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ABSTRACT 
This paper proposes a fault-prone module prediction method that 
combines association rule mining with logistic regression analysis. 
In the proposed method, we focus on three key measures of 
interestingness of an association rule (support, confidence and 
lift) to select useful rules for the prediction. If a module satisfies 
the premise (i.e. the condition in the antecedent part) of one of the 
selected rules, the module is classified by the rule as either fault-
prone or not. Otherwise, the module is classified by the logistic 
model. We experimentally evaluated the prediction performance 
of the proposed method with different thresholds of each rule 
interestingness measure (support, confidence and lift) using a 
module set in the Eclipse project, and compared it with three 
well-known fault-proneness models (logistic regression model, 
linear discriminant model and classification tree). The result 
showed that the improvement of the F1-value of the proposed 
method was 0.163 at maximum compared to conventional models. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management– Software quality 
assurance 

General Terms 
Management, Reliability, Experimentation 
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mining, logistic regression analysis 

1. INTRODUCTION 
Identification of fault-prone modules, which may need rework 
and/or comprehensive testing, is an important issue in software 
quality assurance [3][5][6]. Various multivariate modeling 
techniques applicable to fault-prone module prediction have been 
proposed, including linear discriminant analysis, logistic 
regression analysis and classification tree. Particularly, this paper 
targets the logistic regression analysis, which is one of the 
commonly used modeling techniques [2][5]. Given a module, a 
logistic regression model computes the probability that the 
module has a fault (i.e. fault-prone) based on its module metrics. 
Since fault injection is a stochastic event, it is natural to use such 
a probabilistic model for fault-prone module detection. 
On the other hand, prediction using association rule mining has  

also been proposed as a non model-based (rule-based) method [6]. 
Association rule mining aims to discover patterns of co-
occurrences of attributes in a dataset. For example, an association 
rule “(10 ≤ cyclomatic number < 30) and (10 ≤ fan-in < 25) ⇒  
fault prone” indicates that a module is fault-prone if its 
cyclomatic number is between 10 and 30, and its fan-in is 
between 10 and 25. A large number of such rules are mined from 
a past project’s module dataset. The advantage of association rule 
mining is that various types of faulty modules can be 
characterized by a large set of rules, while model-based methods 
rely on a single model. In addition, to increase the prediction 
performance, we can select rules based on interestingness 
measures of a rule such as support and confidence (Section 2). 
The disadvantage is that not all the modules are predictable 
because for some modules, there would be no rule that matches 
the modules’ metrics values, while model-based methods can 
predict all modules. 
In this paper, we propose a hybrid faulty module prediction 
method combining association rule mining and logistic regression 
analysis. We focus on three key measures of interestingness of an 
association rule (support, confidence and lift) to select useful rules 
for the prediction. If a module satisfies the premise (i.e. the 
condition in the antecedent part) of one of the selected rules, the 
module is classified as either fault-prone or not-fault-prone by the 
rule. Otherwise, the module is classified by the logistic regression 
analysis. If there exist two or more rules, then the module is 
classified by the majority of rules’ conclusion. To our knowledge, 
no study has reported such hybrid methods of rule-based approach 
(association rule mining) and model-based approach (logistic 
regression analysis). 
This paper experimentally evaluates the prediction performance 
of the proposed method with different thresholds of each 
interestingness measure (support, confidence, and lift) using a 
module set in the Eclipse project, and compares it to that of three 
well-known fault-proneness models (logistic regression model, 
linear discriminant model and classification tree). 

2. THE PROPOSED METHOD: A HYBRID 
FAULTY MODULE DETECTION 
We propose a hybrid faulty module prediction method using 
association rule mining and logistic regression analysis. We focus 
on three key measures of interestingness of a rule (support, 
confidence and lift) [1] to select rules that are likely to contribute 
to fault-prone module prediction. These measures are described as 
follows. 
Let I = {I1, I2, ..., Im} be a set of items where each Ik (1 ≤ k ≤ m) is 
an item and m is the number of unique items. An association rule 
is denoted by an expression A ⇒ B, where A ⊂ I, B ∈ I, A ∩ B = 
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φ. Let a database D be {T1, T2, ..., Tn} where Ti ⊆ I is called a 
transaction, n is the number of transactions. 
Support: Support is an indicator of rule frequency. It is expressed 

as support (A ⇒ B), and is support (A ⇒ B) = a/n, where a = 
|{T ∈ D|A ⊂ T ∩ B ⊂ T}|. 

Confidence: Confidence is the probability that consequent B will 
follow antecedent A. It is expressed as confidence (A ⇒ B), 
and is confidence (A ⇒ B) = a/b, where a is defined as in 
Support and b = |{T ∈ D|A  ⊂ T}|. 

