
A Hybrid Faulty Module Prediction Using Association Rule
Mining and Logistic Regression Analysis

Yasutaka Kamei Akito Monden Shuji Morisaki Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{yasuta-k, akito-m, smrs, matumoto}@is.naist.jp

ABSTRACT
This paper proposes a fault-prone module prediction method that
combines association rule mining with logistic regression analysis.
In the proposed method, we focus on three key measures of
interestingness of an association rule (support, confidence and
lift) to select useful rules for the prediction. If a module satisfies
the premise (i.e. the condition in the antecedent part) of one of the
selected rules, the module is classified by the rule as either fault-
prone or not. Otherwise, the module is classified by the logistic
model. We experimentally evaluated the prediction performance
of the proposed method with different thresholds of each rule
interestingness measure (support, confidence and lift) using a
module set in the Eclipse project, and compared it with three
well-known fault-proneness models (logistic regression model,
linear discriminant model and classification tree). The result
showed that the improvement of the F1-value of the proposed
method was 0.163 at maximum compared to conventional models.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management– Software quality
assurance

General Terms
Management, Reliability, Experimentation

Keywords
Fault-prone module prediction, empirical study, association rule
mining, logistic regression analysis

1. INTRODUCTION
Identification of fault-prone modules, which may need rework
and/or comprehensive testing, is an important issue in software
quality assurance [3][5][6]. Various multivariate modeling
techniques applicable to fault-prone module prediction have been
proposed, including linear discriminant analysis, logistic
regression analysis and classification tree. Particularly, this paper
targets the logistic regression analysis, which is one of the
commonly used modeling techniques [2][5]. Given a module, a
logistic regression model computes the probability that the
module has a fault (i.e. fault-prone) based on its module metrics.
Since fault injection is a stochastic event, it is natural to use such
a probabilistic model for fault-prone module detection.
On the other hand, prediction using association rule mining has

also been proposed as a non model-based (rule-based) method [6].
Association rule mining aims to discover patterns of co-
occurrences of attributes in a dataset. For example, an association
rule “(10 ≤ cyclomatic number < 30) and (10 ≤ fan-in < 25) ⇒
fault prone” indicates that a module is fault-prone if its
cyclomatic number is between 10 and 30, and its fan-in is
between 10 and 25. A large number of such rules are mined from
a past project’s module dataset. The advantage of association rule
mining is that various types of faulty modules can be
characterized by a large set of rules, while model-based methods
rely on a single model. In addition, to increase the prediction
performance, we can select rules based on interestingness
measures of a rule such as support and confidence (Section 2).
The disadvantage is that not all the modules are predictable
because for some modules, there would be no rule that matches
the modules’ metrics values, while model-based methods can
predict all modules.
In this paper, we propose a hybrid faulty module prediction
method combining association rule mining and logistic regression
analysis. We focus on three key measures of interestingness of an
association rule (support, confidence and lift) to select useful rules
for the prediction. If a module satisfies the premise (i.e. the
condition in the antecedent part) of one of the selected rules, the
module is classified as either fault-prone or not-fault-prone by the
rule. Otherwise, the module is classified by the logistic regression
analysis. If there exist two or more rules, then the module is
classified by the majority of rules’ conclusion. To our knowledge,
no study has reported such hybrid methods of rule-based approach
(association rule mining) and model-based approach (logistic
regression analysis).
This paper experimentally evaluates the prediction performance
of the proposed method with different thresholds of each
interestingness measure (support, confidence, and lift) using a
module set in the Eclipse project, and compares it to that of three
well-known fault-proneness models (logistic regression model,
linear discriminant model and classification tree).

2. THE PROPOSED METHOD: A HYBRID
FAULTY MODULE DETECTION
We propose a hybrid faulty module prediction method using
association rule mining and logistic regression analysis. We focus
on three key measures of interestingness of a rule (support,
confidence and lift) [1] to select rules that are likely to contribute
to fault-prone module prediction. These measures are described as
follows.
Let I = {I1, I2, ..., Im} be a set of items where each Ik (1 ≤ k ≤ m) is
an item and m is the number of unique items. An association rule
is denoted by an expression A ⇒ B, where A ⊂ I, B ∈ I, A ∩ B =

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

279

φ. Let a database D be {T1, T2, ..., Tn} where Ti ⊆ I is called a
transaction, n is the number of transactions.
Support: Support is an indicator of rule frequency. It is expressed

as support (A ⇒ B), and is support (A ⇒ B) = a/n, where a =
|{T ∈ D|A ⊂ T ∩ B ⊂ T}|.

Confidence: Confidence is the probability that consequent B will
follow antecedent A. It is expressed as confidence (A ⇒ B),
and is confidence (A ⇒ B) = a/b, where a is defined as in
Support and b = |{T ∈ D|A ⊂ T}|.

Lift: Lift is an indicator of the contribution antecedent A
makes to consequent B. It is expressed as lift (A ⇒ B), and is
lift (A ⇒ B) = confidence (A ⇒ B) * (n / c), where c = | {T ∈
D|B ⊂ T}|.

