sampling Method for Analogy-based
Software Effort Estimation

Yasutaka Kamei1, Jacky Keung2, Akito Monden1, Ken-ichi Matsumoto1

1 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

{yasuta-k, akito-m, matumoto}@is.naist.jp
2 National ICT Australia Ltd., Australian Technology Park, Sydney 1430 NSW, Australia

Jacky.Keung@nicta.com.au

ABSTRACT
This paper proposes a novel method to generate synthetic project
cases and add them to a fit dataset for the purpose of improving
the performance of analogy-based software effort estimation. The
proposed method extends conventional over-sampling method,
which is a preprocessing procedure for n-group classification
problems, which makes it suitable for any imbalanced dataset to
be used in analogy-based system. We experimentally evaluated
the effect of the over-sampling method to improve the
performance of the analogy-based software effort estimation by
using the Desharnais dataset. Results show significant
improvement to the estimation accuracy by using our approach.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Cost estimation

General Terms
Management, Measurement, Experimentation

Keywords
Software effort estimation, analogy, over-sampling, empirical
study

1. INTRODUCTION
Software effort estimation by Analogy has been proposed and
studied to support project resources planning and control [5], [6],
[7]. This method derives an effort estimate from a number of
project features, such as functional size measures, manager's skill
level and software development environment. The procedure of
analogy-based method can be summarized in three steps. First, the
project features of a target project are given as the input. Next,
one or more past analogous projects that are similar to the target
project are identified from a completed projects data repository.
Finally, the effort estimate for the target project is then derived
based on the actual effort values of the analogous projects.
In most of the cases, the number of available past completed
projects that have similar project characteristics with respect to
the target project is small, subsequently the estimation accuracy is
likely to be reduced. Figure 1(a) illustrates an example of an
imbalanced dataset where the number of projects with large
functional size is relatively small. The distances to the nearest

neighboring projects are large and therefore these nearest
neighboring projects becomes less useful for the estimation
purpose. The objective in here is to provide a mechanism to
minimize the distances to the nearest neighboring projects.
In this paper, we propose a novel approach to generate synthetic
project cases and add them to a fit dataset. The approach
described in this paper is called over-sampling method that adds
synthesized projects similar to triangular plots shown in Figure
1(b). As shown in Figure 1(b), the synthetic projects like
triangular plots are added in the middle of functional size to large
of functional size, and then the number of projects that are similar
features with target project would be increased. Hence, the over-
sampling could have potential for the performance improvement
of the analogy-based method. However, to our knowledge, no
study has reported the effects of applying the over-sampling to
general effort estimation. Mittas et al. has proposed “resampling”
such as iterated bagging method [6] that selects some projects
from all projects and uses them as a new dataset. On the other
hand, “over-sampling” means the addition of a new synthetic
project based on characteristics of projects in a dataset. We have
experimentally evaluated the effects of applying the over-
sampling method using the Desharnais dataset from a Canadian
Software house.
Section 2 introduces the over-sampling method. Section 3
describes the details of the evaluation setting. Section 4 provides
the result and discussion of the experiment. Section 5 summarizes
the paper and presents some future directions of research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

Functional size

project
over-sampled
project
target project

Functional size

To
ta

l e
ffo

rt project
target project
knn project

knn project

To
ta

l e
ffo

rt

(a) k-nn projects before over-sampling

(b) k-nn projects after over-sampling
Figure 1. Examples of k-nearest neighboring projects before and
after over-sampling

312

2. OVER-SAMPLING METHOD
An over-sampling method generates synthetic cases based on the
existing cases in a fit dataset. The conventional over-sampling
method, which is suitable to n-group classification problems[1],
can equalize the number of cases of each group in a fit dataset so
as to improve the accuracy of classification models built from the
dataset. In a similar study, Kamei et al. have shown that the
application of the over-sampling methods on fault-prone module
prediction has been promising [4].
This paper extends the over-sampling method for the cases in the
project dataset where its dependent variable (such as effort) is
continuous. First, we calculate the Pearson correlation between
the dependent variable (effort) and each of the independent
variables. Then, one the independent variables having the largest
correlation is divided into x equal interval parts (in this paper, x is
set to 3). For instance, if the functional size has the largest
correlation to the effort, its minimum is 60 and the maximum is
780 in the dataset, it is divided into 3 parts as follows: [60, 300),
[300, 540), [540, 780]. Then, we repeat the steps of the
conventional over-sampling method for each part until the largest
number of projects among all parts becomes equal to the number
of projects in each part. In this paper we use the Synthetic
Minority Over-sampling Technique SMOTE[1], a well-known
over-sampling method. SMOTE generates synthetic project cases
based on the k-nearest neighbors and the steps of SMOTE are the
following.
Step 1. Selection of a minority case
One case (in this paper, a project) denoted as ma is selected from a
minority class in a dataset.

