
Proceedings of The 3rd International Workshop on

Knowledge Collaboration in Software Development

(KCSD2009)

hosted by the first JSAI International Symposia on AI

Workshop Co-Chair

Masao Ohira & Yunwen Ye

Campus Innovation Center, Tokyo, Japan,

November 19-20, 2009

ISBN 4-915905-39-X C3004(JSAI)

2

Proceedings of the

3rd International Workshop on

Supporting Knowledge Collaboration in
Software Development

KCSD2009

November 19-20, 2009
Tokyo, Japan

In association with
the First JSAI International Symposia on
Artificial Intelligence (JSAI-isAI2009)

Editors:

Masao Ohira & Yunwen Ye

Table of Contents

Workshop program…..v

Workshop organization...vi

Keynote address:
Knowledge Collaboration in Distributed Software Development1

André van der Hoek (University of California, USA)

Session 1: Practices

Barriers to Sharing Domain Knowledge in Software Development Practice in SMEs.........................2

Jim Buchan, Christian Harsana Ekadharmawan and Stephen G. MacDonell (Auckland
University of Technology, New Zealand)

(Short Paper)
Differences of Time between Modification and Re-modification: ...17
An Analysis of a Bug Tracking System

Akinori Ihara, Masao Ohira, Ken-ichi Matsumoto (Nara Institute of Science and Technology,
Japan)

Usage Result of Problem Resolution Information Sharing System for ..23
a Software Engineering Course

Atsuo Hazeyama, Kazuyuki Shimada and Yusuke Kobayashi (Tokyo Gakugei University, Japan)

Session 2: Communication Media

On the Central Role of Mailing Lists in Open Source Projects: An Exploratory Study......................34

Emad Shihab, Nicolas Bettenburg, Bram Adams and Ahmed E. Hassan (Queen's University,
Canada)

A Time-Lag Analysis toward Improving the Efficiency of Communications49
among OSS Developers

Masao Ohira, Kiwako Koyama, Akinori Ihara, Shisuke Matsumoto, Yasutaka Kamei, Ken-ichi
Matsumoto (Nara Institute of Science and Technology, Japan)

A Case Study on the Impact of Global Participation on ...63
Mailing Lists Communications of Open Source Projects

Ran Tang, Ahmed E. Hassan and Ying Zou (Queen's University, Canada)

iii

Keynote address:
Understanding Networked Collaboration...77

Shuichiro Yamamoto (NTT Data Corporation, Japan)

Session 3: Support Tools

(Short Paper)
Identifying the concepts that are searchable with keywords in code search engines..........................78

Toshihiro Kamiya (National Institute of Advanced Industrial Science and Technology, Japan)

(Short Paper)
DesignMinders: A Design Knowledge Collaboration Approach...84

Gerald Bortis and André van der Hoek (University of California, Irvine, USA)

On the Use of Emerging Design as a Basis for Knowledge Collaboration...91

Tiago Proenca, Nilmax Moura and André van der Hoek (University of California, Irvine, USA)

Session 4: Practices

A Proposal of TIE Model for Communication in Software Development process...........................100

Masakazu Kanbe, Shuichiro Yamamoto (NTT Data Corporation, Japan) and Toshizumi Ohta
(University of Electro-Communications, Japan)

Comparison of Coordination Communication and Expertise Communication in.............................112
Software Development: Their Motives, Characteristics and Needs

Kumiyo Nakakoji (University of Tokyo & SRA-KTL, Japan), Yunwen Ye (SRA, Inc., Japan) and
Yasuhiro Yamamoto (University of Tokyo, Japan)

iv

Date November 19-20, 2009
Place Campus Innovation Center, 3-3-6 Shibaura, Minato-ku, Tokyo, Japan 108-0023

Long paper 30 minites presentation and discussion
Short paper 20 minites presentation and discussion

10:00-10:30 Registration

10:30-11:00 Opening: Workshop goal, agenda and self introduction

11:00-12:00 Keynote address
Knowledge Collaboration in Distributed Software Development
André van der Hoek (University of California, USA)

12:00-14:00 Lunch

14:00-15:20 Session 1: Practices
Barriers to Sharing Domain Knowledge in Software Development Practice in SMEs
Jim Buchan, Christian Harsana Ekadharmawan and Stephen G. MacDonell (Auckland University of Technology)

(Short Paper)
Differences of Time between Modification and Re-modification: An Analysis of a Bug Tracking System
Akinori Ihara, Masao Ohira, Ken-ichi Matsumoto (Nara Institute of Science and Technology, Japan)

Usage Result of Problem Resolution Information Sharing System for a Software Engineering Course
Atsuo Hazeyama, Kazuyuki Shimada and Yusuke Kobayashi (Tokyo Gakugei University)

15:20-15:50 Coffee Break

15:50-17:20 Session 2: Communication Media
On the Central Role of Mailing Lists in Open Source Projects: An Exploratory Study
Emad Shihab, Nicolas Bettenburg, Bram Adams and Ahmed E. Hassan (Queen's University, Canada)

A Time-Lag Analysis toward Improving the Efficiency of Communications among OSS Developers
Masao Ohira, Kiwako Koyama, Akinori Ihara, Shisuke Matsumoto, Yasutaka Kamei, Ken-ichi Matsumoto (Nara
Institute of Science and Technology, Japan)

A Case Study on the Impact of Global Participation on Mailing Lists Communications of Open Source Projects
Ran Tang, Ahmed E. Hassan and Ying Zou (Queen's University, Canada)

10:00-11:00 Keynote address
Understanding Networked Collaboration
Shuichiro Yamamoto (NTT Data Corporation, Japan)

11:00-11:20 Coffee Break

11:20-12:30 Session 4: Support Tools
(Short Paper)
Identifying the concepts that are searchable with keywords in code search engines
Toshihiro Kamiya (National Institute of Advanced Industrial Science and Technology, Japan)

(Short Paper)
DesignMinders: A Design Knowledge Collaboration Approach
Gerald Bortis and André van der Hoek (University of California, Irvine, USA)

On the Use of Emerging Design as a Basis for Knowledge Collaboration
Tiago Proenca, Nilmax Moura and André van der Hoek (University of California, Irvine, USA)

12:30-14:30 Lunch

14:30-15:30 Session 3: Model and Framework
A Proposal of TIE Model for Communication in Software Development process
Masakazu Kanbe, Shuichiro Yamamoto (NTT Data Corporation, Japan) and Toshizumi Ohta (University of
Electro-Communications, Japan)

Comparison of Coordination Communication and Expertise Communication in Software Development: Their
Motives, Characteristics and Needs
Kumiyo Nakakoji (University of Tokyo & SRA-KTL, Japan), Yunwen Ye (SRA, Inc., Japan) and Yasuhiro
Yamamoto (University of Tokyo, Japan)

15:30-15:45 Closing

Nov. 19
(Thu)

The 3rd International Workshop on Knowledge Collaboration
in Software Development (KCSD2009)

Nov. 20
(Fri)

masao
テキストボックス
v

Workshop Organization

Workshop Co-Chairs

Masao Ohira (Nara Institute of Science and Technology, Japan)

Yunwen Ye (Software Research Associates, Inc., Japan)

Program Committee

Daniela Fogli (University of Brescia, Italy)

Mark Grechanik, (Accenture Technology Labs / University of Illinois, USA)

André van der Hoek (University of California, USA)

Reid Holmes (University of Washington, USA)

Katsuro Inoue (Osaka University, Japan)

Yasutaka Kamei (Nara Institute of Science and Technology, Japan)

Ken-ichi Matsumoto (Nara Institute of Science and Technology, Japan)

Kumiyo Nakakoji (SRA-KTL Inc., / University of Tokyo, Japan)

Cleidson de Souza (Federal University of Para, Brazil)

Thomas Zimmermann (Microsoft Research, USA)

vi

Keynote address:

Knowledge Collaboration in Distributed Software Development

André van der Hoek (University of California, USA)

ABSTRACT

Knowledge collaboration takes many forms in software development, with numerous tools that have

been developed to support the activity. In a distributed setting, knowledge sharing becomes

particularly challenging: affordances that exist in a central setting are no longer available in the

distributed environment. In this talk, we introduce a theoretical framework that helps us categorize

and understand distributed software collaboration tools, use exemplary systems to illustrate what

kinds of knowledge they offload from the developers and what advanced forms of knowledge

sharing they thereby enable, and provide a roadmap towards future knowledge collaboration tools.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

1

Barriers to Sharing Domain Knowledge in Software

Development Practice in SMEs

Jim Buchan
1
, Christian Harsana Ekadharmawan

1

1 School of Computing and Mathematical Sciences,

Auckland University of Technology

Auckland, New Zealand
jim.buchan@aut.ac.nz, christian.harsana@gmail.com

Abstract. The collaborative development of a shared domain understanding

between the client stakeholders and the software production team is crucial to

the success of software development projects. It is also a challenging and

volatile process in practice. There is growing interest in enhancing the

development of this shared understanding by improving related processes and

support tools. The design and evaluation of such process improvements and

tools should be based on robust theory and a clear understanding of the

phenomenon and its context in practice. There is however, minimal empirical

research on understanding the phenomenon of shared domain understanding in

practice in this situation. This paper seeks deeper insights into the process of

sharing domain understanding in the context of Small to Medium-sized

Enterprises (SMEs) in the software development industry by investigating the

barriers and challenges in practice. The study focuses on SMEs because of their

economic importance globally and in New Zealand in particular. Small

organizations may be especially challenged due to reliance on key individuals

and insufficient resource to employ several domain specialists. In this paper we

present the results of a field study of commercial software development practice

in which we conducted semi-structured interviews with practitioners from ten

such organizations. The study provides insights into practices and perceptions

related to the challenges software development practitioners face in developing

shared domain understanding with the client stakeholders. Our results identify a

diverse range of challenges and barriers on which to relate theory and as a

foundation for designing process and tool improvement.

Keywords: evidence-based software engineering, knowledge sharing.

1 Introduction and Motivation

The success of a software system is largely based on the degree to which it meets
the expectations of a client stakeholder group in terms of addressing some real world
problem. The software development process involves the software production team
and client stakeholders developing a shared understanding the of the problem domain
sufficiently well to determine the most appropriate set of features and attributes for a
new software system, as part of the solution. This evolution of shared understanding
involves a “mesh” of communications and knowledge sharing interactions between the

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

2

software production (vendor) team and the client stakeholder group. This includes the
client stakeholder group (e.g. users, managers, and domain experts) and the software
production group (e.g. analysts, designers and developers) sharing and seeking
knowledge using a variety of communication channels and information artefacts. This
knowledge is integrated into their existing knowledge or understanding and combined
and aggregated to form both teams’ understandings of the application domain. Some of
this domain understanding needs to be “shared” in some sense to avoid
misunderstandings, misaligned expectations and allow cooperative progress. The
notion of shared understanding is discussed in more detail in [1, 2] and is taken to refer
to the degree of cognitive overlap and mutual beliefs, expectations and perceptions in
the following discussions.

Although this domain knowledge sharing is most visible at the elicitation effort
early in a software project, this process of articulating, sharing, clarifying, reflecting
and sharing understanding is iterative and incremental throughout a software project.
As software development progresses, the domain problem is often better understood
and the business goals, business requirements and user requirements are consequently
refined. The software system goals, requirements and specifications are then also
refined to align with this better understanding of the problem domain. Although
domain understanding needs to be shared within the software development team (and
among the client stakeholders), the focus of this paper is the interactions and
knowledge sharing across the production team and client stakeholder group boundary.

At the individual level it involves developing an understanding of the application
domain, refining that understanding to a level that is appropriate for the role of that
individual, and applying it at the time of “need”. Thus individuals in the production
team and client group are co-dependent to some extent on each other’s problem
domain knowledge and capabilities to share and internalise this knowledge to suit the
individuals’ and teams’ needs. That evolving individual understanding needs to be
periodically shared, “tested”, verified and agreed upon so that those involved can work
cooperatively towards the same goals that create sufficient value for the clients (and
the clients understand this value!).

The sharing of domain understanding is challenging in practice because of the
inherent complexities. It may involve a large number of individuals with a broad
diversity of existing specialized capabilities, expertise and vocabularies, as well as
different cultures, beliefs and values. Their motivations and authority to influence the
development project can also be widely divergent. Furthermore the individual and
team-level exchanges are characterised by cognitive, social and organisational
interactions that are unpredictable and potentially error-prone. This includes, for
example, challenging activities such as developing a shared vocabulary, sharing and
internalising both conceptually abstract and detailed information about the problem
domain, reconciling many points of view from diverse stakeholders and
accommodating changing and volatile understanding. It also involves periodic
verification of some shared representation of the domain understanding and how it
maps to the software solution. To add to this complexity, a sufficient level of shared
understanding between the two groups can never be certain because of the difficulty in
not only defining what is “sufficient” but also in measuring the level of shared
understanding. Instead, the misunderstandings, conflict and breakdowns that result
from a lack of shared understanding are focused on. This paper takes the approach of
identifying the barriers and challenges of sharing understanding, with a view to
overcoming them with better tools or techniques.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

3

Although it is inherently challenging, the development of shared understanding is
critical to the success of a software project. Successful development of a software
system is predicated on the vendor team’s understanding of the main concepts, goals
and purpose of the software system and how well this aligns with a client group’s
expectations. A number of researchers in RE (see for example [3-6]) argue
convincingly for the central role domain knowledge sharing plays in RE activities.
Empirical evidence from their studies of RE practice demonstrates that high quality
requirements are crucially dependent on the client and vendor stakeholders sharing a
sufficient level of understanding of the problem domain.

The need to understand and improve practice in this area is not lessening either,
despite significant advances in modeling, tools and processes over the last few
decades. We are seeing the application of software systems to an ever widening
diversity of application domain, often conceptually challenging and complex. This
broadens and deepens the domain knowledge that developers and other non domain
experts have to understand. The need for further research into supporting and
comprehending the phenomenon of “developing shared understanding” in practice
becomes even more evident in the context of new types of software (e.g. ubiquitous,
service oriented, self-managing, or mesh) and emerging development contexts (e.g.
global development teams, distributed users, product or market driven development).

There has been considerable research into developing tools, techniques and
processes to support the activities and complex interactions that contribute to
developing a shared domain understanding in the context of emerging software needs.
There seems to be “race” in tool and technique design between knowledge and
implementation, however, as pointed out in [7] in the context of Human Computer
Interaction design. They argue that “it is a typical pattern in HCI for new ideas to be
first codified in exemplary artifacts and only later abstracted into explanations and
principles”. This pattern also seems to apply to the development of tools and
techniques for other aspect of software engineering support. This may be a symptom of
the relative immaturity of software development as an engineering discipline. New
ideas may be implemented based largely on implicit or tacit knowledge, more of a
characteristic of a “craft”. As the tacit knowledge is made explicit, and forms the basis
of design and implementation of new software development tools and techniques, the
discipline is seen as moving more towards “engineering”. With this in mind, this study
seeks to gain a deeper, explicit knowledge of the challenges of the “phenomenon-in-
action” of sharing domain understanding. This should then better support the selection
of related theory from disciplines such as cognitive sciences, semiotics, knowledge
management and organisational theory. This in turn will help to explain and diagnose
the challenges and inform future tool and process design to address them explicitly. It
also provides a clear theoretical basis with which to evaluate the tools or processes
against. Then the purpose of evaluating a new tool or process would be to validate a
distributed cognition model or knowledge transfer hypothesis, for example, rather than
just understanding the tool. This study is the first part of a larger research project that
follows this approach.

In addition, many of the findings and proposed approaches found in existing
literature are aimed at large organisations, with the tacit assumption that these findings
will apply to small organisation (i.e. having less than 50 employees [8]). This point is
highlighted in [9], where the authors argue that RE in small organisations is under-
represented in research literature. They further observe that such organisations make
up a large part of the software industry) and in [10] they estimate that SMEs contribute
80% to economic growth worldwide. Moreover, it is likely that small organisations are

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

4

more vulnerable to the complexities and volatility of developing a shared domain
understanding compared to large organisations. It is widely acknowledged in literature
that there are some fundamental operational differences between small and large
organisations (see for example the Sept/Oct 2000 issue of IEEE Software). In empirical
studies of small and medium organisations, [11], [12], and [13] characterise them as
having fewer resources to devote to tools and hiring domain experts. Compared to their
larger counterparts, small organisations appear to be more concerned about practice
rather than “compliance” to formal, defined processes. They also observe that small
organisations generally focus on shorter term priorities, which are typically directed
towards deliverables. These ideas, strengthened by personal observations of small
software companies, suggest that current understanding of and approaches to the
challenges and barriers to shared domain understanding may not directly transfer to
smaller organisations.

This paper addresses this lack of empirical information on challenges and barriers
in small organisations in the area of sharing domain understanding, and examines the
applicability of previously reported findings, generally drawn from experiences with
larger organisations, to small companies. In addition, it is the intention of this research
to gain insights into practitioners’ perceptions of their practices and challenges in this
area. This is based on a desire to “know” the practitioners more deeply as “customers”
of research and understand their experiences and needs in this area.

Having provided a brief background to the topic of shared domain understanding in
software development, and justified the focus on empirical research in an SME
context, the remainder of the paper describes and justifies the design and
implementation of the field study (section 2) and describes and discusses the main
findings in section 3.

2 Research Design and Implementation

The selection of a research methodology and specific data collection and analysis

methods are based on the nature of the research aims and questions. This section

describes and justifies these aspects of the research design and discusses the

participating organisations and other features of the implementation of the study.

2.1 Aims and Methodology

It is the aim of this research to gain insights into challenges in the development of
shared domain understanding in practice through practitioners’ perceptions. The scope
of the field study undertaken includes exploring how practitioners conceptualise
sharing domain understanding with client stakeholders, the techniques, tools and
representations they utilize and their efficacy, and the importance they give to
developing this shared understanding. The emphasis of this paper is on understanding
the identified barriers and challenges, their causes and consequences, and approaches
to addressing these challenges in practice.

In line with other exploratory studies of this type, a multiple case study method,
with semi-structured interviews for data collection, is employed. A semi-structured
interview was employed, rather than a formal, structured interview or survey, because

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

5

it has the advantage of being able to clarify and probe issues and extend the focus of
the discussion to interesting aspects as they arise. Thus, as observed by [14], a deeper
and richer understanding of the phenomenon may be gained. In addition this technique
encourages the development of a rapport and trust between the investigator and the
interviewee. This is desirable if interviewees are to feel they can freely discuss their
practices, challenges and successes.

Note that it is not the intention of this initial study to observe practices or analyse
artefacts, which are also common sources of data in case studies. In addition, the
viewpoint of the study is restricted to the perceptions of the software vendors, as
represented by senior member of the participating software production teams.
Comparison of the viewpoints of representatives of the client stakeholder groups is
planned for a future study. This paper focuses on presenting the barriers and challenges
to shared understanding and discussing the implications for researchers and
practitioners.

2.2 Case Organisations

Invitations to participate in this study were sent to 204 organisations, based on the
company size (small), and involvement primarily in software development. We
selected candidates who had been operating for at least 5 years to allow for maturing of
its practices.