The detailed procedure of the proposed method is described as
follows. A logistic regression model L is built and a set of
association rules R is mined from a fit dataset. Here, to apply
association rule mining to the fit dataset, ratio scale and interval
scale variables are converted to ordinal scale variables beforehand.
Each quantitative variable is divided into d equal interval parts as
with Morisaki et al. [4] (in this paper, d was set to 5).
Next, given a threshold θsupport (or θconfidence or θlift) of an
interestingness measure (support, confidence or lift), we select
rules R’ whose support (or confidence or lift) is greater than the
threshold from the rules R. These rules are used to predict
modules before considering using logistic regression analysis.
Then, given a target module (to be predicted), we inspect all the
rules in R’ if there exists a rule whose premise (i.e. the condition
in the antecedent part) is satisfied by the module. If not, the
module is classified by the logistic regression model L. Otherwise,
if the module satisfies only one rule, then the module is classified
by this rule. If there exist two or more rules, then the module is
classified by the majority of rules’ conclusion.
However, in our method, it is not clear which interestingness
measure (support, confidence or lift) is the most appropriate for
the rule selection. Also, proper thresholds for these measures are
unknown. Therefore, we clarify these points through experimental
evaluation in Sections 3.

3. EVALUATION
3.1 Overview
In this experiment, we experimentally evaluated the prediction
performance of the proposed hybrid method with different
thresholds of each rule interestingness measure (support,
confidence and lift), and compared it with three well-known fault-

proneness models (logistic regression model, linear discriminant
model and classification tree). We collected module metrics data
and fault data from the Eclipse project by using Gyimothy’s
approach [3].
When we used the support or the confidence as a threshold, we
changed the value of the threshold θsupport or the threshold
θconfidence by 0.1 (0.1, 0.2, 0.3 …). And, as for the lift, we change
the value of the threshold θlift from 1.5 to 2.0, 2.5, 2.7 and 2.9
since the maximum lift value in this experiment was less than 3.0.
In this experiment, we used a prototype tool “NEEDLE”
implemented by Morisaki et al. [4] to derive the rule set R.
We used three commonly used criteria, recall, precision and F1-
value, to evaluate the prediction performance. Recall is the ratio
of correctly predicted fault-prone modules to actual fault-prone
modules, and precision is the ratio of actual fault-prone modules
to the modules predicted as fault-prone. F1-value is a harmonic
mean of recall and precision. Larger F1-value indicates better
prediction performance.

3.2 Dataset
The target software is Eclipse, one of the most famous open
development platforms. In this experiment, we used a module
dataset of “Platform” of Eclipse in Version 3.0 as fit and a module
dataset in Version 3.1 as test. We measured metrics of modules
and collected bug reports as follows. Here, a module is a Java file
(*.java).
First, we collected source files of each version and measured
source code metrics using the Eclipse Metrics plug-in1. In this
experiment, for the construction of fault-proneness models, 15
metrics were used as predictor variables and the existence of a
fault (no fault or more than one fault) was used as an objective
variable (Table 1). Then, based on the condition shown in Table 2,
we collected bug reports to determine whether each module was
faulty or not from Bugzilla2, which was provided by the developer
community of Eclipse. Finally, in this paper, we associated faults,
modules and versions by using Gyimothy’s approach [3]. Table 3
shows a statistics summary of datasets collected from Eclipse
using the procedure above.

3.3 Results
The prediction performance (F1-value) of the hybrid method for
each measure (support, confidence and lift) and that of three fault-
proneness models are shown in Table 4. As shown in Table 4, the
improvements of F1-values were 0.163 at maximum compared to

1 http://sourceforge.net/projects/metrics/
2 https://bugs.eclipse.org/bugs/

Table 1. Source code metrics of the dataset in Eclipse

 Metrics Metrics
m1 LOC executable m2 Total methods LOC
m3 Nested block depth m4 Cyclomatic complexity
m5 # of parameters m6 # of attributes
m7 # of methods m8 # of overridden methods
m9 # of children m10 # of statistic attributes
m11 # of statistic methods m12 SIX (Specialization Index)

m13
LCOM (Lack of Cohesion of
Methods) m14

WMC (Weighted Methods
per Class)

m15
DIT (Depth of Inheritance
Tree)

Table 2. Condition for collecting bug reports

Product Platform
Status of faults Resolved, Verified, Closed
Resolution of faults Fixed
Severity Except Enhancement
Priority All

Table 3. Summary of datasets in Eclipse

Version

of faulty
modules

of not faulty
modules

% of faulty
modules

3.0 (fit) 793 3,659 17.8
3.1 (test) 859 4,415 16.3

280

linear discriminant analysis that was the best performance in the
three fault-proneness models. The following characteristics were
found for each measure.
Support: As shown in Table 4, regardless of the threshold θsupport,

the prediction performance of the hybrid method was the
worst (F1-value = zero). In the hybrid method, all modules
were classified as not fault-prone by association rules (i.e. the
logistic regression model was not used).

