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ABSTRACT 
This paper proposes a novel method to generate synthetic project 
cases and add them to a fit dataset for the purpose of improving 
the performance of analogy-based software effort estimation. The 
proposed method extends conventional over-sampling method, 
which is a preprocessing procedure for n-group classification 
problems, which makes it suitable for any imbalanced dataset to 
be used in analogy-based system. We experimentally evaluated 
the effect of the over-sampling method to improve the 
performance of the analogy-based software effort estimation by 
using the Desharnais dataset. Results show significant 
improvement to the estimation accuracy by using our approach. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – Cost estimation 

General Terms 
Management, Measurement, Experimentation 

Keywords 
Software effort estimation, analogy, over-sampling, empirical 
study 

1. INTRODUCTION 
Software effort estimation by Analogy has been proposed and 
studied to support project resources planning and control [5], [6], 
[7]. This method derives an effort estimate from a number of 
project features, such as functional size measures, manager's skill 
level and software development environment. The procedure of 
analogy-based method can be summarized in three steps. First, the 
project features of a target project are given as the input. Next, 
one or more past analogous projects that are similar to the target 
project are identified from a completed projects data repository. 
Finally, the effort estimate for the target project is then derived 
based on the actual effort values of the analogous projects. 
In most of the cases, the number of available past completed 
projects that have similar project characteristics with respect to 
the target project is small, subsequently the estimation accuracy is 
likely to be reduced. Figure 1(a) illustrates an example of an 
imbalanced dataset where the number of projects with large 
functional size is relatively small. The distances to the nearest 

neighboring projects are large and therefore these nearest 
neighboring projects becomes less useful for the estimation 
purpose. The objective in here is to provide a mechanism to 
minimize the distances to the nearest neighboring projects. 
In this paper, we propose a novel approach to generate synthetic 
project cases and add them to a fit dataset. The approach 
described in this paper is called over-sampling method that adds 
synthesized projects similar to triangular plots shown in Figure 
1(b). As shown in Figure 1(b), the synthetic projects like 
triangular plots are added in the middle of functional size to large 
of functional size, and then the number of projects that are similar 
features with target project would be increased. Hence, the over-
sampling could have potential for the performance improvement 
of the analogy-based method. However, to our knowledge, no 
study has reported the effects of applying the over-sampling to 
general effort estimation. Mittas et al. has proposed “resampling” 
such as iterated bagging method [6] that selects some projects 
from all projects and uses them as a new dataset. On the other 
hand, “over-sampling” means the addition of a new synthetic 
project based on characteristics of projects in a dataset. We have 
experimentally evaluated the effects of applying the over-
sampling method using the Desharnais dataset from a Canadian 
Software house.  
Section 2 introduces the over-sampling method. Section 3 
describes the details of the evaluation setting. Section 4 provides 
the result and discussion of the experiment. Section 5 summarizes 
the paper and presents some future directions of research. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany. 
Copyright 2008 ACM  978-1-59593-971-5/08/10...$5.00. 