Lift: Lift is an indicator of the contribution antecedent A 
makes to consequent B. It is expressed as lift (A ⇒ B), and is 
lift (A ⇒ B) = confidence (A ⇒ B) * (n / c), where c = | {T ∈ 
D|B ⊂ T}|. 

The detailed procedure of the proposed method is described as 
follows. A logistic regression model L is built and a set of 
association rules R is mined from a fit dataset. Here, to apply 
association rule mining to the fit dataset, ratio scale and interval 
scale variables are converted to ordinal scale variables beforehand. 
Each quantitative variable is divided into d equal interval parts as 
with Morisaki et al. [4] (in this paper, d was set to 5).  
Next, given a threshold θsupport (or θconfidence or θlift) of an 
interestingness measure (support, confidence or lift), we select 
rules R’ whose support (or confidence or lift) is greater than the 
threshold from the rules R. These rules are used to predict 
modules before considering using logistic regression analysis. 
Then, given a target module (to be predicted), we inspect all the 
rules in R’ if there exists a rule whose premise (i.e. the condition 
in the antecedent part) is satisfied by the module. If not, the 
module is classified by the logistic regression model L. Otherwise, 
if the module satisfies only one rule, then the module is classified 
by this rule. If there exist two or more rules, then the module is 
classified by the majority of rules’ conclusion. 
However, in our method, it is not clear which interestingness 
measure (support, confidence or lift) is the most appropriate for 
the rule selection. Also, proper thresholds for these measures are 
unknown. Therefore, we clarify these points through experimental 
evaluation in Sections 3. 

3. EVALUATION 
3.1 Overview 
In this experiment, we experimentally evaluated the prediction 
performance of the proposed hybrid method with different 
thresholds of each rule interestingness measure (support, 
confidence and lift), and compared it with three well-known fault-

proneness models (logistic regression model, linear discriminant 
model and classification tree). We collected module metrics data 
and fault data from the Eclipse project by using Gyimothy’s 
approach [3]. 
When we used the support or the confidence as a threshold, we 
changed the value of the threshold θsupport or the threshold 
θconfidence by 0.1 (0.1, 0.2, 0.3 …). And, as for the lift, we change 
the value of the threshold θlift from 1.5 to 2.0, 2.5, 2.7 and 2.9 
since the maximum lift value in this experiment was less than 3.0. 
In this experiment, we used a prototype tool “NEEDLE” 
implemented by Morisaki et al. [4] to derive the rule set R. 
We used three commonly used criteria, recall, precision and F1-
value, to evaluate the prediction performance. Recall is the ratio 
of correctly predicted fault-prone modules to actual fault-prone 
modules, and precision is the ratio of actual fault-prone modules 
to the modules predicted as fault-prone. F1-value is a harmonic 
mean of recall and precision. Larger F1-value indicates better 
prediction performance. 

3.2 Dataset 
The target software is Eclipse, one of the most famous open 
development platforms. In this experiment, we used a module 
dataset of “Platform” of Eclipse in Version 3.0 as fit and a module 
dataset in Version 3.1 as test. We measured metrics of modules 
and collected bug reports as follows. Here, a module is a Java file 
(*.java). 
First, we collected source files of each version and measured 
source code metrics using the Eclipse Metrics plug-in1. In this 
experiment, for the construction of fault-proneness models, 15 
metrics were used as predictor variables and the existence of a 
fault (no fault or more than one fault) was used as an objective 
variable (Table 1). Then, based on the condition shown in Table 2, 
we collected bug reports to determine whether each module was 
faulty or not from Bugzilla2, which was provided by the developer 
community of Eclipse. Finally, in this paper, we associated faults, 
modules and versions by using Gyimothy’s approach [3]. Table 3 
shows a statistics summary of datasets collected from Eclipse 
using the procedure above. 

3.3 Results 
The prediction performance (F1-value) of the hybrid method for 
each measure (support, confidence and lift) and that of three fault-
proneness models are shown in Table 4. As shown in Table 4, the 
improvements of F1-values were 0.163 at maximum compared to 
                                                                 
1 http://sourceforge.net/projects/metrics/ 
2 https://bugs.eclipse.org/bugs/ 

Table 1. Source code metrics of the dataset in Eclipse 

 Metrics  Metrics 
m1 LOC executable m2 Total methods LOC 
m3 Nested block depth m4 Cyclomatic complexity 
m5 # of parameters m6 # of attributes 
m7 # of methods m8 # of overridden methods 
m9 # of children m10 # of statistic attributes 
m11 # of statistic methods m12 SIX (Specialization Index) 

m13 
LCOM (Lack of Cohesion of 
Methods) m14 

WMC (Weighted Methods 
per Class) 

m15 
DIT (Depth of Inheritance 
Tree)   