Confidence: As with the support, regardless of the threshold
θconfidence, the prediction performance of the hybrid method
was worse than that of linear discriminant analysis. In the
hybrid method, all modules were classified as not fault-prone
by association rules.

Lift: Regardless of the threshold θlift, the prediction
performance of the hybrid method was the best. When the
threshold θlift = 2.5, the F1-value of the hybrid method was the
best (0.432), while that of linear discriminant analysis was
0.269, that of logistic regression analysis was 0.219, and that
of classification tree was 0.266.
The F1-value of the hybrid method increased while the
threshold θlift ≤ 2.5, and it decreased while 2.5 < θlift. The best
performance was achieved when the percentage of modules
classified by the association rules was about 20%.

3.4 Discussion
The prediction performance of the hybrid method using the
support or the confidence was worse than that of three fault-
proneness models. While Song et al. [6] used the support in rule-
ranking strategy for predicting defect associations, the support
alone did not contribute to the prediction performance in our
method. This was because the support does not indicate the
probability that the consequent will follow the antecedent. On the
other hand, the confidence indicates the probability; however, the
confidence also did not work well because it does not consider the
percentage of faulty modules in the fit dataset. Many module
datasets in the field are actually imbalanced, i.e. there exists a

large difference between the number of fault-prone modules and
not-fault-prone modules. In our experiment, the percentage of
fault-prone modules was about 17.8%. Therefore, for example,
“confidence = 70%” for a rule “xxx ⇒ faulty” is meaningful but
it is not for a rule “xxx ⇒ not faulty.” As a result the confidence
did not contribute to the prediction.
The prediction performance of the hybrid method with the lift was
better than that of three conventional fault-proneness models.
Regardless of the threshold of the lift (in Table 4), the proposed
method was better than the logistic model. This indicates that
most of association rules selected by the lift contributed to
improving the performance of the logistic model.

4. CONCLUSION
We experimentally evaluated the prediction performance of the
proposed hybrid method by using module set in Eclipse project.
Our major findings include the following:

 The improvement of the F1-value of the hybrid method was
0.163 at maximum compared to three well-known fault-
proneness models (linear discriminant model, logistic
regression model and classification tree).

 The lift was the most suitable measure to select useful
association rules in the proposed method compared to other
measures (support and confidence).

 The proposed method performed best when the percentage of
the classified modules by rules was about 20%.

The major limitation of this paper is that we used only a single
dataset. Our future work is to confirm our results using other
datasets. We also plan to combine association rule mining with
other models (such as the linear model and classification tree).

5. ACKNOWLEDGMENTS
This work is being conducted as a part of StagE Project, the
Development of Next Generation IT Infrastructure, supported by
Ministry of Education, Culture, Sports, Science and Technology
and Grant-in-Aid for Japan Society for the Promotion of Science
(JSPS) Fellows (Research No:20009220).

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

Association Rules between Sets of Items in Large Databases.
In Proc. Int’l Conf. on Management of Data, pages 207-216,
1993.

[2] V. R. Basili, L. C. Briand, and W.L. Melo. A Validation of
Object-Oriented Design Metrics as Quality Indicators. IEEE
Trans. Softw. Eng., 22(10):751-761, 1996.

[3] T. Gyimothy, R. Ferenc, and I. Siket. Empirical Validation
of Object-Oriented Metrics on Open Source Software for
Fault Prediction. IEEE Trans. Softw. Eng., 31(10):897-910,
2005.

[4] S. Morisaki, A. Monden, H. Tamada, T. Matsumura, and K.
Matsumoto. Mining Quantitative Rules in a Software Project
Data Set. IPSJ Journal, 48(8):2725-2734, 2007.

[5] J. C. Munson, and T. M. Khoshgoftaar. The Detection of
Fault-prone Programs. IEEE Trans. Softw. Eng., 18(5): 423-
433, 1992.

[6] Q. Song, M. Shepperd, M. Cartwright, and C. Mair. Software
Defect Association Mining and Defect Correction Effort
Prediction. IEEE Trans. Softw. Eng., 32(2):69-82, 2006.

Table 4. Prediction performance of each method

 Preci-
sion

Re-
call

F1-
value

% of the classified
modules by rules

LRA 0.574 0.176 0.269 -
LDA 0.580 0.135 0.219 -
CT 0.567 0.173 0.266 -
Hybrid method
θsupp = 0.1, 0.2, …, 0.8 0.000 0.000 0.000 100.00

Hybrid method
θconf = 0.1, 0.2, …, 1.0 0.000 0.000 0.000 100.00

Hybrid method
θlift = 1.5 0.231 0.877 0.365 61.87

Hybrid method
θlift = 2.0 0.298 0.705 0.419 38.36

Hybrid method
θlift = 2.5 0.376 0.509 0.432 21.71

Hybrid method
θlift = 2.7 0.439 0.320 0.370 10.77

Hybrid method
θlift = 2.9 0.583 0.179 0.274 2.03

281