Of the candidate organisations invited, 11 organisations initially agreed to
participate and 10 organisations actually proceeded with the interviews. Experienced
senior-level staff from the organisations were interviewed, with the view that they
would have a clear overview of processes as well as some depth of interaction with
client representatives, which proved to be the case. Two of the authors of this paper
were involved in interviewing all the participants, one facilitating the interview, and
the other taking detailed interview notes. The interviews were all recorded on audio
tape for later transcription. The interviews were generally located at the place of work,
or a neutral venue if requested, and lasted between one and two hours.

The rich and extensive set of data collected from the interviews includes
information related to what the important challenges are to developing a sufficient
shared understanding with the client stakeholders in practice and why. Thematic
analysis of this data was employed as the method of data analysis. As noted in [15] this
is a common method of analysing qualitative interview data in order to identify
concepts or themes related to a phenomenon. The main construct being analysed is the
process of developing shared domain understanding. As [16] points out, analysing a
process may provide a holistic view of a system of action, which includes activities,
roles, artefacts tools and techniques. The unit of analysis is the (small) organisation
rather than specific teams or projects.

The participating organisations represent a wide diversity of application domains
and include 3 product-driven companies and 7 providing bespoke software
development services. All of the organisations had been operating for over 8 years and
most of them closer to 20 years. The organisations would be classified as small
enterprises with all having fewer than 100 Fulltime Equivalent (FTE) employees The
representatives from the companies were all at a senior level ranging from senior
systems analyst to company owners, with 8 of them having more than 10 years’

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

6

experience in the software industry and the other two having extensive business or
domain experience.

3 Challenges and Barriers to Shared Domain Understanding

This section presents the results of the investigation, discusses implications for
practitioners, and speculates on some possible directions for addressing some of the
issues.

All organisations had stories of miscommunications and misunderstandings that
had contributed to project difficulties and acknowledged a number of challenges and
barriers in developing a shared domain understanding. Table 1 depicts the main
challenges identified in order of decreasing strength from this study. It should be
emphasised that all the barriers are interrelated both causally and hierarchically and are
represented in Table 1 according to the strength perceptions of the participants of this
study. The relative strength of an identified challenge is estimated on a 10 point scale.
It is based on the frequency with which interviewees identified it, the degree of
prompting required, and the emphasis they placed on it (voice, body language,
anecdotes). The rest of this section discusses the individual barriers presented in Table
2 in more detail, including any root causes and strategies for addressing the challenges
identified by the participants in this study. Alignment with results and concepts from
existing literature is also discussed.

Table 1 Challenges and Barriers to Shared Domain Understanding

Challenges and Barriers
Relative

Strength

Inadequate client representation 10

Inter-group diversity 8

Lack of a common vocabulary 8

Lack of access to key stakeholders 8

Changes in problem understanding 7

Client uncertainty or disagreement 6

Difficult representations of understanding 5

Poor communications practice 3

3.1 Client representation

The challenges presented by poor quality client representatives is consistently
emphasised as a significant barrier to shared understanding by all participants. The
prevalent view of the interviewees is that the client representative(s) is a key
“interface” to the client organisation and if this relationship and interactions are poor
then communications suffers and it is difficult to elicit domain knowledge and verify
shared understanding. It seemed that this is generally a many-to-one (or few)
relationship for the participating organisations. This can be expected to magnify the
challenge of a poor representative compared to organisations with multiple points of
contact, where a poor quality representative may be outweighed by other high quality
representatives.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

7

Characteristics of poor quality client representatives generally related to their
perceived lack of domain knowledge, lack of availability or some form of “resistance”
to sharing. Table 2 summarises the main challenges identified by the participants, in
decreasing order of strength. These are now discussed in more detail including the
perceived causes and practical strategies from both the field study and related studies
from literature.

Table 2. Challenges Related to Client Representation

Challenge/Barrier Identified

Lack of domain knowledge .

Lack of availability

Actively or passively resistant

Has a hidden agenda.

Poor learner

Indecisive

Lack of external authority

Overly demanding

The most strongly emphasised characteristics of a poor quality client representation

relate to perceptions of their lack of domain knowledge. This may be a deficiency in
depth or breadth of domain knowledge. It was seen as resulting in an information need
not being satisfied (shared) or sharing conceptual understanding being limited. It was
also described as resulting in unnecessary uncertainty or volatility in understanding and
requirements. Interestingly, “poor domain understanding” was also used to describe
client representatives who were poor at articulating their (tacit) knowledge explicitly,
or unable to communicate their understanding using terminology and concepts that the
software production team could easily “digest”. Also included in this category of “poor
domain understanding” were representatives with little understanding of the
knowledge or needs of the wider client stakeholder group.

Although it was a strongly identified barrier in this study, the interviewees did not
offer any specific explanation regarding why client stakeholders with insufficient
domain knowledge may be given the role of client representative. Some clues are
found in literature, however. It is suggested in [4] that client representatives may be
chosen because of their (high) position rather than domain knowledge. In addition, it is
observed in [17] that in small organisations often the most capable (knowledgeable)
client stakeholders are too busy contributing to business as usual to be client
representatives. Another field study reported in [18] also notes the challenge of client
representation with inadequate domain knowledge and concludes that a contributing
factor is the lack of involvement of the development team in selecting the client
representative(s). Indeed, several participants from our study suggested that this
challenge could be alleviated by having more production team control of an identified
stakeholder selection process, although it was remarked that clients would be unlikely
to “allow” this. Production teams facing this barrier would generally rely on their own
in-house domain expertise and would try to share their understanding with the client
representative. Participants point out that this is a fairly limited solution, however,
since in-house expertise is not always available, client representatives are not always
open to “being advised” about their own application domain, and the specific
contextual factors related to that particular client organisation, situated in a wider
domain ontology, may be missed. It is certainly worth noting that this still seems to be

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

8

an important challenge, over a decade after those previously mentioned related studies
identified it as so.

Lack of availability of the client representative is also highlighted as being a
significant barrier to sharing domain understanding. The discussion on this mirrors that
for the challenge of accessing key stakeholders, discussed in detail in section 3.4 and
so the reader is referred to that section for more detail.

Another area of inadequate client representation identified as noteworthy relates to
problematic attitudes and behaviors of the representatives. Broadly speaking this is
perceived as overt uncooperative behavior such as “holding back” feedback or
information, or more passive resistance such as always agreeing, with little depth of
thought. Active resistance to sharing understanding included refusing to do something
requested by the production team. An unwillingness to compromise or negotiate and
repeated disagreement on domain understanding were also seen as active resistance.
Some participants interpreted a lack of accessibility of the client representative, or
overly “secretive” client behavior (inappropriately commercially sensitive), as active
resistance also. Passive behaviors such as verifying production team understanding
with no challenge or discussion were viewed as less likely to lead to negative conflict,
but still regarded as a barrier to shared domain understanding. Similarly, passive
attitudes such as a general lack of engagement, or an unwillingness to commit to a
position were also viewed as barriers. These concepts identified by the interviewees are
close to the notions of “silent resistance” and “compliance resistance” noted in [19] as
barriers to shared understanding in requirements engineering.

Participants described such uncooperative behavior as often hindering knowledge
elicitation and verification activities throughout the software development lifecycle.
They describe the consequences as potentially leading to: delays in the project,
misaligned expectations, extra communications effort, lack of buy-in, lack of trust or
heightened project risk.

The client representative’s resistance to verifying and sharing understanding was
seen as due to a low value being placed on the role by the client representative. This
resulted in their lack of “buy-in”, “commitment” or “resentment” to that role. Some
participants also noted that certain personality traits, such as selfishness (thinking only
of their own gain), could also disrupt communications and sharing understanding. This
aligns with the observation in [17] that client stakeholder personalities may be at the
root of these attitudinal and behavioral issues. It is suggested in [19] that resistance to
the change brought about by the introduction of a new software system may trigger
attitudinal or behavior problems in client stakeholders, and this may apply to the client
representative.

The interviewees had few suggestions to address this resistant behavior and poor
attitudes. One participant suggested that selecting an open-minded, tolerant production
team representative with good communication skills may assist in modifying the client
representative’s behavior. Another participant suggested that support from another
client stakeholder with higher authority should be sought.

Power is another clear barrier related to effective communication with the client
representative. Some are perceived as playing power games with hidden political
agendas, so that aspects of understanding were withheld to the advantage of the client
in some way. It also encompasses situations where the client representative introduces
their own ideas or agenda, without socializing it first with the other appropriate client
stakeholders (particularly their managers). Related to this is the frustration expressed
by some participants when trying to negotiate understanding and perhaps reach a

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

9

compromise or decide on alternative views, when the representative doesn’t have the
authority to speak for the organisation and must consult with a higher authority.

It is clear from the interviews that most participants placed significant reliance on
getting quality domain expertise and quality feedback and verification of
understanding from the client representatives. They generally perceived the selection
of the client representative(s) as largely out of their control, although two organisations
report influencing the selection of the customer representative through negotiation.
Another three organisations reported employing their own domain experts, who act as
“proxy” clients. Presumably the client organisations don’t actively select a poor quality
representative for a project, so the question remains as to how this situation arises? No
clear causes are offered by the participants, although the “blame” was certainly placed
with the client group by the (vendor) interviewees.

While the quality of client representation is discussed in RE literature ([20], [21]) it
appears that for small organisations it is perceived as a particularly significant and
frequent barrier to developing shared understanding. Perhaps this is because larger
teams in larger organisations have multiple points of contact. This could be a fruitful
area for process improvement and better tool support. How can a more visible “client
management” process be designed that will promote the selection of the client
representatives based on appropriate criteria and support them to engage and commit,
despite having competing work pressures? Or how can the knowledge sharing role of
the client representative be made less crucial for an SME? One approach may be to
support client stakeholders (and members of the production team) to explicate their
relevant domain knowledge in a rich representational format that is straightforward to
produce, manipulate and verify in a collaborative and distributed mode.

3.2 Inter-group Diversity

“Diversity” between the client and vendor groups is also identified strongly as a
barrier to shared understanding. This is described by the participants as being linked to
the differences in individuals’ characteristics. This includes: their experiences, depth of
knowledge, abilities to conceptualise, values, risk tolerance, and priorities. This barrier
is conceptualised as resulting in “difference trends” between the groups that develop
over a series of inter-group interactions. This can lead to unexpected actions, increased
conflict, misunderstandings, miscommunications or misinterpretations that disrupt
clear communications and hinder the development of shared understanding.
Particularly noted by participants are the differences in depth of knowledge between
the two groups, more technical on the software production team side and more
business oriented in the case of the client group.

Three particular issues related to inter-group diversity were particularly

emphasised by participants. One relates to the “difficulty to get them to speak the

same language”. This is seen as a significant barrier to developers gaining a sufficient

understanding of the business processes and goals, and being the root cause of “some

projects failing badly”. This is discussed in more detail in the section on the

challenges of developing a common vocabulary (with which to create, share and

verify understanding).

Another barrier identified related to diversity, is the problem of the software

production team “jumping into the coding process before they understand the business

goals and processes”. This was seen as resulting in a “cycle of change, change,

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

10

change”, which is problematic to accommodate and could result in delays. The flip-

side of this situation was also reported as a barrier to sharing domain understanding.

This is the situation where clients inappropriately, and in the early stages of

knowledge sharing, specify aspects of the solution system with flawed justification or

poor understanding of the solution domain. Participants pointed out that this could

restrict problem domain exploration and constrain consideration of alternative

candidate domain solutions.
Another interesting challenge perceived by the participants relates to the lack of

“big-picture” some client stakeholders exhibit. This is seen as resulting in stakeholders
often getting “lost” and “missing the point because they don’t understand what the
business is trying to do”. This relates to the notion of “Situation Awareness” (SA)
defined in [22], and discussed in terms of inter-team communications in [23]. SA can
be described as comprehension of the “big picture” of the elements of a situation.
Cognitive psychology suggests that a level of SA is needed for sense-making and
decision making regarding the situation, and how it might be in the near future. The
high workload of client stakeholders (and possibly production team members) could
impair their SA and be an impediment to internalising and sharing understanding. This
could result in decision making based on the wrong understanding. This suggests that it
may be useful to have some mechanism for developing and sharing the “big picture”,
in terms of business goals and aims, for example, and having this front of mind at key
decision points in developing shared understanding.

It is worth noting that interviewees did not mention cultural diversity as a barrier to
sharing understanding, although it is identified in literature as a common barrier to
communications and shared knowledge (e.g. [24, 25]). It may be that the participating
organisations may only serve a local market with little cultural diversity.

3.3 Lack of a Common Vocabulary

Although only identified by two organisations during the open questioning phase

of the interviews, when prompted all but one participant agreed that a lack of a

common vocabulary can be a barrier to sharing domain understanding. They

described the issue as the use of “jargon”, or “unfamiliar language” when sharing

information for knowledge transfer or validation. Generally this was resolved by

repeated clarification and verification interactions. They pointed out that this could be

time consuming and cause delays, however. Also, sometimes individuals “didn’t

know that they didn’t know” regarding the terminology and by the time they did

recognize the confusion the impact on the project was more serious. This issue is also

reported in literature and typically the maintenance of a shared glossary is

recommended to alleviate the problem [3, 5]. Participants noted that this wasn’t

always useful because it the glossary was not always referred to by some client

stakeholders (who maybe had no input to it). Other shortcomings given include: the

glossary wasn’t clear enough, it had gaps, or it wasn’t up-to-date. Certainly it is

restricted in the knowledge represented and provides limited information on concepts

and their relationships. Perhaps a shared cognitive map, collaboratively developed

and maintained, would serve this purpose better. Of course the overhead in

developing and maintaining such a representation of the project “ontology” would

need to be minimized in practice.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

11

3.4 Lack of Access to Key Stakeholders

A variety of circumstances are identified as being the root causes of this access
challenge including: geographical distance, delegation of responsibility, multiple layers
of stakeholders, office policy, high cost of stakeholder involvement, or stakeholder
indifference. There is a strong perception that stakeholders (including the client
representative) are often too busy with other work (over-worked perhaps).
Consequently they can take too long to respond to requests for information or
confirmation of understanding, or provide shallow or incorrect responses due to this
work pressure. Sometimes this was interpreted as the stakeholder having a lack of
commitment or indifference to the project, because they don’t “make themselves
available”.

One of the issues identified by participants with geographically distant client
stakeholders is the lack of opportunity for face-to-face interactions and the concomitant
rich communications available through this channel. Participants described the use of
video conferencing as a partial solution to this. The use of a variety of communication
channels (e.g. phone, email, SMS), was a common strategy described. This depended
on the nature of the understanding to be shared (e.g. urgency, impact) and the
disposition of the particular stakeholders involved, as well as the pragmatics of the
situation.

Deficiency in availability often resulted in a lack of scheduled meetings or delays
in the schedule, with consequent delays in sharing understanding and project progress.
Participants also discussed the need for unscheduled access to certain client
stakeholders, particularly the client representative. This was typically for clarification
or verification of understanding where the need is urgent and possibly of less
significance to the project. This often involved a quick phone call or email. Sometimes,
if the required client stakeholder(s) was not available in a timely fashion, members of
the production team would act on assumptions, decisions or interpretations that had not
been verified with the client stakeholder group, increasing risk and limiting the sharing
of understanding.

Multiple layers of stakeholders, for example where a client representative is a third
party agent acting on behalf of the client, was also perceived as a challenge. The
“thicker” layer of interpretation and possible increased communications times were
seen as factors that could increase the chance of miscommunication or delays. One
participating organisation report that one particular client had a policy that prevented
the software development team from directly communicating with end-users. Although
business analysts from the production team could communicate with the end-users, this
potentially created a situation similar to the multi-layer stakeholders.

It may be that a persistent representation of some aspects of shared understanding
that can be easily manipulated and annotated could provide a partial solution to this
barrier by providing an asynchronous, distributed and ideally rich mechanism for
sharing understanding. This could lower the accessibility pressure for some key
stakeholders.

3.5 Changes in Problem Understanding

A commonly cited issue with requirements management is the difficulty in
managing changes to scope and requirements [19]. Although not identified initially by

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

12

participants, when prompted about changes to domain understanding, they expressed
the view that, such change can be problematic if not “well managed”. They described
challenging experiences such as overly frequent changes, clients not sharing changes
with the vendor, and lack of clarity on the wider impact of new understanding. Overall
they saw the changes in understanding as positive and a natural part of the evolution of
shared understanding.

3.6 Client Uncertainty or Disagreement

Over half of the participants indicated that client uncertainty with the problem

domain is a barrier to sharing domain understanding. This is subtly different to

insufficient domain knowledge. The client stakeholders may have sufficient depth of

understanding but they are uncertain about which aspects of their domain knowledge

apply or are important. A factor in this uncertainty may be that different stakeholders

“compete” for their views to be the prevalent shared understanding.

Uncertainty with the envisioned the system goals was also seen as a possible

barrier. While this is expected at the project concept stage and early phase

requirements, some participants observed that this uncertainty could be a repeated

pattern of and hamper decisions about shared understanding.

Another challenge to sharing domain understanding was described as the situation

where there is a low overlap of some areas of understanding within the client

stakeholder group. This may manifest as inconsistent, conflicting or competing

points-of-view being “shared” by the client group. Participants observed that the

client stakeholders may not be aware of this situation because they have had no need

(or opportunity) to integrate or share these aspects of their understanding with each

other before. This barrier is well acknowledged in literature and has been identified in

other empirical studies such as [20, 26].

Most participants suggested that this challenge could be addressed by finding a

mechanism to facilitate the client stakeholders to agree on important aspects of the

problem domain, and “achieve buy-in” to these shared views, before they share this

understanding with the software production team. Participants acknowledged that this

is generally a challenge in practice. In [20] it is suggested that when the software team

identifies the divergent client views they should organize a meeting with all the

related (conflicting) client stakeholders together and facilitate a shared view. While

this is not uncommon during early requirements elicitation, it is often difficult to get

such a group together again in one place at one time because of divergent work

schedules. A distributed, virtual mechanism of knowledge sharing that improves the

visibility of all relevant clients stakeholders’ points of view may assist with

overcoming this barrier. It would have to be low effort and low complexity to be

practicable, however.

3.7 Difficult Representations of Understanding

Participants observed that often the sharing of domain understanding involved the

development and sharing of representations of aspects of the knowledge to be shared

and verified. The representations identified by interviewees as representing shared

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

13

domain knowledge includes formal and structured representations as well as: flow

charts, business process diagrams, scenarios, use-cases, requirements specification

documents, various UML diagrams, conversations and email threads. Screen shots,

prototypes and product demonstrations were also identified as domain knowledge

representations, with the reasoning that contain “embedded” (but constrained)

understanding of the problem domain, and that they uncovered misunderstandings.