Functional size

project
over-sampled
project
target project

Functional size

To
ta

l e
ffo

rt project
target project
knn project

knn project

To
ta

l e
ffo

rt

(a) k-nn projects before over-sampling

(b) k-nn projects after over-sampling  
Figure 1. Examples of k-nearest neighboring projects before and 
after over-sampling 
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2. OVER-SAMPLING METHOD 
An over-sampling method generates synthetic cases based on the 
existing cases in a fit dataset. The conventional over-sampling 
method, which is suitable to n-group classification problems[1], 
can equalize the number of cases of each group in a fit dataset so 
as to improve the accuracy of classification models built from the 
dataset. In a similar study, Kamei et al. have shown that the 
application of the over-sampling methods on fault-prone module 
prediction has been promising [4]. 
This paper extends the over-sampling method for the cases in the 
project dataset where its dependent variable (such as effort) is 
continuous. First, we calculate the Pearson correlation between 
the dependent variable (effort) and each of the independent 
variables. Then, one the independent variables having the largest 
correlation is divided into x equal interval parts (in this paper, x is 
set to 3). For instance, if the functional size has the largest 
correlation to the effort, its minimum is 60 and the maximum is 
780 in the dataset, it is divided into 3 parts as follows: [60, 300), 
[300, 540), [540, 780]. Then, we repeat the steps of the 
conventional over-sampling method for each part until the largest 
number of projects among all parts becomes equal to the number 
of projects in each part. In this paper we use the Synthetic 
Minority Over-sampling Technique SMOTE[1], a well-known 
over-sampling method. SMOTE generates synthetic project cases 
based on the k-nearest neighbors and the steps of SMOTE are the 
following. 
Step 1. Selection of a minority case 
One case (in this paper, a project) denoted as ma is selected from a 
minority class in a dataset. 

Step 2. Identification of k-nearest neighbors 
K-nearest neighbors of ma are identified based on the similarity 
computation. Below describes how to compute the similarity. 

Step2-1. The normalization of predictor variables 
The normalized value norm(vi,j) of variable fj of case mi is 
calculated by the following equation: 
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where min(fj) and max(fj) denote maximum and minimum 
value in variable fj , respectively. 

Step 2-2. Similarity calculation 
The similarity between ma and all other cases in the minority 
class is calculated. In this paper, we used Euclidian distance 
and cosine similarity, which are widely used as similarity 
measure. 

Step 3. Selection of a neighbor 
One case mr was selected randomly from the k-nearest neighbors. 

Step 4. Addition of a minority case 
A new case was added in a place along a straight line between the 
vertexes of the feature vector of cases ma and mr. 

3. EXPERIMENT 
3.1 Overview 
In this experiment, we are over-sampling the dataset before 
applying analogy to estimate effort using the Desharnais dataset. 
The estimation result is then compare with the result derived 

without over-sampling. Each independent variable is normalized 
based on equation (1) before applying analogy. We use the 
Euclidean distance to compute the similarity between the target 
project and each of the completed projects, and an effort estimate 
can be derived by averaging the effort of k-nearest neighboring 
(k-nn) projects. Note that k is set to 3. 
We use conventional performance measures, such as the mean 
magnitude of relative error (MMRE), and Pred25[5], [7]. MMRE 
is the degree of estimation error against the actual effort. Smaller 
MMRE value indicates better estimation accuracy. Pred25 is 
defined as the percentage of predictions falling within 25% of the 
actual known value. Conversely, a larger Pred25 value indicates 
better estimation performance. 

3.2 Dataset 
The Desharnais dataset is used in this study. This dataset 
comprises 77 completed software project data from a Canadian 
Software house. It was first reported in Desharnais[2] and was 
used in the early study of analogy by Shepperd and Schofield [7]. 
The project size ranges from 62 FPs to 1116 FPs and the project 
effort ranges from 546 person hours to 23940 person hours. 
The Desharnais dataset was then divided on the basis of differing 
development environments, because it is unlikely that a company 
would have access to such large volumes of data, and because 
smaller, more homogenous datasets are more useful for effort 
estimation. This dataset grouping approach is similar to the study 
in [5], [7] and, where the Desharnais dataset is divided into 
Desharnais-1(44cases), Desharnais-2(23 cases) and Desharnais-
3(10 cases). 

3.3 Experimental Procedure 
In this paper, each estimated effort was evaluated by leave-one-
out cross validation. The experimental procedure is as follows. 
1. Select one project from a dataset as the target project test. 

The others are the completed projects fit. 
2. Apply our over-sampling method to fit. The resultant dataset 

is fit’. 
3. Compare the estimated effort of test based on fit’ to the 

actual effort of test. 
4. Repeat steps 1 to 3 for all projects in the dataset. 