Step 2. Identification of k-nearest neighbors
K-nearest neighbors of ma are identified based on the similarity
computation. Below describes how to compute the similarity.

Step2-1. The normalization of predictor variables
The normalized value norm(vi,j) of variable fj of case mi is
calculated by the following equation:

)min()max(
)min(

)(,
,

jj

jji
ji ff

fv
vnorm

−

−
= (1)

where min(fj) and max(fj) denote maximum and minimum
value in variable fj , respectively.

Step 2-2. Similarity calculation
The similarity between ma and all other cases in the minority
class is calculated. In this paper, we used Euclidian distance
and cosine similarity, which are widely used as similarity
measure.

Step 3. Selection of a neighbor
One case mr was selected randomly from the k-nearest neighbors.

Step 4. Addition of a minority case
A new case was added in a place along a straight line between the
vertexes of the feature vector of cases ma and mr.

3. EXPERIMENT
3.1 Overview
In this experiment, we are over-sampling the dataset before
applying analogy to estimate effort using the Desharnais dataset.
The estimation result is then compare with the result derived

without over-sampling. Each independent variable is normalized
based on equation (1) before applying analogy. We use the
Euclidean distance to compute the similarity between the target
project and each of the completed projects, and an effort estimate
can be derived by averaging the effort of k-nearest neighboring
(k-nn) projects. Note that k is set to 3.
We use conventional performance measures, such as the mean
magnitude of relative error (MMRE), and Pred25[5], [7]. MMRE
is the degree of estimation error against the actual effort. Smaller
MMRE value indicates better estimation accuracy. Pred25 is
defined as the percentage of predictions falling within 25% of the
actual known value. Conversely, a larger Pred25 value indicates
better estimation performance.

3.2 Dataset
The Desharnais dataset is used in this study. This dataset
comprises 77 completed software project data from a Canadian
Software house. It was first reported in Desharnais[2] and was
used in the early study of analogy by Shepperd and Schofield [7].
The project size ranges from 62 FPs to 1116 FPs and the project
effort ranges from 546 person hours to 23940 person hours.
The Desharnais dataset was then divided on the basis of differing
development environments, because it is unlikely that a company
would have access to such large volumes of data, and because
smaller, more homogenous datasets are more useful for effort
estimation. This dataset grouping approach is similar to the study
in [5], [7] and, where the Desharnais dataset is divided into
Desharnais-1(44cases), Desharnais-2(23 cases) and Desharnais-
3(10 cases).

3.3 Experimental Procedure
In this paper, each estimated effort was evaluated by leave-one-
out cross validation. The experimental procedure is as follows.
1. Select one project from a dataset as the target project test.

The others are the completed projects fit.
2. Apply our over-sampling method to fit. The resultant dataset

is fit’.
3. Compare the estimated effort of test based on fit’ to the

actual effort of test.
4. Repeat steps 1 to 3 for all projects in the dataset.

4. RESULT AND DISCUSSION
The performances of the analogy-based effort estimation with the
over-sampling method and without that are shown in Table 1. The
column "% improved" shows the improvement compared to the
no sampling, and the value "-" in the column shows the
deteriorated performance. As shown in Table 1, the performance
of the over-sampling with cosine similarity was better than that of
the over-sampling with Euclidean distance in the all datasets. In
the case of the over-sampling with cosine similarity, the
improvement of MMRE was 3.1% and that value of Pred25 was
17.6% in Desharnais-1. Also, in Desharnais-2, MMRE was
slightly decreased (1.8%), but Pred25 was considerably improved
(37.5%). On the other hand, both of MMRE and Pred25 were
decreased 1.2% and 20% in Desharnais-3.
In addition to Table 1, the estimation performance (MRE and
MAE) of the top 5 large effort projects is shown in Figure 2. The
numbers in x-axis indicate the rank of size of actual effort in each
dataset. The gray bar indicates the case without over-sampling

313

and the white bar indicates the case with over-sampling. The
improvement of MMRE was 10.7% in Figure 2(1)-a and that of
MMRE was 8.5% in Figure 2(2)-a. This means that the estimation
performance of large effort projects was improved in Desharnais-
1 and 2. On the other hand, the estimation performance of the
project 3 in Figure 2(3)-a was heavily decreased by 270.0%. For
this reason, MMRE for Desharnais-3 was decreased by 3.2%.
Further analysis in Figure 3 shows k-nn projects including the
project 3 in Desharnais-2 and the project 3 in Desharnais-3, which
are framed in by dotted rectangles in Figure 2. The project 3 in
Desharnais-2 is the best improved project by over-sampling, and
the project 3 in Desharnais-3 is the worst project by over-
sampling. In Figure 3, x-axis indicates the adjusted function point
(Adj.FP), which is an independent variable that had the largest
correlation to the actual effort. In Figure 3(a), by applying over-
sampling, the distances from target project (proj. 3) to the k-nn
projects became small. We believe that this contributed to the
improvement of performance. On the other hand, in Figure 3(b),
the distances to the k-nn projects became small as well, however,
there was no improvement. As shown in Figure 3(b), the actual
effort of the target project was extremely small although its
Adj.FP was large, that is, this project could be considered an
outlier, Therefore, the estimation performance of Desharnais-3 in
Table 1 and Figure 2 could be decreased.