Participants perceive the use unfamiliar or overly complex representations as a

barrier to sharing understanding. It is effectively introducing a new vocabulary that is

not common to the two groups, as previously described. Interviewees emphasised the

importance of being aware of the clients’ fluency in interpreting and manipulating

different knowledge representations and notations. This is in line with the findings of

[14, 17, 26] who link the use of certain knowledge representations (UML, object

oriented representations and use cases) with barriers to knowledge sharing. These

studies also suggest that pictorial and concrete representations of knowledge (e.g.

screen shots or prototypes) are typically easier for the client stakeholders to

understand. This is supported by the experience of the participating organisations.

Natural language (both semi-structured and unstructured) was identified as the

most common representation of shared understanding because it is the “lowest

common denominator” for understandability. It was also noted that the ambiguity

inherent in natural language is a source of challenge to sharing understanding and

difficult to manage, as also reported in [14, 27] in relation to requirements

specifications. The mechanism for discovery of ambiguity in natural language

knowledge representations typically involved reviews, cross validation against other

representations and frequent clarification interactions. One participant had a strong

conviction that written communications “in any form” are always ambiguous and

would never be a substitute for regular face-to-face meetings where more signs are

available to identify ambiguity and instant clarification is possible. [11] suggests that

being able to detect ambiguity and imprecision in natural language is a skill that that

can and should be learned.

A few participants noted that poor presentation of knowledge representations can

be a barrier to shared understanding. They described “unattractive”, “dry”. “dull”, and

“voluminous” documents for review or confirmation of understanding as de-

motivating and limiting client engagement with the knowledge sharing activity.

3.8 Poor Communications Practice

Communications and sharing understanding are closely related [4] and so poor

inter-group communications are strongly linked to challenges in developing shared

understanding. The communications barriers identified by interviewees generally

related to deficiencies in the timeliness or frequency of the communications, or a lack

of “rich” communications interactions. These challenges were seen as arising from

insufficient communications planning, lack of stakeholder availability (for all the

reasons previously discussed), unrealistic project timeframes, or the use of project

processes or methodologies that de-emphasised client communications. Poorly

defined or socialised roles and responsibilities are also perceived as a source of

challenge to communications practice. This is one of the factors identified in [4] also.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

14

Clearly sharing understanding benefits from the availability of a diversity of

communications channels, knowledge artefacts and communication related roles.

Multi-view models of communications interactions, such as that introduced by [28]

may provide fuller understanding of the effectiveness of communications for sharing

understanding.

4 Conclusion

Overall, participants identified a broad range of interrelated barriers and challenges
to adequate sharing of domain understanding. The potential for client representatives to
inhibit the sharing of domain understanding between the two groups was emphasised
in the frequency and strength with which interviewees, unprompted, raised this as an
issue. The next most forcefully expressed barrier related to the diversity in “world
views” and experiences of the vendor and client groups. This contributed to a number
of communications issues that obstructed sharing understanding between the two
groups.

This study achieved its aim of deepening the understanding of the barriers and

challenges faced by software development teams in collaboratively sharing domain

knowledge with the client stakeholder group. This will now be used to guide the

development of multi-view models of sharing domain understanding in this context.

Theories from cognitive science, organisational theory, semiotics and knowledge

management will be considered for candidate principles to inform the models. The

longer term plan is to then test the models through the design and evaluation of tools,

techniques and processes based on these models.

References

[1] J. A. Cannon-Bowers and E. Salas, "Reflection on shared cognition.," Journal of

Organizational Behavior, vol. 22, pp. 195-202, 2001.

[2] S. G. Cohen and C. B. Gibson, "In the beginning: Introduction and framework," in Virtual

teams that work: Creating conditions for virtual team effectiveness, C. B. Gibson and S. G.

Cohen, Eds. San Fransisco: John Wiley & Sons, 2003.

[3] E. G. Alcázar and A. Monzón, "A process framework for requirements analysis specification,"

in Proceedings of 4th International Conference on Requirements Engineering, 2000, pp. 27-

35.

[4] J. Coughlan, M. Lycett, and R. D. Macredie, "Communication issues in requirements

elicitation: a content analysis of stakeholder experiences," Information and Software

Technology, vol. 45, pp. 525-537, 2003.

[5] R. Offen, "Domain Understanding is the Key to Successful System Development,"

Requirements Engineering, vol. 7, pp. 172-175, 2002.

[6] A. Osada, D. Ozawa, H. Kaiya, and K. Kaijiri, "The role of domain knowledge representation

in requirements elicitation," in 25th IASTED International Multi-Conference

Software Engineering, Innsbruck, Austria, 2007, pp. 84-92.

[7] A. G. Sutcliffe and J. M. Carroll, "Designing claims for reuse in interactive systems design,"

International Journal of Human-Computer Studies, vol. 50, pp. 213-241, 1999.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

15

[8] EU, "The new SME definition. User guide and model declaration. ," European Commission,

2005,

http://www.ec.europa.eu/enterprise/enterprise_policy/sme_definition/sme_user_guide.pdf

[9] J. Aranda, S. Easterbrook, and G. Wilson, "Requirements in the wild: How small companies do

it," in Proc. 15th IEEE International Requirements Engineering Conference RE '07, 2007, pp.

39--48.

[10] S. Pavic, S. C. L. Koh, M. Simpson, and J. Padmore, "Could e-business create a competitive

advantage in UK SMEs?," Benchmarking: An

International Journa, vol. 14, pp. 320-351, 2007.

[11] E. Kamsties, K. Hörmann, and M. Schlich, "Requirements engineering in small and medium

enterprises," Requirements Engineering, vol. 3, pp. 84-90, 1998.

[12] F. Pino, F. García, and M. Piattini, "Software process improvement in small and medium

software enterprises: a systematic review," Software Quality Journal, vol. 16, pp. 237-261,

2008.

[13] A. Atherton, "The uncertainty of knowing: An analysis of the nature of knowledge in a small

business context," Human Relations, vol. 56, pp. 1379-1398, 2003.

[14] L. Karlsson, A. G. Dahlstedt, B. Regnell, J. N. Dag, and A. Persson, " Requirements

engineering challenges in market-driven software development - An interview study with

practitioners.," Information and Software Technology, vol. 49, pp. 588-604, 2007.

[15] M. Miles and A. Huberman, Qualitative Data Analysis. Sage, CA: Thousand Oaks 1994.

[16] W. Tellis, "Application of a case study methodology," The Qualitative Report, vol. 3, 1997.

[17] K. E. Emam and N. H. Madhavji, "A field study of requirements engineering practices in

information systems development," in Proceedings of the Second IEEE International

Symposium on Requirements Engineering, 1995, pp. 68-80.

[18] A. Al-Rawas and S. Easterbrook, "Communication problems in requirements engineering: A

field study," in 1st Westminster Conference on Professional Awareness in Software

Engineering,, London, 1996.

[19] H. Saiedian and R. Dale, "Requirements engineering: Making the connection between the

software developer and customer," Information and Software Technology, vol. 42, pp. 419-

428, 2000.

[20] L. Cao, & Ramesh, B., "Agile requirements engineering practices: An empirical study," IEEE

Software, vol. 25, pp. 60-67, 2008.

[21] C. Lu, Chu, W. C., C. Chang, and C. Wang, "A model-based object-oriented approach to

requirements engineering (MORE)," in 31st Annual International Computer Software and

Applications Conference, 2007, pp. 153-156.

[22] M. R. Endsley, "Toward a theory of situation awareness in dynamic systems," Human Factors

vol. 37, pp. 32-64, 1995.

[23] C. A. Bolstad, P. Foltz, M. Franzke, H. M. Cuevas, M. Rosenstein, and A. M. Costello,

"Predicting situation awareness from team communications," in 51st Annual Meeting of the

Human Factors and Ergonomics Society, Santa Monica, CA, 2007.

[24] D. Damian, "Stakeholders in global requirements engineering: Lessons learned from practice,"

IEEE Software, vol. 24, pp. 21-27, 2007.

[25] Y. Hsieh, "Culture and shared understanding in distributed requirements engineering," in

International Conference on Global Software Engineering, 2006, pp. 101-108.

[26] M. Lubars, Potts, C., & Richter, C. (1993). A review of the state of the practice in

requirements modelling. Proceedings of IEEE International Symposium on Requirements

Engineering, 1993, 2-14.

[27] M. Gervasi and D. Zowghi, "Reasoning about inconsistencies in natural language

requirements," ACM Transactions on Software Engineering and Methodology, vol. 14, pp.

277-330, 2005.

[28] J. Aranda and S. M. Easterbrook, "Distributed Cognition in Software Engineering Research:

Can it be made to work," in First workshop on Supporting the Social Side of Large Scale

Software Development (SSSLSSD) Banff, Alberta, 2006.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

16

http://www.ec.europa.eu/enterprise/enterprise_policy/sme_de?nition/sme_user_guide.pdf

Differences of Time between Modification and
Re-modification: An Analysis of a Bug Tracking

System

Akinori Ihara, Masao Ohira, and Ken–ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, JAPAN 630-0192

{akinori-i,masao,matumoto}@is.naist.jp

Abstract. Managers of open source projects need to understand time
to resolve bugs, which are reported into a bug tracking system on a
daily basis, to make a release plan. Hewett et al. proposed an empirical
approach to predicting time required to repair bugs. However, the predic-
tive model did not distinguish between time to modify a firstly-reported
bug and time to re-modify a bug. In this paper, toward predicting time
to resolve bugs with accuracy, we identify such the differences of time
between bug modifications and re-modifications. We have conducted a
case study using Firefox project data. As a result of this case study, we
have confirmed that time to resolve a firstly reported bug was shorter
than time to re-modify a bug.

Key words: open source software development, bug tracking system,
time to resolve bugs, bug modification process, Firefox

1 INTRODUCTION

As open source software with a large number of users increases, it is required
to release a new feature or a bug fix on regular basis. Therefore, managers of
OSS projects need to understand time to resolve bugs which are reported into
a bug tracking system on a daily basis, in order to make a release plan. Hewett
et al.[2] proposed an empirical approach to predicting time for repairing bugs.
The study presented a bug modification process using a bug tracking system as
a state transition diagram and predicted time spent for transition to each state.
However, the predictive model did not distinguish between time to modify a
firstly-reported bug and time to re-modify a bug. Time required for re-modifying
a bug would be shorter than time required for modifying a firstly reported bug,
since a problem in source codes must be more clear, compared to the modification
of a firstly reported bug which may contain unknown problems. It will also
take a longer time to resolve bugs, if developers in charge of bug modifications
frequently change. In this paper, toward predicting time to resolve bugs with
accuracy, we identify such the differences of time between bug modifications and
re-modifications. We have conducted a case study using Firefox project data.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

17

2 Lecture Notes in Computer Science: Authors’ Instructions

unconfirmed verif iedresolved closed

invalid
duplicate

invalid
duplicate

worksforme
wontfix

tossed
fixed

reopened

new assigned

Fig. 1. A bug modification process[3]

2 RELATED WORK

There are many studies on bug modification processes with bug tracking sys-
tems in open source projects[1][3][4][5]. Focusing on time to resolve bugs in the
bug modification process, we have proposed an analysis method to understand
a factor which results in prolonging the bug modification process[4]. This anal-
ysis method represents a bug modification process as a state transition diagram
and calculates the amount of time required to transit between states. We have
conducted two case studies of the reported bugs in Apache and Mozilla projects.
As a result of our analysis, we have found that the both projects needed long
time to resolve bugs in the modification phase and verification phase. However,
we could not achieve a clear understanding on the differences of time between
bug modifications and re-modifications.

3 BUG MODIFICATION PROCESS

3.1 Bug Modification Process with a Bug
Tracking System

Most open source projects use bug tracking systems to unify management of bugs
found and reported by developers and users in their projects. A bug tracking
system helps open source project’s managers to know the progress of bug mod-
ifications, to avoid leaving unmodified bugs and so forth. Popular bug tracking
systems include Bugzilla, Mantis, RedMine, Trac and so on.

Figure 1 represents a bug modification process using a bug tracking system.
Although a bug modification process using a bug tracking system slightly differs
among individual bug tracking systems, it substantially can be represented as a
state transition diagram in Figure 1.

3.2 Modification Work

This section describes differences of the modification work flow between modifi-
cation of a firstly reported bug and re-modification of a bug. Figure 1 shows the

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

18

Lecture Notes in Computer Science: Authors’ Instructions 3

bug modification work flow. The modification work flow for a firstly reported
bug is as follows. First, developers understand contents of bug reports. Second,
developers understand a source code containing bugs. System names containing
bugs are written in many bug reports. One developer often faces with the dif-
ficulty in modifying bugs by oneself, because most software systems work with
other systems. Furthermore, developers need to consider the influence of their
modifications on other source codes, due to such as the dependency of software
modules. In contrast, re-modifying bugs would be finished by a shorter time,
because analyzing the prior modification helps developers identify the reason
and/or location of bugs. For the reasons mentioned above, we consider that time
to resolve is affected by the presence or absence of the history of modifications.

4 ANALYSIS METHOD

This section describes a method for identifying the differences of time between
bug modifications and re-modifications. At first, we describe a method to calcu-
late time to modify a firstly reported bug and time to re-modify a bug. Time to
modify a firstly reported bug is defined by the mean time from acceptance of the
bug (new) to resolution of the bug (resolved). In contrast, time to re-modify a
bug is defined by time from the decision of re-modification of the bug (reopen)
to resolution of the bug (resolved). Some reported bugs are often needed to be
re-modified several times. In this case, we calculate time for each re-modification
of bugs. For example, if a bug are re-modified twice, we count time for the two
re-modifications Therefore, time required to re-modify a bug depends on the
number of changes of developers in charge [3]. In this paper, time to modify a
firstly reported bug and time to re-modify a bug are respectively calculated by
the number of modifications of each developer in charge.

5 CASE STUDY

5.1 Target Projects and Data

In the Mozilla Firefox project, Bugzilla is used to manage reported bugs. The
Mozilla Firefox project has been developing a web browser product with a rapidly
increasing share. The product is very popular due to the extensibility of functions
(i.e., add-ons). The project has been using Bugzilla since 2001. In the case study,
history data of Bugzilla in Firefox version 1.0, 2.0, and 3.0 had been examined.
In this paper, we analyzed 10,917 bug reports. Their bug reports is closed bugs
from 2003 to 2008. In the bug reports, the number of re-modified bugs were 434
and the number of firstly reported bugs were 969.

5.2 Result

Table 1 respectively shows time to modify a firstly-reported bug and time to
re-modify a bug, by the number of changes of assigned developers. If an assigned

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

19

4 Lecture Notes in Computer Science: Authors’ Instructions

developers never changed, the number of changes of assigned developers is shown
as zero. Time to modify firstly modified bugs with zero, once and twice assigned
developers is longer than time to re-modify bugs with zero, once and twice
assigned developers. In addition, the number of firstly modified bugs excepting
zero assigned developers is 426 of 969 (44%). The number of re-modified bugs
excepting zero assigned developers is 107 of 434 (25%).

Next, we confirmed the significant difference of the number of modifications
between the two kinds of the modification works, using Mann-Whitney U test1.
In this case study, the significance level of a test is 5%. Table 2 shows the test
result. In case of zero and once assigned developer, there is significantly different
between the two kinds of the modification works. However, In case of over two
times assigned developers, there is no significance different between two works.

Table 1. Time to firstly-modify and re-modify bugs

firstly-modified bugs re-modified bugs

number of zero once twice third more than zero once twice third more than
assigned developers assigned times four times assigned times four times

median(days) 11.0 24.3 82.7 129.3 429.2 0.6 8.2 75.7 163.2 227.4
average(days) 78.2 113.2 197.3 363.5 331.2 28.6 94.8 298.8 201.8 286.6
variance(days) 167.4 227.5 348.0 439.3 212.1 98.8 170.9 627.9 160.6 210.1

number of bugs 543 353 47 19 7 386 74 20 8 5

Table 2. Mann-Whitney U test

number of zero once twice third more than
assigned developers assigned times four times

p-value 2.2e-16 0.02 0.72 0.40 0.83

6 DISCUSSIONS

Based on the results of our case study, this section discusses the necessity of
analysis on the differences of the mean time to resolve bugs due to kinds of bug
modification process toward building a predictive model of bug resolution time.

As a result of this study, we observed that time to modify firstly reported
bugs was shorter than time to re-modify a bug in spite of the number of assigned
1 The data with this study has element counts of the population and each data set

is not normally-distributed. Mann-Whitney U test is used when two samples are
self-dependence.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

20

Lecture Notes in Computer Science: Authors’ Instructions 5

developers. We also found that the number of assigned developers in modifying
firstly reported bugs was larger than that in re-modifying bugs. In addition, the
number of assigned developers in re-modifications is less than that in modifica-
tions of firstly reported bugs. Therefore, we think that time to understand bug
reports and source codes with bugs is less required in re-modifying bugs.

In this paper, we did not analyze time to resolve bugs, considering every
developer’s skills and priority and/or severity of bugs. If a developer has high
skill, time to resolve bugs would be shorten in nature. Also, if high severity bugs
are reported, developers would modify such the bugs by priority. In the future,
we would analyze time to resolve bugs, considering such the skills and priority
and/or severity of bugs.

7 CONCLUSION AND FUTURE WORK

In this paper, toward predicting time to resolve bugs with accuracy, we identify
such the differences of time between bug modifications and re-modifications. We
have conducted a case study using Firefox project data. As a result of this case
study, we have confirmed that time to resolve a firstly reported bug was shorter
than time to re-modify a bug.

We think that the verification work also different between time for a first
bug modification and time for re-modification of a bug. Finally, we would like
to build a predictive model of bug resolution time, analyzing differences of time
to resolve bugs modification considering bug modification processes.

8 ACKNOWLEDGEMENT

This research is being conducted as a part of the Next Generation IT Program
and Grant-in-aid for Young Scientists (B), 20700028, 2009 by the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

References

1. I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles. Towards
a simplification of the bug report form in eclipse. In Proceedings of the 2008
international working conference on Mining software repositories (MSR’08), pages
145–148, 2008.

2. Hewett. R, and Kijsanayothin. P. On modeling software defect repair time. Em-
pirical Softw. Engg., pages 165–186, 2009.

3. Jeong. G, Kim. S, and Zimmermann. T. Improving bug triage with bug tossing
graphs. In Proceedings of the 7th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering on European Software Engineering Conference and Founda-
tions of Software Engineering Symposium , pages 135–144, 2009.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

21

6 Lecture Notes in Computer Science: Authors’ Instructions

4. Ihara. A, Ohira. M, and Matsumoto. K. An analysis method for improving a
bug modification process in open source software development. In Proceedings of
the Joint international and Annual ERCIM Workshops on Principles of Software
Evolution (IWPSE) and Software Evolution (EVOL) Workshops , pages 111–120,
2009.