4. RESULT AND DISCUSSION 
The performances of the analogy-based effort estimation with the 
over-sampling method and without that are shown in Table 1. The 
column "% improved" shows the improvement compared to the 
no sampling, and the value "-" in the column shows the 
deteriorated performance. As shown in Table 1, the performance 
of the over-sampling with cosine similarity was better than that of 
the over-sampling with Euclidean distance in the all datasets. In 
the case of the over-sampling with cosine similarity, the 
improvement of MMRE was 3.1% and that value of Pred25 was 
17.6% in Desharnais-1. Also, in Desharnais-2, MMRE was 
slightly decreased (1.8%), but Pred25 was considerably improved 
(37.5%). On the other hand, both of MMRE and Pred25 were 
decreased 1.2% and 20% in Desharnais-3. 
In addition to Table 1, the estimation performance (MRE and 
MAE) of the top 5 large effort projects is shown in Figure 2. The 
numbers in x-axis indicate the rank of size of actual effort in each 
dataset. The gray bar indicates the case without over-sampling 
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and the white bar indicates the case with over-sampling. The 
improvement of MMRE was 10.7% in Figure 2(1)-a and that of 
MMRE was 8.5% in Figure 2(2)-a. This means that the estimation 
performance of large effort projects was improved in Desharnais-
1 and 2. On the other hand, the estimation performance of the 
project 3 in Figure 2(3)-a was heavily decreased by 270.0%. For 
this reason, MMRE for Desharnais-3 was decreased by 3.2%. 
Further analysis in Figure 3 shows k-nn projects including the 
project 3 in Desharnais-2 and the project 3 in Desharnais-3, which 
are framed in by dotted rectangles in Figure 2. The project 3 in 
Desharnais-2 is the best improved project by over-sampling, and 
the project 3 in Desharnais-3 is the worst project by over-
sampling. In Figure 3, x-axis indicates the adjusted function point 
(Adj.FP), which is an independent variable that had the largest 
correlation to the actual effort. In Figure 3(a), by applying over-
sampling, the distances from target project (proj. 3) to the k-nn 
projects became small. We believe that this contributed to the 
improvement of performance. On the other hand, in Figure 3(b), 
the distances to the k-nn projects became small as well, however, 
there was no improvement. As shown in Figure 3(b), the actual 
effort of the target project was extremely small although its 
Adj.FP was large, that is, this project could be considered an 
outlier, Therefore, the estimation performance of Desharnais-3 in 
Table 1 and Figure 2 could be decreased. 

5. CONCLUSION 
In this paper, we argue that applying the over-sampling method to 
analogy-based software cost estimation will improve its 
prediction accuracy, and the effect has been experimentally 
evaluated. The result shows that the performance improvements 
as indicated by MMRE and Pred25 are 3.1% and 37.5% 
respectively at their maximum. And, for projects with large effort, 
the performance improvement as indicated by MMRE was 10.7% 
at its maximum. 
The result of this work is encouraging and we are anticipating 
more experimental trials of our method on other datasets. We will 

also consider using other performance measure other than MMRE 
in future experimentation, as MMRE is often considered 
unreliable[3].  
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Table 1. Estimation performance of each method 

Dataset No sampling
MMRE MMRE % improved MMRE % improved

Desh 1. 0.473 0.468 1.049 0.458 3.121
Desh 2. 0.393 0.440 - 11.929 0.400 - 1.845
Desh 3. 0.488 0.515 - 5.686 0.494 - 1.283

Pred(25) Pred(25) % improved Pred(25) % improved
Desh 1. 0.386 0.409 5.882 0.455 17.647
Desh 2. 0.348 0.435 25.000 0.478 37.500
Desh 3. 0.500 0.400 - 20.000 0.400 - 20.000
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Figure 2. Estimation performance for the top 5 projects of size 
of actual effort 
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Figure 3. Examples of k-nn projects in the experiment 
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