 

Table 2. Condition for collecting bug reports 

Product Platform 
Status of faults Resolved,  Verified, Closed 
Resolution of faults Fixed 
Severity Except  Enhancement 
Priority All 

Table 3. Summary of datasets in Eclipse 

Version  
 

# of faulty 
modules 

# of not faulty 
modules 

% of faulty 
modules 

3.0 (fit)  793 3,659 17.8 
3.1 (test)  859 4,415 16.3 
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linear discriminant analysis that was the best performance in the 
three fault-proneness models. The following characteristics were 
found for each measure.  
Support: As shown in Table 4, regardless of the threshold θsupport, 

the prediction performance of the hybrid method was the 
worst (F1-value = zero). In the hybrid method, all modules 
were classified as not fault-prone by association rules (i.e. the 
logistic regression model was not used). 

Confidence: As with the support, regardless of the threshold 
θconfidence, the prediction performance of the hybrid method 
was worse than that of linear discriminant analysis. In the 
hybrid method, all modules were classified as not fault-prone 
by association rules. 

Lift: Regardless of the threshold θlift, the prediction 
performance of the hybrid method was the best. When the 
threshold θlift = 2.5, the F1-value of the hybrid method was the 
best (0.432), while that of linear discriminant analysis was 
0.269, that of logistic regression analysis was 0.219, and that 
of classification tree was 0.266.  
The F1-value of the hybrid method increased while the 
threshold θlift ≤ 2.5, and it decreased while 2.5 < θlift. The best 
performance was achieved when the percentage of modules 
classified by the association rules was about 20%. 

3.4 Discussion 
The prediction performance of the hybrid method using the 
support or the confidence was worse than that of three fault-
proneness models. While Song et al. [6] used the support in rule-
ranking strategy for predicting defect associations, the support 
alone did not contribute to the prediction performance in our 
method. This was because the support does not indicate the 
probability that the consequent will follow the antecedent. On the 
other hand, the confidence indicates the probability; however, the 
confidence also did not work well because it does not consider the 
percentage of faulty modules in the fit dataset. Many module 
datasets in the field are actually imbalanced, i.e. there exists a 

large difference between the number of fault-prone modules and 
not-fault-prone modules. In our experiment, the percentage of 
fault-prone modules was about 17.8%. Therefore, for example, 
“confidence = 70%” for a rule “xxx ⇒  faulty” is meaningful but 
it is not for a rule “xxx ⇒  not faulty.” As a result the confidence 
did not contribute to the prediction. 
The prediction performance of the hybrid method with the lift was 
better than that of three conventional fault-proneness models. 
Regardless of the threshold of the lift (in Table 4), the proposed 
method was better than the logistic model. This indicates that 
most of association rules selected by the lift contributed to 
improving the performance of the logistic model.  

4. CONCLUSION 
We experimentally evaluated the prediction performance of the 
proposed hybrid method by using module set in Eclipse project. 
Our major findings include the following: 

 The improvement of the F1-value of the hybrid method was 
0.163 at maximum compared to three well-known fault-
proneness models (linear discriminant model, logistic 
regression model and classification tree).  

 The lift was the most suitable measure to select useful 
association rules in the proposed method compared to other 
measures (support and confidence). 

 The proposed method performed best when the percentage of 
the classified modules by rules was about 20%. 

The major limitation of this paper is that we used only a single 
dataset. Our future work is to confirm our results using other 
datasets. We also plan to combine association rule mining with 
other models (such as the linear model and classification tree).  
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Table 4. Prediction performance of each method 

 Preci-
sion 

Re-
call 

F1-
value 

% of the classified
modules by rules 

LRA  0.574 0.176 0.269 - 
LDA 0.580 0.135 0.219 - 
CT 0.567 0.173 0.266 - 
Hybrid method  
θsupp = 0.1, 0.2, …, 0.8 0.000 0.000 0.000 100.00 

Hybrid method 
θconf = 0.1, 0.2, …, 1.0 0.000 0.000 0.000 100.00 

Hybrid method 
θlift = 1.5 0.231 0.877 0.365 61.87 

Hybrid method 
θlift = 2.0 0.298 0.705 0.419 38.36 

Hybrid method 
θlift = 2.5 0.376 0.509 0.432 21.71 

Hybrid method 
θlift = 2.7 0.439 0.320 0.370 10.77 

Hybrid method 
θlift  = 2.9 0.583 0.179 0.274 2.03 
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