5. A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Transactions on Software Engi-
neering and Methodology, 11(3):309–346, 2002.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

22

Usage Result of Problem Resolution Information
Shar ing System for a Software Engineer ing Course

Atsuo Hazeyama Kazuyuki Shimada and Yusuke Kobayashi

Department of Information Science, Tokyo Gakugei University
4-1-1 Nukuikita-machi, Koganei-shi, Tokyo, 184-8501 Japan

hazeyama@u-gakugei.ac.jp

Abstract. Software development is highly knowledge-intensive and
collaborative work. Problem resolution processes are performed iteratively
during software development. The authors have proposed a problem resolution
process model that was based on reflection and collaboration for a software
engineering project course. They have also developed a support system based
on the process model and applied it to an actual university course for two years.
The results from the stored log data and the contents from two years’ usage
showed that similar trend on the number of registered problem resolution
information, ratio of classification by phase and by contents was seen in both
years (problem resolution information on coding with respect to phase was
registered most, and most information was that on technical with respect to
contents). We observed knowledge transfer by the teaching staff in the
discussion space and in the bulletin board system of group.

1. Introduction

Software development is knowledge intensive and collaborative work. Developers
face many problems during software development and solve them by interactions with
various resources [10]. There are no developers who possess all required knowledge.
They gather necessary information while they progress development. They may ask
others who possess expertise [10]. Ye described importance of knowledge
collaboration in software development and developed a software engineering
environment that enabled to register and retrieve sample programs, browse past
discussions for the programs, and inquiry professionals [10].

Ishida et al. pointed out some issues on information and know-how sharing in
industrial software organizations as follows: although software developers and/or
managers have desire to know-how sharing, it does not function well [6].

Problem resolution information sharing systems have been developed for some areas
[1, 2]. Answer Garden was developed to use in a help desk. It provided a branching
network of diagnostic questions that helped users find answers. If the answer is not
present, the system automatically sends the question to the appropriate expert and the
answer is returned to the user and it is inserted into the branching network [1].
Although Answer Garden contributed to efficient problem resolution, it did not seem
to focus on a learning aspect such as reflection.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

23

Reflection is known as a process that is rooted knowledge acquired through problem
resolution processes. Hatamura advocated “Shippaigaku” that learned from failures in
order not to iterate similar ones [4]. “Shippaigaku” specified six attributes, i.e., event,
background, progress, cause, disposition, and lessons learned, in order to describe a
failure and transfer it to others.

We have been conducting a group-based software engineering project course. The
goal of this course is for students to acquire knowledge and skills that are necessary
for software development through their experience of collaborative software
development by group. We proposed a problem resolution process model by
collaboration and reflection, which aimed to solve problems that occurred during
software development and to be rooted knowledge acquired through problem
resolution [5]. We also developed a system based on the process model to share the
problem resolution information (description of problem, the resolution process,
solution, and lessons) students encountered. This system is different from an issue
tracking system like Bugzilla, Dhruv [9, 2] from the viewpoint of the target scope.
Issue tracking systems manage bug information and information on the disposition in
the testing phase. On the other hand, we manage problem resolution information
students encounter in all phases of software life cycle. We reported some results
gained from its application to an actual university course as follows: 1) around 90%
of the registered problem resolution information dealt with the implementation phase,
2) 95% of the registered problem resolution information dealt with the technical
information and only 5% dealt with process information [5].

We would like to ascertain whether this is a transient phenomenon or not. We also
ascertain state of reuse of shared knowledge.

The organization of this paper is as follows: section 2 gives an overview of our
problem resolution process. Section 3 presents a support system. Section 4 reports
application of the system to an actual university course and some results. Finally we
conclude this paper.

2. A Process Model for Collaborative Problem Resolution

The problem resolution process we propose is consisted of the following four steps
as shown Figure 1.
(1) Identification of a problem

When a learner or a group faces a problem, (s)he identifies the event and its
background. Problems may come from results of inspection and/or testing, troubles in
programming, and/or troubles in development environments.
(2) Information gather ing

A learner or a learning group collects information which is necessary for problem
resolution and considers causes of the problem. As the information source for
problem resolution, we assume the supporting system we provide in this paper and/or
external resources such as Web pages. We also assume to collect information by
means of communications with peers in the course and/or the teaching staff.
(3) Disposition of the problem

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

24

The learner deals with the problem to remove the cause, which was considered based
on the information collected in the step (2).
(4) Reflection

When the problem was solved, the learner reviews the problem resolution process
and describes the lessons learned by the problem resolution process.

We ask learners for describing items that correspond to the steps. We adopt
“Shippaigaku” as a framework for describing the problem resolution process as
shown in section 1. Shippaigaku is a discipline, which aims at learning from failures
and prevents similar failures by sharing them [4]. In the learning process, we regard
reflection as activities of describing all the attributes specified by “Shippaigaku” for
the corresponding problem. The problem resolution information that will be stored
through the abovementioned learning process is available for other learners. At this
time we think learning effectiveness will not be obtained if a learner only refers to the
information. Therefore we provide a function that referrers describe their lessons
based on the information they referred. These lessons lead to feedback information for
the submitters of the problem resolution information.

Fig. 1 Problem Resolution Process Model

3. Suppor t System

We implemented a support system based on the abovementioned problem resolution
process model. The system was implemented as a web application and a sub-system
of “Shin-Gi-Tai” (Mind-Skill-Force) that was a group-based collaborative software
development environment we developed [7]. “Shin-Gi-Tai” provides the following
functions: document management, BBS (Bulletin Board System)-based

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

25

communication support, project planning and progress reporting, and issue tracking.
The system we developed in this study has the following major functions. The
information that is stored by the functions is available to all groups in “Shin-Gi-Tai”.
* Registration of the problem resolution information: a user registers the problem

resolution information. By registering it according to the input form that corresponds
to the attributes defined by “Shippaigaku”, the context information is attached and
reflection will be made by the user.

* Browsing of the problem resolution information: users browse the registered
problem resolution information. They can evaluate the information and/or give
comments for it. Figure 2 shows an example screen shot of the problem resolution
information.

* Discussion space for the problem resolution: this function creates a space for
discussions specific to an encountered problem. A user who would like to ask a
question registers his/her question. In particular, as the context information is
important for the encountered problem to be answered, description on the goal and
on what (s)he has tried is mandatory. Then users enable to take three types of
actions, i.e., browsing of questions, submission of messages, and browsing of the
messages. From this function, a user can register the problem resolution information
if the problem was resolved. The system associates the problem resolution
information with the discussions.

Fig. 2 Screen shot of browsing the problem resolution information

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

26

Nakakoji et al. categorized communication in software development into
coordination communication and expertise communication [8]. This function
corresponds to expertise communication. Coordination communication is done in
bulletin board system (BBS) of each group.

4. Evaluation

We show the results from two years’ application of the system.

4.1 Overview of the course

We applied the system to an actual software engineering project course at our
university in the 2007 and 2008 academic year. In this course, four or five students
form a group. Each group selects one task from the two given by the instructor and is
expected to complete their development via requirement analysis, design,
implementation, and testing from scratch. Each group is required the system is
implemented as a Web application with the Java technologies. During the project, the
teaching assistants and the instructor (hereafter we call them the teaching staff)
conduct inspection for requirement specification and several design documents. Faults
detected during the inspection are required to be revised (the follow-up step was
conducted). Acceptance testing is performed by the teaching staff for the system that
is uploaded to a server machine and the development group conducts system testing
for the same system. Faults are kept track by an issue tracking tool we developed.

Our department offers one and half years’ programming courses by C language,
one semester’s course “automaton and language theory,” and one semester’s course
“introduction of software engineering” just before the project course as related to the
project course. “Introduction of software engineering” gives lectures on some
software life cycle models, concept of object-orientation, modeling by UML (Unified
Modeling Language), Web application development with Java technologies
(including exercises). However, as all knowledge necessary for the assigned task can’t
be taught in the course, the students are required to investigate and/or exchange
information to resolve their encountered problems in the project course.

In the 2007 academic year, the number of student developers was twenty-two and
five groups were organized. The development was during 31 October 2007 through
22 January 2008. All groups finished their requirement analysis and design phases till
mid December 2007. Integration of source codes written by their members was
conducted around 10 January 2008. System testing by developers and acceptance
testing by the teaching staff were done in the following two weeks.

In the 2008 academic year, the number of student developers was twenty-six and
six groups were organized. The development was during 30 October 2008 through 21
January 2009. All groups finished their requirement analysis and design phases till
mid December 2008. Integration of source codes written by their members was
conducted around 10 January 2009. System testing by developers and acceptance
testing by the teaching staff were done in the following two weeks. Table 1
summarizes a profile of the two years’ projects.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

27

Table 1 Summary of two years’ projects.

Items Year
2007 2008

No. of students 22 26
No. of groups 5 6
Duration of project 31 Oct. 2007 – 22 Jan. 2008 30 Oct. 2008 – 21 Jan. 2009

All groups finished their development in both years. At the start of the project, we

asked all the students for registering at least one problem resolution information they
encountered in the project. To register duplicated information with others is allowed if
the information was acquired in the course of a student’s problem resolution process.

4.2 Results

We show the results from the following viewpoints: classification by phase,
classification by contents (technical versus process), and situation of knowledge
collaboration.

4.2.1 Classification of the problem resolution information by phase
39 problem resolution information were registered in 2007 and 42 in 2008 (a student

registered 1.8 in average in 2007, and 1.6 in average in 2008). Figure 3 shows the
ratio of the registered problem resolution information by phase in the 2007 and 2008
course. We classified the phase into requirement analysis and specification, design,
coding (including information on a development environment), testing, project
management (PM), and others. As this figure shows, both courses present similar
trend by this classification. That is, information on coding was registered quite most
and then information on design was registered. No information on requirement
analysis and PM was registered.

Fig. 3 Classification of the registered problem resolution information by phase

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

28

4.2.2 Classification of the problem resolution information by content
We classified the problem resolution information into categories proposed by

Ishida et al. [6]. We classified the content into technical information and process
information. Figure 4 shows the result. As this figure shows, more than 90% were
technical information. Figure 2 shows an example of the registered problem
resolution information.

Fig. 4 Classification based on the contents of the registered problem resolution
information.

4.2.3 Result on knowledge collaboration
(1) Knowledge collaboration in the discussion space

In the discussion space, eight questions were submitted in 2007, and one was
submitted in 2008. They all led to resolution. Six questions were resolved by only one
response. One question was followed by a counter question by a teaching assistant
(TA) because the contents of the question were too short to answer it. In this case, the
student who asked this question described detailed explanation, in addition, seemed to
find a root cause for the problem as the result of his/her investigation. The TA who
asked a counter question gave advice with respect to a solution to remove the cause.
The rest of questions was “Current date-time can’t be inserted into a database” and
“Build problem.” These two questions were resolved by exchanging messages
between the questioner and responder(s) several times.

Question “Current date-time can’t be inserted into a database” was resolved by the
following process: a teaching assistant asked the questioner for presenting details on
the current situation and what (s)he wanted, and gave advice based on the responses
from the questioner and the investigation results from internet search by the teaching
assistant. Finally the problem was resolved in five turns.

Question “build problem” was also resolved by exchanging messages between a
questioner and responder(s). In this case, first of all, a student (S1) asked the
following question “ I created a file using Eclipse and updated it. After updating, I
executed a program. However, the update was not reflected.” A member of another
group (P1) predicted a root cause. However, (s)he did not suggest a concrete solution.
Then a teaching assistant (P2) asked the questioner for several inquiries and gave

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

29

several advices, but the advices did not resolve the problem. Furthermore another
teaching assistant (P3) who is a master course student gave advice to check a log file.
By contents of the log file presented by the questioner, P2 found out a solution and
gave a concrete advice to solve the problem. We show the message sequence as
follows. This case worked escalation mechanism well.

Questioner (S1) at 21 December 2007: I created a file using Eclipse and updated it.
After updating, I executed a program. However, the update was not reflected.
P1 at 08:37, 21 December 2007: I think build is not done.
Questioner (S1) at 12:46, 21 December 2007: Maybe I think so. I check “automatic
build” now. I checked “build all” and tried to build my program, but it did not work.
Where should I modify?
P2 at 14:31, 21 December 2007: Do you mention your update is not reflected into the
program? Cache may cause your problem. Are there errors in the “work” folder?
Questioner (S1) at 14:43, 21 December 2007: Where should I examine for that
matter?
P2 at 15:16, 21 December 2007: There will be “work” folder under your eclipse
project. Compiled JSP files are stored there. Cache will also be stored there.
Troubles happen if the folder has errors or old cache remain. I have one question: do
you have any concrete error messages? Isn’t your update of files merely recognized
by Tomcat?
Questioner (S1) at 15:35, 21 December 2007: Maybe I think so. I wrote
“System.out.println();” in a servlet program, but it was not executed. I have deleted
the contents of the “work” folder. Was that incorrect?
P2 at 15:54, 21 December 2007: No. If you find “X” mark on the “work” folder,
please delete the contents of the “work” folder. In what situations did this problem
emerge? That is, did you encounter this problem suddenly while the program ran well
till yesterday? Or has not the problem resolved so far? Is the version of Java
compiler 1.4? You can check the version and level of Java compiler by menu
“window” -> “setting” -> “Java” -> “compiler” -> “compiler level” in eclipse.
P3 at 16:34 21 December 2007: If you can’t resolve your problem by checking the
abovementioned advice, please check the following: is a message “project can’t be
built until the build path is resolved” shown in a list of “problem” from “presentation
of view” of “window” menu?
Questioner (S1) at 18:04, 21 December 2007: Dear P2, I suddenly encountered this
problem. Yesterday, the system ran well. I checked the version number and level of
the compiler. The level was 1.4.
Dear P3,
I found following two error messages: “The project will not be built until error with
respect to the build path is resolved” and “a library necessary for project
'C:\eclipse3.2.1\workspace\KOKKO\WEB-INF\lib\mysql connector-java-3.0.9-stable-
bin.jar' is not found.” I do not know how to read these error messages. Thank you for
your help.
P2 at 18:15, 21 December 2007: That will be a true cause!! Please append a path of
the jar file of the mysql connector to the build path of your project. You can paste the
jar file in the WEB-INF folder and then append the build path by an operation of
clicking right button on the project.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

30

Questioner (S1) at 19:13, 21 December 2007: Two mysql connectors existed in my
project. When I deleted one of them, the problem has resolved!! As I could not resolve
this problem by myself, thank you very much for your support.

(2) TA and instructor as knowledge broker

In spite of problem resolution information being registered in the system, some
students failed to find it out that helped to resolve their problem. The teaching staff
played a role of knowledge broker to inform them of the applicable information. The
following is examples:

Example 1

Student S2: I do not know how to implement a function of sending a mail, although I
investigated the way.

 Instructor: The problem resolution information registered at 20:26, 22 January 2008
may help you. Please refer to the information. I clearly remember that
the student who registered this information spent many efforts and
finally resolved the problem.

Example 2
Student S3: After compiling a system, I designated a URL in my web browser. However

the 404 error happened.
A teaching assistant: You can find solution by accessing the problem resolution

information registered at 09:34, 1st November 2007.

(3) State of reuse of the problem resolution information
From the feedback for the problem resolution information, we found at least seven

problem resolution information was reused to solve problems of some students (how
to backup and restore a database, control from a sub-page to a main page, automatic
mail distribution, and association class). However, it is difficult to ascertain true state
of reuse of the information, because users have to visit the page and evaluate it after
their problem has fixed (they may not come back the page after fixing their problem).

4.3 Discussions

4.3.1 On problem resolution infor mation
Similar trend on the number of registered problem resolution information, ratio of

classification by phase and by contents was seen in both years. Problem resolution
information on coding with respect to phase was registered most. In this course,
students are assigned to different use cases. Thus technologies required differ
respectively. A problem of a student must basically be resolved by him/herself.
Therefore I think problems seem to be overt. On the other hand, design is group work
in this course. This course also exposes design inspection. Groups are required to
revise artifacts according to the inspection comments. It may be difficult to abstract
from inspection comments to know-how. Much of the problem resolution information
in the design phase was that on how to use tools (UML editor) (in 2007, two out of

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

31

three problem resolution information and in 2008, two out of six were that on how to
use tools).

According to analysis of the registered problem resolution information from the
viewpoint of contents, most information was that on technical. In 2007, two students
who have less confidence on technical aspects registered the problem resolution
information as follows: “It is important to possess an attitude that asks how to
investigate something, not that asks for the direct solution for the problem you face”,
“You should not give up even though you can’t understand. Participate in your
project in a positive manner, and your team members support you when you have
troubles.” They were on the process aspect how a problem should be resolved.

4.3.2 On knowledge broker
In this case study, we observed knowledge transfer by the teaching staff in the

discussion space and in the BBS of a group.
Boden and Avram studied knowledge distribution between sites of geographically

distributed software projects in small companies [3]. They concluded importance on
oral communications by means of usage of Skype, business trips, bridging knowledge
by developers who stay in another site.

On the other hand, our course is not geographically distributed, rather temporally
distributed because students have their different schedules. Therefore synchronous
communications are limited. People (developers and the teaching assistants) also
change off very fast in the course. Oral communications are not suitable for this
context because it is volatile. For these reasons, we adopted a method to describe,
store, and share problem resolution information. Nakakoji et al. [8] proposed nine
items as a design guideline for expertise communication support. They described that
if documents or codes exist to obtain some information, they should be used as much
as possible so that communications do not occur. Our system is satisfied with this
item of the guideline.

5. Conclusion

This paper has analyzed state of the problem resolution information sharing in a
software engineering project course from two years’ usage of the problem resolution
information sharing system. Similar trend on the number of registered problem
resolution information, ratio of classification by phase and by contents was seen in
both years (problem resolution information on coding with respect to phase was
registered most, and most information was that on technical with respect to contents).
In this case study, we observed knowledge transfer by the teaching staff in the
discussion space and in the BBS of a group.

We would like to ascertain the status of reuse of the problem resolution information
as future work.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

32

Acknowledgement

The authors would like to thank anonymous reviewers for their comments to improve
this paper. They also would like to thank Mr. Hiroaki Yamada for his help to gather
log data of the system usage.

References

1. M. S. Ackerman, and T. W. Malone, Answer Garden: a tool for growing organizational
memory, Proceedings of the ACM SIGOIS and IEEE CS TC-OA Conference on Office
Information Systems, pp.31-39, ACM Press, 1990.

2. A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, Supporting Online
Problem-Solving Communities with the Semantic Web, Proceedings of the 15th World
Wide Web Conference (WWW2006), pp.575-584, ACM Press, 2006.

3. A. Boden, and G. Avram, Bridging knowledge distribution - The role of knowledge
brokers in distributed software development teams, Proceedings of the ICSE 2008
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2009),
ACM Press, 2009.

4. Y. Hatamura, Learning from Failures, Kodansha, 2000 (In Japanese).
5. A. Hazeyama, K. Shimada, and Y. Kobayashi, A Collaborative Problem Solving Support

System for Group-based Software Engineering Project Course and Its Application,
Proceedings of the Seventh International Conference on Creating, Connecting and
Collaborating through Computing (C5 2009), pp.74-78, IEEE Computer Society Press,
Kyoto, Japan, January 2009.

6. A. Ishida, et al., Research on the Problem in Information-sharing and Its Efficiency in
Software Development, (In Japanese).

7. M. Miura, Y. Kobayashi, K. Shimada, K. Takahashi, S. Seiki, and A. Hazeyama, A
Proposal of Integrating Personal and Community Support with Learning Environment for
Group-based Software Engineering Course, Proceedings of the 2nd International
Conference on Knowledge, Information and Creativity Support Systems (KICSS 2007),
pp.144-151, 2007.