5. CONCLUSION
In this paper, we argue that applying the over-sampling method to
analogy-based software cost estimation will improve its
prediction accuracy, and the effect has been experimentally
evaluated. The result shows that the performance improvements
as indicated by MMRE and Pred25 are 3.1% and 37.5%
respectively at their maximum. And, for projects with large effort,
the performance improvement as indicated by MMRE was 10.7%
at its maximum.
The result of this work is encouraging and we are anticipating
more experimental trials of our method on other datasets. We will

also consider using other performance measure other than MMRE
in future experimentation, as MMRE is often considered
unreliable[3].

6. ACKNOWLEDGMENTS
This work is being conducted as a part of StagE Project, the
Development of Next Generation IT Infrastructure, supported by
Ministry of Education, Culture, Sports, Science and Technology
and Grant-in-Aid for Japan Society for the Promotion of Science
(JSPS) Fellows (Research No:20009220). Special thanks go to
empirical software engineering research program's members in
NICTA, especially Prof. Ross Jeffery, for their helpful comments
on this study.

7. REFERENCES
[1] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer. SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16:321-357, 2002.

[2] J. M. Desharnais. Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
fonction. Master's thesis, University of Montreal, 1989.

[3] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A
simulation study of the model evaluation criterion MMRE.
IEEE Trans. Software Engineering, 29(11):985-995, 2003.

[4] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.
Matsumoto. The effects of over and under sampling on fault-
prone module detection. In Proc. Int'l Symposium on
Empirical Software Engineering and Measurement
(ESEM'07), pages 196-204, 2007.

[5] J. W. Keung and B. Kitchenham. Optimising project feature
weights for analogy-based software cost estimation using the
mantel correlation. In Proc. Asia-Pacific Software
Engineering Conference(APSEC'07), pages 222-229, 2007.

[6] N. Mittas, M. Athanasiades, and L. Angelis. Improving
analogy-based software cost estimation by a resampling
method. Information and Software Technology, 50(3):221-
230, 2008.

[7] M. Shepperd and C. Schofield. Estimating software project
effort using analogies. IEEE Trans. Software Engineering,
23(11):736-743,1997.

Table 1. Estimation performance of each method

Dataset No sampling
MMRE MMRE % improved MMRE % improved

Desh 1. 0.473 0.468 1.049 0.458 3.121
Desh 2. 0.393 0.440 - 11.929 0.400 - 1.845
Desh 3. 0.488 0.515 - 5.686 0.494 - 1.283

Pred(25) Pred(25) % improved Pred(25) % improved
Desh 1. 0.386 0.409 5.882 0.455 17.647
Desh 2. 0.348 0.435 25.000 0.478 37.500
Desh 3. 0.500 0.400 - 20.000 0.400 - 20.000

Sampling with normalized
cosine similarity

Sampling with normalized
Euclid distance

0

0.5

1

1.5

1 2 3 4 5 6

0
1000
2000
3000
4000
5000

1 2 3 4 5 6
0

2000

4000

6000

8000

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6

0
4500
9000

13500
18000

1 2 3 4 5 6

M
AE

M
R

E

M
AE

M
R

E

M
AE

M
R

E
MMRE MMRE MMRE

MMAE MMAE
(1) - b result in Desh 1.

(1) - a result in Desh 1.

(2) - b result in Desh 2.

(2) - a result in Desh 2.

(3) - b result in Desh 3.

(3) - a result in Desh 3.

MMAE

Figure 2. Estimation performance for the top 5 projects of size
of actual effort

100 200 300 400 500 600 700

20
00

80
00

14
00

0

100 200 300 400 500 600 700

10
00

30
00

50
00

Adj.FP

A
ct

ua
l E

ffo
rt

Adj.FP

A
ct

ua
l E

ffo
rt

original project
over-sampled project

target project
knn project
with sampling

knn project
with no sampling

(a) knn projects of the project 3 in Desh 2.

(b) knn projects of the project 3 in Desh 3.

Figure 3. Examples of k-nn projects in the experiment

314