8. K. Nakakoji, Y. Ye, and Y. Yamamoto, Interaction Design for Supporting Knowledge
Communication in Software Development, Annual Conference of the Japanese Society for
Artificial Intelligence (JSAI 2009), Takamatsu, Japan, June, 2009 (In Japanese).

9. N. Serrano, and I. Ciordia, Bugzilla, ITracker, and other bug trackers, IEEE Software, Vol.
22, No.2, pp.11-13, 2005.

10. Y. Ye, Socio-Technical Support for Knowledge Collaboration in Software Development
Tools, Proceedings of the Workshop on Integrating Software Engineering and Usability
Engineering, pp.39-51, 2005.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

33

On the Central Role of Mailing Lists in Open Source
Projects: An Exploratory Study

Emad Shihab Nicolas Bettenburg Bram Adams Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)
Queen’s University

Kingston, K7L 3N6, Canada
{nicbet, emads, bram, ahmed}@cs.queensu.ca

Abstract. Mailing lists provide a rich set of data that can be used to improve
and enhance our understanding of software processes and practices. This infor-
mation allows us to study development characteristics like team structure, ac-
tivity, and social interaction. In this paper, we perform an exploratory study on
the GNOME project and recover operational knowledge from mailing list dis-
cussions. Our findings indicate that mailing list activity is driven by a dominant
group of participants, that it is greatly connected to development activity, yet in-
fluenced by external factors like market competition. Our results provide a broad
picture of the central role played by mailing lists in open source projects.

1 Introduction

Most open source developers communicate through mailing lists. This style of commu-
nication makes mailing lists a rich source of information which researchers can use to
understand software processes and improve development practices. Mailing lists have
been used to infer social structure [4,5,11], identify architectural changes [1], and most
recently to study the code review process [3, 14, 18].

However, understanding the generality of the results derived from mailing lists re-
quires that we first understand how mailing lists are used in practice and the impact
of their usage patterns on the information in the lists. For example, previous studies
(e.g. [4, 5]) studied the social structure of developers using mailing lists, however, does
this social structure change over time? How fast does the structure change?.

The central role played by mailing lists is depicted in Figure 1. Developers use mail-
ing lists to discuss a variety of issues and project decisions [1,10]. Many of these issues
and decisions are related to and affect the source code. These issues are often driven by
external factors such as the introduction of new features in competing products.

In this paper, we perform an exploratory study on the role played by mailing lists.
Performing an exploratory study on mailing lists provides a holistic view of their role.
This holistic view enhances the understanding of the findings of in-depth studies, un-
veils details which may not be apparent through in-depth studies and helps identify
interesting directions for future research.

To perform our study, we use the mailing lists from 22 GNOME projects. The study
centers around the following aspects, shown in Figure 1, in an open source project:

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

34

Fig. 1. The central role of Mailing lists in open source projects

Number of

Project name Start date Messages Participants Age (months) Threads Application Domain

Deskbar Applet Oct-05 1,098 106 39 340 Search interface
Ekiga Aug-06 5,389 690 29 1,200 Teleconferencing
Eog Mar-01 458 106 93 233 Image viewer
Epiphany Dec-02 5,735 905 73 1,608 Web browser
Evince Jan-05 1,358 415 48 566 Document viewer
Evolution Jan-00 53,927 6,026 96 15,718 Email client
Games Feb-03 1,590 190 71 531 Computer games
Gdm Mar-00 2,578 675 105 1,040 Display manager
Gedit Apr-00 2,237 530 104 919 Text editor
Multimedia Oct-00 1,646 273 98 507 Multimedia library
Network Aug-03 673 105 65 267 Network tools
Power Manager Jan-06 1,059 199 36 305 Power management
Themes Jan-98 1,310 221 132 447 Window manager
Utils Oct-04 358 106 51 279 Utility applications
Control Center Dec-99 1,478 168 97 311 Configuration
Libsoup May-06 83 24 32 41 HTTP library
Metacity Sep-05 262 48 40 59 Window manager
Nautilus Apr-00 22,488 2,384 105 5,582 File manager
Orca Jan-06 11,930 516 36 3,598 Screen reader
Screensaver Oct-05 139 25 39 30 Screensaver
Seahorse Jun-07 252 34 19 116 Encryption management
System tools Nov-99 1,832 327 98 792 System admin tools

Table 1. General overview of the GNOME mailing lists studied

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

35

– Developers: We characterized the communication style of mailing list’s partici-
pants, i.e., the developers from the development mailing lists.

We found that a small number of developers play a central role in driving
the mailing list activity. We also found that these developers remain stable
throughout the lifetime of a project.

– Source code: We explored the impact of mailing list activity on the source code
activity, i.e., changes.

We found that there is a high correlation between mailing list activity and
source code activity.

– External Factors: We examined the effect of external factors, such as competing
products on mailing list activity.

We found that competing products shape and drive many of the discussions
on mailing lists.

Overview of Paper. The rest of the paper is organized as follows: Section 2 dis-
cusses the motivation for using the GNOME project as a case study and presents statis-
tics about the project. We present and analyze our findings in Section 3. The threats
to validity are discussed in Section 4 and the related work is presented in Section 5.
Section 6 concludes the paper.

2 GNOME as a Case Study

In this section, we detail the case study project used in our study. The GNOME project
is composed of approximately two million lines of code and has more than 500 differ-
ent contributors from all over the world [9]. The GNOME project is composed of many
small projects that cover a wide range of applications, e.g., email client, text editor,
and file manager. The main source of communication for GNOME developers is the
developer mailing list for each project. These projects vary in size, age, user and devel-
oper base. We expect these differences in size, age, and domain to have an impact on
the mailing lists of these projects. Therefore, studying the mailing lists of the different
projects can lead to interesting and generalizable findings and open new directions for
future research.

Table 1 presents a general overview of the mailing lists used for this study. The
Project name column lists the name of the GNOME module. The Start date,
Number of Messages, Number of Participants, Age and Number of
Threads columns list the month and year of the first commit to the project’s trunk
(derived by examining the source control repository for the project), the total number
of messages, the number of participants, the age, and the number of threads of the
GNOME projects, respectively. In addition, the Application Domain column lists
the application of the project. All calculations are based on the participation from the
start date listed till the end of 2008, inclusive.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

36

3 Results and Analysis

We now study the three aspects outlined in Figure 1 using the GNOME mailing list
data. Subsections 3.1 and 3.2 cover the developers aspect, subsection 3.3 covers the
source code aspect and subsection 3.4 covers the external factors aspect. We start each
subsection by presenting our motivation to explore the aspect. We then describe the
approach that we used to perform our exploration. Finally, we present our results and
outline our main findings.

Since most of the GNOME mailing lists have low activity, we will often use the
Evolution and Nautilus projects to more closely explore many of our findings since the
two projects account for more than 65% of the total messages. We highlight the results
that generalize for the rest of the 20 projects, where applicable.

3.1 Communication Style in Mailing Lists

Is mailing list activity mostly driven by a few participants (a dominant group) or is the
participation evenly distributed? Does the dominant group engage in discussions with
others or is it mostly involved in internal discussions?

Motivation. The Pareto principle (also known as the 80-20 rule), which states that
the majority of the effects come from a minority of the causes, has applications in many
fields. For instance, research shows that 20% of the code contains 80% of the bugs [8].
We hypothesize that there exist a few key participants (who we call the dominant group)
in mailing lists, that are responsible for most of the messages posted on the mailing list.
Most likely, they are members who are very knowledgeable about the project and use
their knowledge to support newcomers and casual participants (who we call the casual
group). It is important for us to investigate whether these experts exist on mailing lists
for two reasons: 1) one can address his/her questions directly to such experts to receive
a more accurate and speedy response and 2) the discussions of these experts can be used
for future reference by others who are less knowledgeable about the project.

In addition, if such a group exists, we would like to know if they actively engage in
discussions with others who are outside of the dominant group. If in fact they do engage
with others then we can safely assume that newcomers and less experienced developers
will benefit from these experts. If we determine otherwise, i.e. that the dominant group
is a closed group, then newcomers and other participants may be better off reading
previous discussions and learning from them rather than attempting to establish direct
contact with the dominant group members.

Approach. We measured the number of messages contributed by the top 10% most
active participants, who we call the dominant group. We found evidence that in fact
there does exist a dominant group for each of the 22 GNOME mailing lists. The domi-
nant group contributes a large amount of the messages posted.

Then, we examined the active discussion threads and classified these active threads
into threads with:

– Dominant group members only: A high number of such threads implies that the
dominant group is a closed group that does not engage with others.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

37

Fig. 2. Distribution of discussion types in the Evolution project

– Dominant and casual members together: A high number of such threads is a
good indicator of a stimulating mailing list where expert and casual participants
actively engaging in discussions.

– Casual group members only: A high number of this type of discussion would
indicate that the casual members are not integrated into the mailing list.

Results. In addition to finding out that there exists a dominant group in each mailing
list, we quantified their contribution. We found that on average the dominant group
accounts for approximately 60% of the messages. This finding is consistent across all
of the 22 GNOME projects. We did not observe a consistent finding when we considered
the top 20% of the participants (i.e. we did not find evidence of the Pareto principle).

We plot the number of threads for the Evolution and Nautilus projects in Figures 2
and 3, respectively. In both projects, we found that the majority of the active discussions
involve dominant and casual group members. On average, in 82% of the discussions
dominant and casual group members were present. In 16% of the discussions, dominant
group members were discussing exclusively and in the remaining 2% of the discussions
the casual members discussing exclusively. We believe that it is a sign of a productive
mailing list when the two groups actively engage in discussions, with the dominant
group members most likely playing a supporting role for the casual group members.

However, in some cases a high percentage in discussions that involve dominant and
casual members may not be desired. For example, some dominant group members may
be overwhelmed by a high number of questions from casual members (since casual
members may make unreasonable requests from more knowledgeable dominant group
members). Whether a high number of discussions between casual and dominant group
members is indicative of a productive mailing list depends on the product domain and
the mailing list’s members’ knowledge.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

38

Fig. 3. Distribution of discussion types in the Nautilus project

�

�

	
10% of mailing list participants (the dominant group)
contribute 60% of the messages in a mailing list. The
dominant group is very active and is engaging with
outside-members, i.e. casual members.

3.2 Stability of Mailing List Participants

Do dominant group members change over time? If so, how much are they changing by?
How is their stability compared to rest of the mailing list participants?

Motivation. As we have seen in the previous subsection, the dominant group plays
an important role in the mailing list. They contribute the majority of messages posted
and are involved in approximately 96% of active discussions. For this reason, it is quite
important that dominant group members do not change frequently. We study the stabil-
ity of the dominant group. In particular, we measure the variation in the dominant group
over time. A relatively stable dominant group (i.e. one that does not change frequently)
is desirable because it means that dominant group members spend enough time in the
project and achieve a higher level of expertise to better support casual group members.

Approach. To measure the stability of members in the dominant group, we per-
formed two studies:

– Dominant group change over time: We measured the change between two con-
secutive years. This gives us a measure of how much a dominant group changes by
from one year to the next.

– Dominant group change compared to casual group change: We measured the
change of the casual group for two consecutive years and compared it to the change
in the dominant group.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

39

Evolution Nautilus

Year Dominant Casual Dominant Casual

2000 - 01 0.68 0.11 0.73 0.20
2001 - 02 0.74 0.11 0.55 0.20
2002 - 03 0.63 0.16 0.40 0.21
2003 - 04 0.74 0.16 0.85 0.23
2004 - 05 0.84 0.16 0.76 0.24
2005 - 06 0.70 0.19 0.95 0.24
2006 - 07 0.35 0.17 0.88 0.19
2007 - 08 0.80 0.15 0.77 0.16

Average 0.69 0.15 0.73 0.21
Table 2. Cosine distance of dominant and casual groups of the Evolution and Nautilus projects

We used the Cosine Distance (CD) similarity metric to measure the similarity be-
tween the groups in two consecutive years. The CD metric outperforms other simple
measures such as intersection or proportion which only measure the existence of a par-
ticipant but not their level of contribution. The CD similarity is defined as:

CD(P,Q) =

∑
x P (X)Q(X)√∑

x P (X)2
√∑

xQ(X)2
, (1)

where P (X) and Q(X) represent the two input distributions to be compared. A
value of 0 for the CD metric means that the group has changed drastically across two
years with no members in common. A value of 1 for the CD metric indicates that the
group is the exact same (i.e. is it a very stable group).

The Cosine Distance metric takes as input two participation distributions – one for
each of the years under study. Each distribution has the contribution of each of the
participants for that year. So when comparing the dominant group for the year 2000
and year 2001, the 2000 and 2001 participation distribution for the dominant group is
used. One major challenge we faced when conducting this study was the use of multiple
aliases by developers [4]. We used heuristics based on regular expressions to address
this challenge as detailed in our previous work [2].

Results. The calculated CD values for the Evolution and Nautilus projects are
shown in Table 2. It is observed that the dominant group is more stable than the casual
group. On average, the dominant group is 3 times more stable than the casual group.
These two findings are observed across all of the 22 GNOME projects. The same sta-
bility of social structures were also observed with the FLOSS projects [22]. This is a
positive sign about the health of the dominant groups of many of these projects. Dom-
inant group members, who are critically important to the mailing list of the project are
stable enough to pass their knowledge to newcomers and casual group members.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

40

Type of change

Project Add Remove Modify

Evolution 0.83 0.60 0.61

Nautilus 0.32 0.53 0.85
Table 3. Correlation between the number of messages per year and the type of source code change

�
�

�
�

The participants in the dominant group are very stable
over time. On average, they are about 3 times as stable
as casual participants.

3.3 Source Code Activity and Mailing List Activity

Can mailing list activity be used to infer information about source code activity (amount
of work done on the source code)?

Motivation. Since mailing lists are the main source for developer communica-
tion [10], we expect that mailing lists contain useful information about the source code
of a project. We want to explore if we can infer the types of source code changes and the
level of activity done on the source code through the mailing list activity. Because devel-
opers often use the mailing list to discuss their source code changes and get assistance
or feedback on these changes [14], we hypothesize that there will be high correlation
between the mailing list activity and the code activity. Or in other words, the more work
done on the source code, the more it will be discussed on the mailing list and vice-versa.

Approach. We mined the SVN source control repository and extracted the number
of lines added, removed and modified per year for each project. We defined a Code
Activity (CA) metric, defined as:

CA(Y) = AY +RY +MY , (2)

whereAY ,RY andMY refers to the number of lines of source code added, removed
and modified in year Y , respectively. We used this metric and measured the correlation
between it and the mailing list activity, i.e., the number of messages per year. Further-
more, we examine the correlation between the number of messages and the type of the
performed change (add, delete, modify).

Results. The number of messages per year and the Code Activity for the Evolution
and Nautilus projects are plotted in Figures 4 and 5, respectively. It can be observed
that there is a high correlation between the number of messages on the mailing list and
the Code Activity metric. This finding shows that developers do rely heavily on the
mailing list to discuss source code changes. As for the correlation between the level
of mailing list activity and the type of change, we present the results in Table 3. We
found that in the Evolution project, the highest correlation was between the number of

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

41

Fig. 4. Number of messages and Code Activity for the Evolution project

messages and the lines of code added (ρ = 0.83). On the other hand, in the case of the
Nautilus project, we found that the highest correlation is between the number of mes-
sages and the lines of code modified (ρ = 0.85). It seems that in the Evolution project,
participants are discussing code additions more than they are discussing code removal
or modifications, while for the Nautilus project, code modifications are being discussed
more than code additions and removals. We believe that further investigation is needed
here to better understand the rationale for this discrepancy between both projects and
whether it indicates different development and communication styles.

To verify, we measured the occurrence of terms that indicate code additions and
code modifications in the mailing lists of the two projects. Since most commonly, code
additions involve the introduction of new features, we classified the terms “new fea-
tures” and “feature request” as indicators of code additions. Code modifications are
usually carried out to fix bugs which are found during the testing phase and applied via
patches. For this reason, we associate the terms “bug”, “patch”, “testing”, and “main-
tain” to code modifications. We observed that in the Evolution mailing list, the terms
associated with the addition of new features were mentioned in 57% more messages
than on the Nautilus mailing list. On the other hand, the terms associated with code
modifications were mentioned in 75% more messages in the Nautilus mailing list com-
pared to the Evolution mailing list. The findings are consistent with our correlation
results shown in Table 3.�

�

	
Mailing list activity is closely related to source code

activity. In addition, mailing list discussions are good
indicators of the types of source code changes being
carried out on the project

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

42

Fig. 5. Number of messages and Code Activity for the Nautilus project

3.4 Effect of External Factors on Mailing List Activity

Can we observe the effect of external factors on mailing list activity?

Motivation. One of the benefits of studying mailing lists is that they can provide
us with knowledge about issues that indirectly affect a project, i.e., external factors.
Market competition and management changes are examples of external factors. Such
knowledge about external factors is often hard to uncover as it is not recorded in the
source code or documentation. However, this knowledge is very important since it helps
explain certain observed behaviors, such as an increase in bugs or the lack of interest in
a project (and maybe its eventual death). We attempt to observe the effect of external
factors on mailing list activity.

Approach. Due to space limitation, we perform the study of external factors on
the Evolution project only. However, we note that our approach can be applied to any
other project. We study the mailing list activity trend and perform two types of analysis:
quantitative and qualitative analysis. In the quantitative analysis study, we treat the bod-
ies of all email messages as a bag-of-words and compare the occurrence of the names
of competing mail clients (“gmail”, “outlook”, and “thunderbird”) to the occurrence of
the terms: “evolution” and “evo” (a short hand form often used to refer to the evolution
project). A rise in the number of times a term occurs indicates that it is being discussed
more, hence it has a greater impact. In the qualitative study, we read through several
email postings to better understand and clarify our quantitative findings.

Results.
Quantitative analysis: Looking at Figure 6, we observe that the activity on the Evo-

lution mailing list is increasing from 2000 to 2001. This increase can be attributed to the
creation of Ximian at the end of 1999, which was created to continue the development

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

43

Fig. 6. Messages per year on the Evolution mailing list

of the Evolution project [9]. This acquisition increased the attention and support for the
Evolution project, hence the continuing increase in mailing list activity.

Then, from the year 2001 on, we observe a steady decline in mailing list activity
(except for a small increase in activity in the year 2003). Market competition, along with
organizational changes may have caused this decline. The results of the quantitative
study (which measures the frequency of occurrence of terms in the message bodies
per year) are shown in Figure 7. We observe a steady decrease in the use of the terms
“evolution” and “evo”, suggesting that the Evolution project is being discussed less
frequently. At the same time, there is a steady increase in the number of times its market
competitors “gmail”, “outlook” and “thunderbird” are being mentioned.

Qualitative analysis: We read through several mailing list posting to better under-
stand our aforementioned quantitative findings. The following quotations are excerpts
from discussions that took place when a declining level of activity was observed:

“...Furthermore, I can’t find where in the Tools menu to change this: the option
is no longer present on any of the dialog boxes. Which is why I’m sending this
with Thunderbird...”
“...Unless Ximian implements some features that aren’t important to Ximian but
are important to its users, evo will be relegated to ”toy” status. I’m currently
struggling to remain with my current distro of SuSE+Ximian in my business,
but the lack of meaningful support in both components is forcing my hand to
look around for another solution...”

We believe that these excerpts show that the Evolution mail client was and is losing
market share due to competition from other competing mail clients, such as Thunder-
bird, with many of the postings pointing people to competing products.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

44

Fig. 7. Frequency of terms in the Evolution mailing list

As for the spike in activity on the Evolution mailing list in the year 2003, we believe
this can be attributed to Novell’s acquisition of Ximian in late 2003 [9]. We counted the
occurrence of the term “novell” in the mailing list and found that the number of times
the term “novell” was mentioned on the Evolution mailing list spiked from 13 in 2003 to
574 in 2004 (as depicted in Figure 7). This spike is most likely due to hype surrounding
Novell’s acquisition, which quickly dies off in the coming years.

This study on external factors suggests that mailing lists can be leveraged to study
the effect of external factors on a project. Furthermore, such information can be used to
explain design decisions that happened in the past.�

�
�
�External factors affect mailing list activity.

4 Threats to Validity

In our stability analysis, we used the names of developers as identifiers. Although we
used heuristics to resolve multiple aliases [2] (i.e. participants who use multiple email
address and names), we were not able to deal with some rare cases. Additionally, in our
study we assume that all mailing list participants are developers. This assumption is true
for the vast majority of the cases (especially since we are considering developer mailing
lists), but in some cases, it is possible that a participant on the developer mailing list is
not engaged in any developmental effort.

In our studies on source code activity and external factors, we measure the frequency
of key terms that we associate with specific topics (i.e. the term “maintain” with the
topic maintenance). Although our list is not exhaustive and does not contain all the
terms that may be associated with the respective topic, we believe that the terms used in

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

45

our study are the most common and cover the majority of the terms that would be used
to refer to the topic.

Finally, our findings may not generalize to all open source projects.

5 Related Work

Previous work used mailing lists to study the social structure of developers. Bird et
al. [4, 5] used mailing lists to study the social networks created by developers and non-
developers. In their follow-on work [7], they extracted the sub-community structure
from these social network and studied their evolution over time. Ogawa et al. [12] used
Sankey diagrams to visualize evolving networks in mailing lists and concluded that
social behavior can be related to events in a project’s development.

In addition, several studies used mailing lists to study developer morale, work times
and the code review process. Rigby and Hassan [15] performed a psychometric study
on the Apache httpd mailing list to identify the personality types of open-source soft-
ware developers and gain insight on the level of optimism in pre- and post release
phases. Tsunoda et al. [17] used mailing lists to analyze developer work times and
found that the ratio of committer messages sent during overtime periods is increasing
every year. Weissgerber, Neu and Diehl [18] used mailing lists to study the likelihood
of a patch getting accepted.

Furthermore, other studies used mailing lists to study developer coordination, mo-
tivation and knowledge sharing. Yamauchi et al. [19] studied the coordination mecha-
nisms used by OSS developers to achieve smooth coordination. They found that spon-
taneous work coordinated afterward is effective, rational organizational culture helps
achieve agreement among OSS members and communications media, such as CVS and
mailing lists, moderately support spontaneous work. Lakhani and von Hippel [21] used
mailing lists to study the motivating factors of OSS participants to perform mundane
tasks. They found that direct learning benefits is one of the main motivators for these
participants to conduct such tasks. Sowe et al. [20] studied knowledge sharing between
developers in mailing lists. They found that developers share knowledge a lot.

Other work combined the information extracted from mailing lists with informa-
tion from other repositories (e.g. the source code repository). Robles and Gonzalez-
Barahona [16] used information from multiple historical archives to assist in accurately
identifying actors. Baysal and Malton [1] used the similarity between mailing list and
source code archives to identify architectural changes. Bird et al. [6] combined the use
of mailing lists and the source code repository to study the time it takes for developers
to be invited into the core group of a project.

Our work recognizes the central role played by mailing lists and, to the best of our
knowledge, is the first to perform an exploratory study using a large number of mail-
ing lists. The study on the communication style of participants and their stability is
novel and complements previous work. For example, previous work on social network
analysis, developer morale, work times and evolution could have treated dominant and
casual group differently and put more emphasis on the dominant group findings. Do-
ing so would enhance the impact of their findings and provide a better understanding
of the phenomena being observed. The findings from our source code activity and ex-

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

46

ternal factors studies can assist researchers who use mailing lists in combination with
source code repositories (e.g. [1, 13]) better understand the relationship between the
two. Further, taking into account the effect of external factors may help explain some
unexpected observations.

6 Conclusions

In this paper, the central role of mailing lists was studied through an exploratory study.
The study centered around three aspects: developers, source code and external factors.

Our findings indicate that a small number of participants (dominant group) account
for the majority of the messages posted on mailing lists. The dominant group is very
active and engaging with others and its composition is very stable (3 times more stable
than casual members). In addition, we found that mailing list activity is closely related
to source code activity and mailing list discussions are good indicators of the types of
source code changes being carried out on the project. Lastly, we showed that external
factors affect mailing list activity.

References

1. O. Baysal and A. J. Malton. Correlating social interactions to release history during software
evolution. In MSR ’07: Proceedings of the Fourth International Workshop on Mining Software
Repositories, page 7, 2007.

2. N. Bettenburg, E. Shihab, and A. E. Hassan. An empirical study on the risks of using of
off-the-shelf techniques to process mailing list data. In ICSM’09: Proceedings of the 25th
International Conference on Software Maintainance, 2009.

3. C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and acceptance in oss
projects. In MSR ’07: Proceedings of the Fourth International Workshop on Mining Software
Repositories, 2007.

4. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social net-
works. In MSR ’06: Proceedings of the 2006 international workshop on Mining software
repositories, pages 137–143, 2006.

5. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social net-
works in postgres. In MSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories, pages 185–186. ACM, 2006.

6. C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open borders? immigration
in open source projects. In MSR ’07: Proceedings of the Fourth International Workshop on
Mining Software Repositories, page 6, 2007.

7. C. Bird, D. Pattison, R. D’Souza, V. Folkiv, and P. Devanbu. Latent Social Structure in Open
Source Projects. In FSE ’08: Proceedings of the 2008 ACM SIGSOFT symposium on the
Foundations of Software Engineering, pages 24–35, 2008.

8. B. Boehm and V. R. Basili. Software defect reduction top 10 list. Computer, 34(1):135–137,
2001.

9. D. M. German. The gnome project: a case study of open source, global software development.
Software Process: Improvement and Practice, 8(4):201–215, September 2004.

10. D. M. German. Using software trails to reconstruct the evolution of software: Research arti-
cles. J. Softw. Maint. Evol., 16(6):367–384, 2004.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

47

11. L. Hossain, A. Wu, and K. K. S. Chung. Actor centrality correlates to project based coor-
dination. In CSCW ’06: Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, pages 363–372, 2006.

12. M. Ogawa, K.-L. Ma, C. Bird, P. Devanbu, and A. Gourley. Visualizing social interaction in
open source software projects. Asia-Pacific Symposium on Visualization, 0:25–32, 2007.

13. D. Pattison, C. Bird, and P. Devanbu. Talk and work: a preliminary report. In MSR ’08:
Proceedings of the 2008 international workshop on Mining software repositories, pages 113–
116, 2008.

14. P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer review practices: A
case study of the apache server. In ICSE ’08: Proceedings of the 30th international conference
on Software engineering, pages 541–550, 2008.

15. P. C. Rigby and A. E. Hassan. What Can OSS Mailing Lists Tell Us? A Preliminary Psycho-
metric Text Analysis of the Apache Developer Mailing List. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Repositories, page 23, 2007.

16. G. Robles and J. M. Gonzalez-Barahona. Developer identification methods for integrated
data from various sources. SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

17. M. Tsunoda, A. Monden, T. Kakimoto, Y. Kamei, and K.-i. Matsumoto. Analyzing oss de-
velopers’ working time using mailing lists archives. In MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories, pages 181–182, 2006.

18. P. Weissgerber, D. Neu, and S. Diehl. Small patches get in! In MSR ’08: Proceedings of the
2008 international working conference on Mining software repositories, pages 67–76, 2008.

19. Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida. Collaboration with lean media:
how open-source software succeeds. In CSCW ’00: Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 329–338, 2000.

20. S. K. Sowe, I. Stamelos, and L. Angelis. Understanding knowledge sharing activities in
free/open source software projects: An empirical study. J. Syst. Softw., 81(3):431–446, 2008.

21. K. R. Lakhani, E. von Hippel, and K. R. Lakhani. How open source software works: Free
user-to-user assistance. Research Policy, 32:923–943, 2003.

22. J. Howison, K. Inoue, and K. Crowston. Social dynamics of free and open source team
communications. In Second Intl Conf on Open Source Systems, pages 319–330, June 2006.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

48

A Time-Lag Analysis toward Improving
the Efficiency of Communications among

OSS Developers

Masao Ohira, Kiwako Koyama, Akinori Ihara,
Shinsuke Matsumoto, Yasutaka Kamei, and Ken-ichi Matsumoto

Graduate School of Information Science,
Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara, Japan

{masao,kiwako-k,akinori-i,shinsuke-m,yasuta-k,matumoto}@is.naist.jp
http://se.naist.jp/

Abstract. Open source software (OSS) is developed by globally dis-
tributed developers with a variety of lifestyles. In such the development
environment, the time-lag of communications among developers is more
likely to happen due to the time difference among locations and the dif-
ference of working hours for OSS development. A means for effective
communications among OSS developers has been increasingly demanded
in recent years, since even an OSS product and its users requires a prompt
response to issues such as defects and security vulnerabilities. In this pa-
per, we propose an analysis method for observing the time-lag of commu-
nications among developers in an OSS project and then facilitating the
communications effectively. We have conducted a case study in which our
analysis method was applied to mailing-list data of the Python project.
As the results, we have confirmed that our method could identify the ex-
istence of the time-lag in communications among Python developers and
have achieved findings on the optimum timing for the communications.

Key words: time-lag analysis, distributed software development, open
source software, OSS community

1 Introduction

Open source software (OSS) such as Linux and Apache is generally developed
by globally distributed developers. Unlike commercial software development in a
company, OSS development does not necessarily request developers to engage in
development at a designated time and location. OSS developers may voluntarily
decide whether they continue to dedicate themselves to OSS development or not.

In this OSS development environment, a time-lag occurs in communications
among developers more than a little, because of differences of time zones among
geographically-distributed developers with a variety of lifestyles. For instance,

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

49

2 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

according to the geographical distribution of registered users at SourceForge1

which was reported by Robles and Gonzalez-Barahona [1], the top three regions
by the number of registered developers at SourceForge are North America, West
Europe, and China. Since the time-lag among those regions is at least more
than five hours, it would not be easy to discuss among developers in real-time.
Furthermore, even if developers reside in the same time zone, it is not still
guaranteed that developers can communicate each other in real time, because
each developer has no constraint on working hours.

While the importance of decision-making and consensus building through dis-
cussions among developers is increasing especially in a large-scale OSS project
with a number of developers, communications among developers with various
time zones and lifestyles might trigger an occurrence of a time-lag and then im-
pede rapid OSS development. In particular, in case prompt actions are required
(e.g., fixing critical bugs regarding security vulnerability), the delay of decision-
making and consensus building due to the communication time-lag among de-
velopers would results in decreasing software reliability and loosing users’ trust.

The goal of our research is to construct a support mechanism for effective
communications among geographically-distributed OSS developers. As a first
step toward achieving the goal, in this paper we present an analysis method for
helping OSS developers comprehend a whole picture of a communication time-
lag occurred in a OSS project. The analysis method targets mailing list archives
as a data source, and consists of three kinds of analyses as follows;

1. analysis of a geographical distribution and activity time of OSS developers
2. analysis of a distribution of time required for information exchanges among

OSS developers in different locations, and
3. analysis of appropriate timing for sending messages.

From a case study with Python project [2] data, this paper explores the useful-
ness of the analysis method.

2 Analysis Method

This section describes data extraction, conversion and classification which are
necessary in advance of performing our analysis.

2.1 Preparation

Data extraction and conversion. The target data source for our analysis is
archives of mailing lists which are used by OSS developers to exchange informa-
tion. The reason we select mailing list archives as the target data for our analysis
1 SourceForge is one of the largest OSS development community, which provides reg-

istered projects with a variety of software development support tools such as source
code management tool, bug tracking system, and mailing lists. As of February 2009,
more than 230,000 OSS projects and more than two million users have been regis-
tered to SourceForge.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

50

A Time-Lag Analysis for Improving Communications among OSS Developers 3

ID posted date and time location(time zone) Coordinated Universal Time (UTC)message A 2009/04/29 10:33:53 UTC＋9 2009/04/29 01:33:53message B 2009/04/28 22:40:04 UTC－4 2009/04/29 02:40:04message C 2009/04/29 09:12:30 UTC＋3 2009/04/29 06:12:30message D 2009/04/29 02:26:59 UTC－10 2009/04/29 12:26:59
info. of posted messages info. of replied messages time lag (hours)ID posted date and time location ID replied date locationmessage A 2009/04/29 10:33:53 UTC＋9 message B 2009/04/28 22:40:04 UTC－4 1.10message B 2009/04/28 22:40:04 UTC－4 message C 2009/04/29 09:12:30 UTC＋3 3.54message A 2009/04/29 10:33:53 UTC＋9 message D 2009/04/29 02:26:59 UTC－10 10.88

post A : _________reply B : Re:_________reply C : Re:Re:_________reply D : Re:_________
(a) a thread in a mailing list (b) a list of information of posted/replied messages

(c) a relationship among posted and replied messages

Fig. 1. Data extraction and conversion

is because mailing lists are widely used in OSS projects. We consider that data
of mailing list archives allows us to reveal a whole picture of the existence of
time-lag in many OSS projects.

In order to apply the analysis method to the target data, firstly we need
to extract information of posted date and time, and posted locations from
mailing list archives (i.e. from e-mail headers). In what follows, “posted date and
time” means local date and time of a message’s sender, and “posted locations”
is presented as time-lag between Coordinated Universal Time (UTC) and local
time. For instance, “UTC+9” means the location of Japan because the standard
time of Japan is nine hours prior to UTC.

Figure 1 shows the procedure of data extraction and conversion. When a
developer posts a message to a mailing list, the message is delivered to subscribed
developers of the mailing list. Replying to the post, the other developers can
discuss the message Using such the post-reply relationship (i.e., thread structure)
in a mailing list, we extract information on posted/replied date and time, and
locations (time zones) from mailing list archives 2.

For instance, from a thread structure illustrated in Fig.1(a), we extract infor-
mation of posted and replied messages as the table in Fig.1(b). Then we convert
the information into post-reply relationships as the table in Fig.1(c) and calcu-
late time-lag from a difference between posted and replied date and time. Note
that we suppose that message B replied to message A can be a posted message
for message C.

Classification of data. Several factors such as differences of time zones (i.e.,
countries and/or regions) and differences of developers’ working hours may have
2 We do not collect data from posted messages with no replies.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

51

4 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

an influence on time-lag between posted time and replied time. For instance,
communications among developers living in different time zones might be pro-
longed because of differences of lifestyles (e.g., dinner time or sleeping time).
And developers in the same time zone might be still difficult to communicate
each other in real time, because each developer has no constraint on working
hours.

In order to distinguish between the time-lag due to time zone differences and
the time-lag due to lifestyle differences, the collected data described above is
classified into data within and over the time-lag of 24 hours. Many of replied
messages within 24 hours after a post would be affected by differences of time
zones, while replied messages over 24 hours after a post would be generated by
differences of developers’ lifestyles and/or difficulty of the content of a posted
message, rather than geographical differences among developers. For these rea-
sons, our analysis method targets the data of posted and replied messages within
the 24 hours time-lag.

2.2 Procedure

Geographical distribution and activity time of OSS developers. In order
to understand the existence of the communication time-lag in an OSS project,
the analysis method firstly identifies a geographical distribution of developers of
the project, counting the number of replied messages by each location (UTC-11
～UTC+12). The analysis method also identifies a distribution of the number of
replied messages by local time in each location in oder to understand working
hours of developers by each location, since developers’ working hour can differ
even in the same location. By this means, we can identify active or inactive
locations and working hours of OSS developers.

Distribution of time required for information exchanges among OSS
developers in different locations. In order to understand the communication
time-lag due to the geographical (time zone) differences, the analysis method
calculates distributions of time required for information exchanges among OSS
developers in different locations and the same locations respectively. This helps
us more clearly distinguish between the time-lag by the geographical differences
and the time-lag by the differences of developers’ lifestyles.

Appropriate timing for sending messages. In order to identify the ap-
propriate timing for communications which resolves communication time-lags as
much as possible, the analysis method calculates the number of replied messages
by each hour, using posted (local) time and replied (local) time. A numer-
ical number in Fig.2(a) shows size of time-lag (hours) between time zones A and
B. Fig.2(b) shows the number of pairs of posted messages from time zone A and
replied messages from time zones B. For instance, suppose that one developer in
A post a message between 9 and 12, and other developer in B replies a message

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

52

A Time-Lag Analysis for Improving Communications among OSS Developers 5replied (local) time in time zones B
posted (local) tim
e in time zones A

0 +3 +6 +9 +12 +15 +18 +21+21 0 +3 +6 +9 +12 +15 +18+18 +21 0 +3 +6 +9 +12 +15+15 +18 +21 0 +3 +6 +9 +12+12 +15 +18 +21 0 +3 +6 +9+9 +12 +15 +18 +21 0 +3 +6+6 +9 +12 +15 +18 +21 0 +3+3 +6 +9 +12 +15 +18 +21 0
3 6 9 12 15 18 21 0 30369121518210 (a) size of time lagreplied (local) time in time zones B

posted (local) tim
e in time zones A

7 17 16 2 5 3 2 00 9 7 5 3 2 2 00 0 9 13 9 8 4 10 2 2 61 80 24 12 21 8 5 6 57 35 17 06 13 11 3 4 54 57 14 39 11 3 0 1 30 124 42 7 3 7 2 2 6(b) num. of replies
3 6 9 12 15 18 21 0 30369121518210

Fig. 2. Distribution of posted and replied time

between 15 and 18. In this case, the time-lag is +3 hours and the number of
post/reply pairs is 80.

Time zones A and B are fixed after selecting target locations for analysis.
Time zones B in Fig.2 is arranged as replied messages within an hour correspond
to posted messages on the diagonal. In Fig.2, size of time-lag and the number
of posted/replied messages are counted by three hours, but the length may be
changed depends on analysis needs. Furthermore, the all cells in Fig.2(b) are
gray-scaled according to the number of posted/replied pairs of messages, to grasp
a big picture of time slots with a large or small number of replied messages.

Using Fig.2(a) and (b), it is possible to identify time slots with large or small
time-lag. For instance, we can see that messages posted between 21 and 0 in
time zones A (the bottom row in Fig.2) tend to be replied after 6 hours. That
is, to post messages from 21 to 0 would not be the appropriate timing for less
time-lag communications.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

53

6 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

time zone (UTC)

n
u
m
.

o
f

r
e
p
l
i
e
s

-11 -9 -7 -5 -3 -1 1 3 5 7 9 11

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

Fig. 3. Distribution of the number of replied messages by time zones

3 Case Study

This section describes a case study with a mailing list for developers in the
Python project. Through the case study, we would like to confirm whether the
analysis method can help us understand the existence of time-lags in communi-
cations among OSS developers.

3.1 Python

Python is an object oriented script language developed by OSS. It is very popular
in Europe and the United States as well as Perl. Because it supports various
platforms and provides rich documentations and libraries, it is used in a broad
range of domains (e.g., Web programming, GUI-based appricaitons, CAD, 3D
modeling, formula manipulation, and so forth).

3.2 Target data

We selected the mailing list archive called“Python-Dev” which is for discussing
development of Python such as new features, release and maintenance. We use
the Python-Dev mailing list archive from April 1999 to April 2009, which have
89,301 messages. Excluding posted messages with no replies and messages with
no information on posted/replied time and locations, posted and replied mes-
sages were 56,707. 51,830 of 56,707 messages were sent within 24 hours.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

54

A Time-Lag Analysis for Improving Communications among OSS Developers 7

Table 1. Target locations for the case study of Python

region time zone locations

North and South UTC-8～ United States, Canada, West of Brazil,
American continent UTC-4 Chile, Bolivia, Mexico, etc.

European and African UTC+0～ Europe, Africa, Moscow,
continent UTC+3 Iran, Saudi Arabia, etc.

num. of re
plies

0 2 4 6 8 10 12 14 16 18 20 220500
1000150
02000

UTC+0
UTC+2UTC-420 0 4 8 12 1622 2 6 10 14 182 6 10 14 18 224 8 12 16 20 0

○ North and South American continent● European and African continent

Fig. 4. Distribution of the number of replied messages by time slots (white circles:
North and South American continent, black circles: European and African continent)

3.3 Analysis results

Analysis of a geographical distribution and activity time. Fig.3 shows
a distribution of the number of replied messages by time zones. The X-axis and
Y-axis respectively mean time zones and the number of replied messages.

Fig.3 indicates that in the Python project, a large number of messages are
replied by developers from UTC-4 (East of the United States) and UTC+2 (cen-
tral Europe). This result is not surprising at all. Because Python is mainly used
and developed by European and American developers, it would be natural that
developers living in the locations actively communicated.

Many of countries in the locations of UTC-4 and UTC+2 is utilizing daylight-
saving time. And countries around the countries in UTC-4 and UTC+2 also have
many messages. So, we selected two regions around UTC-4 (the North and South
American continent: UTC-8～UTC-4) and UTC+2 (the European and African
continent: UTC+0～UTC+3) as the analysis target in this paper. Table 1 shows
major countries included in these regions.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

55

8 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

Table 2. Statistics of time-lags by region (A: North and South American continent,
E: European and African continent)

posted region → replied region the number of maximum median minimum
replied region replies (hours) (hours) (hours)

A → A 18,901 11.55 1.24 0.00

A → E 6,942 16.34 2.07 0.00

E → E 9,426 14.69 1.59 0.00

E → A 7,215 13.91 1.80 0.00

Fig.4 shows transitions of replied messages by hour in the two regions which
are determined from Fig.3. The X-axes shows time in the three time zones
(UTC+0, UTC-4, UTC+2) and the Y-axis is the number of replied messages.

Fig.4 indicates that the maximum and minimum number of replied messages
from the North and South American continent are attained respectively at 13 and
5 in the local time (UTC-4). Python developers in the North and South Amer-
ican continent seem to mainly communicate during daytime hours. In contrast,
Python developers in the European and African continent actively communicate
during nighttime hours, because the number of replied messages from the Euro-
pean and African continent is peaked at 23 in the local time (UTC+2). In this
way, analyzing activity time of OSS developers by using the number of replied
messages helps us understand the existence of the difference of working hours
by region.

Although Fig.4 provides an overview on the difference of working hours of
OSS developers by region, however, it does not tell us anything about time-lags.
In fact, developers in the both regions actively communicate each other from
12 to 23 in UTC+0. Communication time-lags might not exist in the regions.
In contrast, developers in either one region or the other region does not ac-
tively communicate from 12 to 23 in UTC+0. Communication time-lags between
developers living different locations might exist in this time period.

Analysis of a distribution of time required for information exchanges
among OSS developers in different locations. Table 2 shows time spent
to reply messages to the same and different time zones, the number of replied
messages, and time-lags (maximum/median/minimum). A pair of a post from
location X and a reply from location Y is represented as “X → Y”.

The median hours of time-lag among the same time zone was 1.24 hours
for A → A and 1.59 hours for E → E. The median hours of time-lag between
the different time zones was 2.07 hours for A → E and 1.80 hours for E → A.
Developers in the same time zone can expect to have a reply within 90 minutes,
and developers between different time zones also can expect to have a reply
within about 2 hours. Since the actual difference of time-lag between the target
regions is nearly 6 hours, we can consider that communication time-lags in the
Python project is relatively small.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

56

A Time-Lag Analysis for Improving Communications among OSS Developers 9

replied (local) time in the North and South American continent

posted (loc
al) time

in the Nor
th and Sou
th America
n continen
t

(a) American → American (max.: 375, min.: 0)

0 2 4 6 8 10 12 14 16 18 20 22 002468101214161820220

replied (local) time in the European and African continent

posted (loc
al) time

in the Nor
th and Sou
th America
n continen
t

(b) American → Europe and Africa (max.: 94, min.: 0)

6 8 10 12 14 16 18 20 22 0 2 4 602468101214161820220replied (local) time in the European and African continent

posted (loc
al) time

in the Euro
peanand A
frican con
tinent

(c) Europe and Africa → Europe and Africa (max.: 180, min.: 0)

02468101214161820220

0 2 4 6 8 10 12 14 16 18 20 22 0 replied (local) time in the North and South American continent

posted (loc
al) time

in the Euro
peanand A
frican con
tinent

(d) Europe and Africa → American (max.: 108, min.: 0)

18 20 22 0 2 4 6 8 10 12 14 16 1802468101214161820220
Fig. 5. Distributions of posted/replied local time between two regions

Analysis of appropriate timing for sending messages. Fig.5 (a), (b),
(c) and (d) are distributions of the number of replied messages between two
regions. For the simplicity, only gray-scaled figures without the number of replied
messages are shown in Fig.5. We can see that the zero time-lag (i.e., dark gray
cells near the diagonal line) is expected from 10 to 17 in Fig.5(a), from 9 to 17
in posted (local) time and from 15 to 23 in replied (local) time in Fig.5(b), from
16 to 23 in Fig.5(c), and from 16 to 23 in posted (local) time and from 10 to
17 in replied (local) time in Fig.5(d). For these time periods, developers would
timely communicate each other.

In contrast, reply time seems to be delayed from 18 to 23 in posted (local)
time in Fig.5(b) and from 7 to 13 in replied (local) time in Fig.5(d), because
there are darker cells a short distance away from the diagonal line. These two
posted (local) time periods correspond to the time period from midnight to early
morning （0 to 6) in replied locations, which means that developers in replied
locations was sleeping at the posted time.

From the result of Fig.5, in oder to receive a quick reply, it would be desirable
to post a message from 10 to 17 in the North and South American continent,
and from 16 to 23 in the European and African continent. On the contrary, it is
not appropriate timing to post a message from 18 to 23 in the North and South
American continent, and from 7 to 13 in the European and African continent,

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

57

10 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

since time-lag is likely to occur. In this way, our analysis method helps OSS
developers know the appropriate timing so that they can resolve a time-lag of
information exchange in an OSS project as much as possible.

4 Discussions

Opposite to what we expected before our case study, we have confirmed in Table
2 that the influence of time-lag due to the time zone difference was relatively
small in the Python project. One reason of this phenomena might be that active
time of Python developers is partly overlapping in the two regions. Although
there are about 6 hours time-zone difference between the two regions, the active
time in the North and South American continent was different from that in the
European and African continent as shown in Fig.4. Therefore, active hours of
Python developers in the two regions might overlap by coincidence from 10 to
17 in the North and South American continent (from 16 to 23 in the European
and African continent). Another reason may be that the number of Python
developers subscribed to the “Python-Dev” mailing list is sufficiently-large to
quickly respond to a posted message at any time.

Our analysis method is not only useful in knowing the appropriate timing
for communications among geographically-distributed OSS developers, but also
useful in changing communication media used in an project. For instance, when a
project replaces mailing lists with IRCs (Internet Relay Chat) as communication
media, developers would be required to more precisely understand the appro-
priate timing for communications to resolve time-lag. In that case, our method
would help developers know the better timing for real-time communications.

OSS developers are not necessary to be geographically-distributed, but they
may be at the same region or location. Though our analysis method mainly aims
to understand the communication time-lag arising from time-zone differences, it
can be used for the time-lag due to lifestyle differences of OSS developers in the
same region or location. OSS developers have no constraint on their working
hours and they can freely engage in OSS development. At the same region, some
developers can work in the morning and other developers can develop OSS at
midnight. Depending on the differences of lifestyles of developers, time-lags could
happen even if they live close to each other. In this situation, our method can
provide an insight on the differences of active time in the same region and help
developers understand the appropriate timing for sending messages.

The analysis method also can be used for distributed development in a com-
pany. Working hours in a company are fixed to some extent, but it is not nec-
essarily that a developer in one site can communicate with other developers in
another site at a particular time. In the prior study [3], time zone differences
are visualized to understand and exploit overlapping hours in a distributed en-
vironment. Our method can not only visualize the time zone differences, but
also allows developers to understand the easiness of communication at a partic-
ular time period, using the number of replied messages (i.e., density of working
activity at a particular time period).

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

58

A Time-Lag Analysis for Improving Communications among OSS Developers 11

In this paper, we introduce the time-lag analysis method toward improving
the communication efficiency of geographically-distributed OSS developers. The
analysis method targets mailing list archive data as communication logs to reveal
the existence of communication time-lags. Although IRC communications are
often used in OSS projects and they can be our analysis target, communications
using IRC do not work when developers one wishes to talk are off-line. So, IRC
communication logs are not likely to well-capture communication time-lags.

In this paper, we have conducted a case study of the Python project, using the
“Python-Dev” mailing list archive. Python-Dev consists of about 10 years mail-
ing list archive data. So, it might be too large to show communication time-lags
among Python developers at the fine-grained level. Actually, we have observed
that communication time-lags in the Python project were relatively small. We
suspect that this results from the size population of developers (subscribers) of
Python-Dev. In Python-Dev[4], a posted messages must be read by a number
of developers in the world and so it might be easy to have replies. In order to
emphasize the existence of time-lags and its issues, in the near future, we need
to analyze more specific situations such as the level of communications among
module owners, reviewers and patch contributors.

5 Related Work

The issues on communication time-lag or delay in OSS development have been
intensively studied in relation to bug modification processes with bug tracking
systems in open source projects [5–15]. For instance, Wang et al. proposed sev-
eral metrics to measure the evolution of open source software [14]. The metrics
include the number of bugs in software, the number of modified bugs and so
on. As a result of a case study using the Ubuntu project which is one of Linux-
based operating system distributions, the study found that about 20% of all the
reported bugs were actually resolved and over ten thousand bugs were not as-
signed to developers. These findings indicate that it takes a long time to resolve
all bugs reported into bug tracking systems and that it also takes a long time to
start modifying bugs. The study, however, did not reveal the amount of time or
communication time-lags to resolve bugs.

Mockus et al. [12] and Herraiz et al. [7] have reported studies on the mean
time to resolve bugs in open source software development. Mockus et al. [12] have
conducted two case studies of the Apache and Mozilla projects to reveal success
factors of open source software development. In the case studies, they analyzed
the mean time to resolve bugs because rapid modifications of software bugs are
generally demanded by users. As a result of the analysis, they have found that
the mean time to resolve bugs were short if bugs existed in modules regarding
to kernel and protocol, and existed in modules with widely-used functions. They
also found that 50% of bugs with the priority P1 and P3 were resolved within
30 days, 50% of bugs with P2 were resolved within 80 days, and 50% of bugs
with P4 and P5 were resolved within 1000 days. While [12, 7] mainly focused on
precise understandings of bug modification processes in open source software de-

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

59

12 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

velopment, we are interested in the influence of communication time-lags among
developers on the bug modification process.

The issues on differences of time-zone and/or geographical distance in dis-
tributed development rather have been discussed in terms of the context of
corporate (proprietary) software development [16–20]. For instance, Harbsleb
et al. [18] have compared single-site development with milti-sites development
and then revealed that development in the distributed environment introduced
the delay of development speed. In contrast, Bird et al. [21] analyized the de-
velopment of Windows Vista by comparing distributed teams with collocated
teams from the aspect of the post-release failures of components. They have
found a slight difference in failures, but the difference have been less signifi-
cant. Nguyen et al. [22] also reported the similar phenomena in the Eclipse Jazz
project. Although the lessons learned from these studies on distributed software
development provides us a lot of useful insights, they are partly applicable to
geographically-distributed OSS development due to the differences of lifestyles of
developers even in the same region or location. In this paper, we tried to tackle
this unique feature of time-lags in OSS development.

6 Conclusion and Future Work

In this paper, we proposed an analysis method for observing the time-lag of com-
munications among developers in an OSS project and then facilitating effective
communications. As the results of our case study applying the analysis method
to the Python developers’ mailing list archive, we could confirm that our analysis
method helps geographically-distributed OSS developers understand that

– active time of developers are different from regions,
– communication time-lags in the Python project is relatively small, and
– there exists the appropriate timing for resolving communication time-lags as

much as possible.

In this paper, our analysis method targets communication time-lags in the
two regions with the time zone difference. In the future, we need to analyze
regions and/or locations without time zone differences in order to better un-
derstand the influence of lifestyle differences of developers on communication
time-lags. As described before, we still need to analyze more specific situations
of time-lags at the fine-grained level.

7 Acknowledgment

This research is being conducted as a part of the Next Generation IT Program
and Grant-in-aid for Young Scientists (B)–20700028, 21–8995，20–9220 by the
Ministry of Education, Culture, Sports, Science and Technology, Japan.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

60

A Time-Lag Analysis for Improving Communications among OSS Developers 13

References

1. Robles, G., Gonzalez-Barahona, J.M.: Geographic location of developers at source-
forge. In: Proceedings of the International Workshop on Mining Software Reposi-
tories. (2006) 144–150

2. Python Programming Language – Official Website: http://www.python.org/

3. Laredo, J.A., Ranjan, R.: Continuous improvement through iterative development
in a multi-geography. In: 2008 IEEE International Conference on Global Software
Engineering. Volume 0., Los Alamitos, CA, USA, IEEE Computer Society (2008)
232–236

4. Python-Dev – Python core developers ML: http://mail.python.org/mailman/
listinfo/python-dev

5. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.:
What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering(FSE’08). (2008)
308–318

6. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In:
Proceedings of the International Conference on Software Maintenance(ICSM’00).
(2000) 131–142

7. Herraiz, I., German, D.M., Gonzalez-Barahona, J.M., Robles, G.: Towards a simpli-
fication of the bug report form in eclipse. In: Proceedings of the 2008 international
working conference on Mining software repositories (MSR’08). (2008) 145–148

8. Ihara, A., Ohira, M., Matsumoto, K.i.: An analysis method for improving a bug
modification process in open source software development. In: IWPSE-Evol ’09:
Proceedings of the joint international and annual ERCIM workshops on Princi-
ples of software evolution (IWPSE) and software evolution (Evol) workshops, New
York, NY, USA, ACM (2009) 135–144

9. Kim, S., Pan, K., Whitehead, Jr., E.E.J.: Memories of bug fixes. In: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering(FSE’06). (2006) 35–45

10. Kim, S., Zimmermann, T., Pan, K., Whitehead, E.J.J.: Automatic identification
of bug-introducing changes. In: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering(ASE’06). (2006) 81–90

11. Kim, S., Whitehead, Jr., E.J.: How long did it take to fix bugs? In: Proceedings of
the 2006 international workshop on Mining software repositories(MSR’06). (2006)
173–174

12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Transactions on Software Engineer-
ing and Methodology 11(3) (2002) 309–346

13. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In:
Proceedings of the 2005 international workshop on Mining software repositories
(MSR’05). (2005) 1–5

14. Wang, Y., Guo, D., Shi, H.: Measuring the evolution of open source software
systems with their communities. SIGSOFT Softw. Eng. Notes 32(6) (2007) 7

15. Yilmaz, C., Williams, C.: An automated model-based debugging approach. In:
Proceedings of the twenty-second IEEE/ACM international conference on Auto-
mated software engineering. (2007) 174–183

16. Carmel, E.: Global software teams: collaborating across borders and time zones.
Prentice Hall PTR, Upper Saddle River, NJ, USA (1999)

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

61

14 M. Ohira, K. Koyama, A. Ihara, S. Matsumoto, Y.Kamei, K. Matsumoto

17. Karolak, D.W.: Global Software Development: Managing Virtual Teams and En-
vironments. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)

18. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of
global software development: distance and speed. In: Proceedings of the Interna-
tional Conference on Software Engineering. (2001) 81–90

19. Milewski, A.E., Tremaine, M., Egan, R., Zhang, S., Kobler, F., O’Sullivan, P.:
Guidelines for effective bridging in global software engineering. In: Proceedings of
the International Conference on Global Software Engineering. (2008) 23–32

20. Sangwan, R., Bass, M., Mullick, N., Paulish, D.J., Kazmeier, J.: Global Software
Development Handbook (Auerbach Series on Applied Software Engineering Series).
Auerbach Publications, Boston, MA, USA (2006)

21. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed
development affect software quality? an empirical case study of windows vista. In:
ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on Software
Engineering, Washington, DC, USA, IEEE Computer Society (2009) 518–528

22. Nguyen, T., Wolf, T., Damian, D.: Global software development and delay: does
distance still matter? In: Proceedings of the International Conference on Global
Software Engineering. (2008) 45–54

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

62

1

A Case Study on the Impact of Global Participation on
Mailing Lists Communications of Open Source Projects

Ran Tang1, Ahmed E. Hassan2 and Ying Zou1

1 Dept. of Elec. and Comp. Eng., Queen’s University, Kingston, Ontario, Canada

{ran.tang, ying.zou}@queensu.ca
2 School of Computing, Queen’s University, Kingston, Ontario, Canada

ahmed@cs.queensu.ca

Abstract. Participants from different countries and across diverse time zones
discuss important design decisions and resolve conflicts in open source projects
using mailing lists. A good understanding of the social structure of these
mailing lists and the impact of the global participant pool on that structure helps
in managing these projects. In this paper, we present a case study which
investigates the impact of global participation on communication on the
developer mailing list for two large open source projects: PostgreSQL and
GTK+. We find that a small group of participants from a limited number of
countries dominate the mailing list while the rest of the participants contribute
equally across all countries. We show that discussion threads are becoming
more spread out across the globe over time. We also analyze the response delay
for inquiries by newcomers to the mailing list. The delay in response to the
initial inquiry depends on the country of the poster and the time when the
message was posted to the list. Our findings shed light into the distribution and
flow of knowledge about open source projects around the world.

Keywords: Global software development; Mining software repository

1 Introduction

Participants in an open source project heavily depend on mailing lists. These lists play
a central and important role in facilitating communication among the globally
distributed participants. Discussions on mailing lists often shape the future of the
project and impact its progress. A good understanding of the social aspect of such
discussions is needed. Prior research has demonstrated the impact of social structure
on the technical structure of large software systems (e.g., [3]).

Given the global nature of open source projects, we wish to explore the social
structure in the context of the global pool of the participants. In particular, we
examine the interaction and communication of participants from different countries
and diverse time zones on the mailing lists of open source projects. Such study helps
shed light into global software development practices, and would be of great help for
managers working on distributing projects across a global pool of developers [4].

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

63

2

In prior work [22], we developed a technique to determine the country of a
mailing list participant. Using this technique we can analyze the participation and
interaction patterns on mailing lists. Our technique can determine the country of 67%
of participants on a mailing list. This represents an 80% improvement over prior
techniques (e.g.,[8]). Using our new technique we study the impact of global
participation on mailing list communications. Our findings are derived from mining a
total of 20 years of the mailing list repository for two large and long-lived open
source projects: The PostgreSQL and GTK+ projects. Our contributions are centered
along the following three questions:

1. What is the participation rate of countries on the mailing list? We study

whether the mailing discussions are used mostly by participants centered in a
limited number of countries or distributed across the globe. We show that a
small group of participants from a small number of countries dominates the list
while the rest of the participants contribute equally across all countries.

2. How global are discussions on the mailing list? We examine if discussions
show a bias to being local, i.e., given a particular discussion whether there is a
tendency for participants from close by regions to participate or if the
participation pattern is more global. We find that most discussion threads are well
spread across the globe and that the average spread of threads increases over
time. This indicates that discussions span the globe instead of being limited to
specific regions.

3. How are inquiries by newcomers handled? We study the speed and rate of
responding to inquiries by newcomers. We find that the speed and rate of
responding to inquiries by newcomers depend on the country of the email sender
and the time that the email was posted to the mailing list.

Organization of the paper. The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents our research questions and the result of our
case study. Section 4 discusses the threats to validity of our work. Finally, Section 5
concludes the paper.

2 Related Work

Prior studies of the global pool of participants in open source projects can be
categorized into two groups: ones based on surveys and others based on mining
repositories.

Studies based on surveys. Robles et al. [14] surveyed over 5,500 respondents to
identify their country. Robles et al. showed that a majority of open source developers
are from Europe. Similar results are also reported in the survey conducted by Ghosh
[7] and David et al. [5].

Studies based on mining repositories. Dempsey et al. [6] analyzed the top-level
domain name of the email address (e.g., .ca, .com) of a participant to identify the

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

64

3

country of the participant. However the study did not compensate for the US bias
resulting from the wide use of generic domains (e.g., .com). Prior techniques do not
map .com addresses to any country. Therefore, the participants from the US may be
under represented in the analysis. Studies in [12, 14] show that the developer pool is
becoming more European-based over time. Robles and Gonzalez-Barahona [8, 13]
used a technique to identify countries of participants in SourceForge [21] open source
projects. Email address and time zone information in the user profile are analyzed to
infer the country. The mailing list was also studied using a similar technique.
However, the time zone information in the mailing list does not contain specific
country information. Therefore, the analysis of the time zone can only derive the
origins of participants to specific time zone regions instead of particular countries.

Other work on mining mailing list. Several studies mine mailing list repositories.
For example, Mockus et al. [16] conduct two case studies to reveal the process of
open source development using mailing list repository. Bird et al. [1] build social
networks using information derived from the PostgreSQL mailing list. These studies
do not explore the impact of geographical distribution on the social interaction of
participants.

3 Case Study

 We conducted a case study to explore various aspects of participation and
interaction in the mailing lists. We use the developer mailing lists for the PostgreSQL
[20] (postgresql-hackers) and GTK+ [9] (gtk-devel-list) projects in our case study.

Table 1. Statistics about the studied mailing lists

 Studied Period # of Participants # of Threads
PostgreSQL 1999-2008 4,742 23,104
GTK+ 1999-2008 2,734 7,481

Table 2. Research questions

 Research Questions
Q1 What is the participation rate of countries on the mailing list?
Q2 How global are discussions on the mailing list?
Q3 How are inquiries by newcomers handled?

 The PostgreSQL project is a relational database management system. The GTK+

project is a toolkit for creating cross platform graphical user interfaces. Both projects
involve a large pool of international developers who interact through the mailing lists.
Both projects come from two different domains: database management and graphic
user interface development. Our objective is to study if our results hold across

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

65

4

domains and projects. Table 1 presents descriptive statistics about both projects.
Using the recovered countries for the participants, we sought to explore the research
questions listed in Table 2. For each question, we present our motivation, and discuss
our results using data from the mailing list repositories in the PostgreSQL and GTK+
projects.

4.1 What is the participation rate of countries on the mailing list?

Motivation. Prior research shows that open source projects have a small core team
and a small number of core contributors [16, 19]. We want to identify the core
participants in the mailing lists and study their distribution around the world. We wish
to compare the participation of that small core with the rest of the participants. In
particular, we want to examine if they are localized to small number of countries or if
they are distributed around the globe. Such knowledge would be helpful in the
planning and recruiting processes for open source projects. For example, the
knowledge of global distribution and involvement of participants may help
conference planner select an optimal locations for face-to-face project conferences
(e.g.: PostgreSQL Conference [18]) in order to achieve high attendance.

Results. We measure the number of participants who contribute the majority (i.e.,
70%) of the messages to the mailing list. We call these participants the core
participants (similar to [16]). Table 3 shows that although these core participants
represent a small percentage (i.e., 1.5-5%) of all the participants, they are spread out
over a relatively larger percentage of countries.

Table 3. Statistics of core participants

 #participants
(%participants)

countries
(%countries)

PostgreSQL 47 (1.5%) 13 (13%)
GTK+ 96 (5%) 21 (27%)

Table 4 and Table 5 show in more detail the countries of all participants. We

observe that the participation patterns vary between projects. For instance, although
the US has the highest number of participants in both projects, the number of
messages sent by US participants varies considerably in both projects. While the US
participants contributing most (~58%) of the messages on the PostgreSQL mailing
list, they only contribute ~20% of the messages on the GTK+ mailing list with
Germany being the top contributor of messages.

Table 6 and Table 7 demonstrate an interesting pattern for the contribution of
countries to the mailing list. Looking at the median of the number of messages and
threads in each country, we find that the median is surprisingly very low and that it is
consistent across countries. The majority of participants post 1 or 2 messages and are
involved in 1 or 2 threads. This pattern leads us to hypothesize that most participants

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

66

5

Table 4. Country composition of the PostgreSQL mailing list

Country Participants (%) Msgs (%)
United States 1037(32.6%) 76723(57.8%)
Germany 228(7.2%) 7237(5.5%)
Canada 160(5.0%) 7602(5.7%)
UK 144(4.5%) 8584(6.5%)
Australia 108(3.4%) 4862(3.7%)
Russia 98(3.1%) 2578(1.9%)
India 97(3.0%) 574(0.4%)
France 97(3.0%) 1621(1.2%)
Italy 92(2.9%) 424(0.3%)
Brazil 90(2.8%) 424(0.3%)
Japan 89(2.8%) 3979(3.0%)
Netherlands 66(2.1%) 722(0.5%)
China 54(1.7%) 210(0.2%)
Poland 51(1.6%) 326(0.2%)
Czech 48(1.5%) 940(0.7%)
Austria 47(1.5%) 3247(2.5%)
Sweden 44(1.4%) 2974(2.2%)
Hungary 41(1.3%) 271(0.2%)
Spain 37(1.2%) 227(0.2%)
Denmark 28(0.9%) 209(0.2%)
New Zealand 28(0.9%) 1,024(0.8%)
Other 492(15.5%) 7,891(6.0%)

Table 5. Country composition of the GTK+ mailing list

Country Participants (%) Msgs (%)
United States 517(27.8%) 4,623(19.9%)
Germany 189(10.2%) 6,670(28.7%)
France 124(6.7%) 1026(4.4%)
UK 120(6.5%) 3,111(13.4%)
Sweden 64(3.4%) 800(3.4%)
Australia 63(3.4%) 708(3.0%)
Canada 57(3.1%) 429(1.8%)
Italy 55(3.0%) 260(1.1%)
India 53(2.9%) 173(0.7%)
Netherlands 50(2.7%) 268(1.1%)
Spain 42(2.3%) 216(0.9%)
China 41(2.2%) 1469(6.3%)
Finland 32(1.7%) 864(3.7%)
Russia 29(1.6%) 242(1.0%)
Brazil 27(1.5%) 147(0.6%)
Japan 25(1.3%) 110(0.5%)
Austria 23(1.2%) 65(0.3%)
Belgium 23(1.2%) 134(0.6%)
Czech 22(1.2%) 113(0.5%)
Norway 21(1.1%) 99(0.4%)
Other 283(15.2%) 1,733(7.5%)

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

67

6

Table 6. Participation level for the PostgreSQL mailing list

Country Mean
Msgs

Med
Msgs

Mean
Threads

Med
Threads

US 74 2 32.9 1
Germany 31.7 2 17.3 1
Canada 47.5 2 24.3 2

UK 59.6 3 27.6 2
Australia 45 2 24.8 1
Russia 26.3 2 14.4 1
India 5.9 1 3.5 1

France 16.7 2 8.7 1
Italy 4.6 2 3 1

Brazil 4.7 2 3.1 1
Japan 44.7 2 19. 2

Netherlands 10.9 2 6.3 2
China 3.9 2 3 1
Poland 6.4 2 3.4 1
Czech 19.6 3 11.1 2
Austria 69.1 4 42.7 2
Sweden 67.6 2.5 30.1 1.5
Hungary 6.6 2 3.4 1

Spain 6.1 1 3.3 1
Denmark 7.5 3.5 5.2 2

New Zealand 36.6 2.5 19.2 1.5

Table 7. Participation level for the GTK+ mailing list

Country Mean
Msgs

Med
Msgs

Mean
Threads

Med
Threads

US 8.9 2 5.8 2
Germany 35.3 2 21.7 2
France 8.3 2 5.6 1

UK 25.9 2 15.2 2
Sweden 12.5 2.5 8.4 2
Australia 11.2 2 8.5 1
Canada 7.5 2 4.3 1

Italy 4.7 2 2.8 1
India 3.3 1 2.7 1

Netherlands 5.4 1 3.6 1
Spain 5.1 2 3.6 1
China 35.8 1 21.3 1

Finland 27 2.5 16.6 1.5
Russia 8.3 2 4.8 1
Brazil 5.4 2 3.1 2
Japan 4.4 2 2.5 1

Austria 2.8 1 2.1 1
Belgium 5.8 2 3.6 1
Czech 5.1 2 3.6 1

Norway 4.7 1 2.3 1

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

68

7

rarely use the mailing list for discussion. Instead they post 1 or 2 inquiries in the
mailing list. In short, most mailing list participants use it to post inquiries, rather than
to delve into in-depth discussions.

These observations about the different use of mailing lists by core members and
newcomers shape our next two questions. Q2 will study the spread of countries in in-
depth discussion threads while Q3 will study the speed of response to inquiries by
newcomers.

4.2 How global are discussions on the mailing list?

Motivation. The results for our previous question indicate that the participant
pools in both projects are globally distributed. However, how these participants
interact remains unanswered. Do participants talk globally or do they prefer to talk to
participants locally? This question examines the interaction in the global open source
development. This helps us gain insight about the problems of coordination and
localization of knowledge for distributed teams.

Results. We define a spread metric for each thread to measure the global spread of

a thread. A discussion thread is a collection of email messages related to each other
by replying. A participant starts a discussion thread by posting a question or raising an
issue, and other participants may choose to reply to it. By examining the diversity of
the participants’ locations in each thread, we can determine whether the discussion is
global or primarily localized.

We use the MESSAGE-ID field in an email to reconstruct discussion threads since
each message, as part of a thread, would refer to the message id of an earlier message
in the thread. Sometimes, a thread is re-opened for some reason. For example,
participants may reply to a thread which has had no postings for more than one year.
Since the discussion has stopped for too long, this reply essentially creates a new
discussion on the same topic. We process such a reply as the starting point of a new
thread if the time between the reply and the last posting is a long period of time. We
use a threshold of 30 days to cut off re-opened threads into two different threads. This
threshold is selected by manually examining the re-opened threads in both studied
projects.

To compute the spread of a thread, we calculate the spread between each pair of
participants who have posted on the thread. As shown in Figure 1, for each pair of
participants A and B, we use either the time zone difference from A to B (clockwise)
or B to A (clockwise), whichever is less, as the spread between them. The maximum
spread between two participants is 12. The spread is 0 if both participants are in the
same time zone. In the example shown in Figure 1, the spread is 8. We pick the

Developer mailing lists are dominated by a very small number of participants
who are from a relatively larger number of countries. Participants contribute
equally to the mailing lists independent of their country.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

69

8

largest spread between all pairs of participants in a thread. A large spread is a good
indicator of the global spread of interaction in a thread.

We consider threads with a spread less or equal to 5 as low spread threads.
Typically, such threads (i.e., with the spread of 5) represent discussion within one
country (e.g., US) or one close region (e.g., EU). We then examine the trend of low
spread threads relative to all threads over time.

Figure 1: An example of spread calculation

Figure 2: % of low-spread threads over time

As shown in Figure 2, low spread threads only represent about one third of the
total threads and low spread threads decrease in the PostgreSQL project over time.
The participants of PostgreSQL list were primarily from the US when it was started in

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

70

9

1999. The mailing list attracts more participants throughout the world and the
PostgreSQL project is becoming more international over time.

The GTK+ project illustrates another interesting trend. In early years, it follows a
similar trend with the project being localized in the US. We then note that the
percentage of low-spread threads continues to decrease. This project was at first
centralized in the US, and then it grew to have European participants till 2003.
However, this trend is reversed with more localized European threads since 2003. An
observation about the project population of GTK+ and other GNOME projects was
noted by [12] which mined the source code change logs of the credit, instead of
examining the mailing lists participants. The confirmation of our mailing list findings
by mining the source code repositories demonstrates the importance of social
information in explaining and collaborating information recovered from other project
repositories.

4.3 How are inquiries by newcomers handled?

Motivation. Prior research [13] and our earlier results show that many open source
projects have a high concentration of participants from US, Canada or European
Union (EU). We believe that the high concentration of participants might impact the
openness of such projects. The openness of the mailing list is an important factor that
influences newcomers. For example, if inquiries by newcomers are often ignored or
take a long time to get a response, then newcomers might lose their interest in the
project and not join the community [2]. Two factors which might affect the delay in
responding to an initial inquiry are the country of the poster and the posting time
(which might be indirectly affected by the country). For example, posts by Chinese
participants might not get an immediate response till next day when the North
American participants are at work.

Table 8. Response delay and ratio for both studied projects

 EU, US, Canada Others
 Response

Delay
(hours)

Response Ratio
 (%)

Response
Delay
(hours)

Response
Ratio
(%)

PostgreSQL 0.17 68.2% 1.66 67.0%
GTK+ 0.46 61.9% 19.7 59.0%

Results. In our analysis, we divide all countries into two groups:
1. Group one includes countries from the EU, the US and Canada. This group

includes many developed countries which are known to be active in open source
development [8].

Discussion threads tend to become more global as a project evolves.
However, this trend might change over time for some projects.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

71

10

2. Group two includes all other countries. This group mostly includes developing
countries with less open source development activity.

We measure the median response delay and the response ratio for each group. We

define the response delay for an initial inquiry as the time difference between the
initial inquiry and the first reply. The response ratio is denoted as the number of
replied inquiries divided by the total number of inquiries throughout the studied
period for each project. We only examine participants who have less than 20
messages in the mailing list. We choose not to consider core participants with more
messages since we believe that the rest of the mailing list is familiar with them and
that they would receive a response independent of their country or time of posting.

Figure 3. Response delay for the PostgreSQL project (GMT)

Figure 4. Traffic on the PostgreSQL mailing list (GMT)

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

72

11

As shown in Table 8, newcomers from the EU, the US and Canada get a
statistically significant faster response compared to those from other countries. As for
the response ratio, the ratios are consistent across both groups with very low
variations that are not statistically significant. The response delay and ratio for the
PostgreSQL project are much lower than the GTK+ project. One possible reason is
the fact that the PostgreSQL project has a larger participant pool which is more
distributed as shown in Q2.

We plotted the response delay for both projects throughout a day. Figure 3 depicts
the response delay for the newcomers in the PostgreSQL project. There is a large
spike in delay between 5 to 11 GMT. In an effort to investigate this spike in delay, we
plotted the traffic (i.e., the total number of messages posted per GMT hour of a day)
in the PostgreSQL mailing list shown in Figure 4. The patterns in Figure 3 and Figure
4 are inverted. To better quantify the relation, we calculated the spearman correlation
between both metrics plotted in Figure 3 and Figure 4. The correlation is -0.79 for the
PostgreSQL project and -0.59 for the GTK+ project, indicating a strong negative
correlation. In short, when the traffic is high, the response delay is low; and vice
versa. Although one might assume that an open source mailing list provides around
the clock support, the mailing list in many ways operates as a traditional company
which has specific support hours and reduces staff in the off-peak hours. For most
participants, it is of little value to post a message in off-hours, since there is a high
chance that the message won’t receive a reply till the list is active again (probably the
following day).

Our analysis shows that the response delay depends on the country and the posting
time over the participants from all countries. We sought to explore the response delay
in a particular country. We picked the US with a sufficient number of inquiries that
can be spread over 24 hours. We studied its response delay pattern. As depicted in
Figure 5, the response delay pattern is similar to the pattern described in the overall
graph (Figure 3) for the PostgreSQL project. Therefore, we believe that the response
delay for an active country also depends on the posting time.

Figure 5. Response delay over one day for US based participants for the

PostgreSQL

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

73

12

Figure 6. Response delay over one day for US based participants for GTK+

5 Threats to validity

Our work has several limitations which affect the validity and the generality of our
findings. First, our findings are based on studying two open source projects. We chose
two long-lived successful and active open source projects for our study with a well-
archived mailing list repository. In future work, we need to explore additional projects
to verify the generality of our findings. It would be interesting to explore non-
successful projects though the mailing lists of such projects are not as active and
likely won’t have as much discussions.

Our approach [22] to identify the location of a participant use IP2Location
databases [11]. These databases are built using several heuristics and might contain
errors [17]. Moreover, it might be the case that the location of a specific IP has
changed over time with the IP2Location database mapping an out-of-dated IP address
to the most recent location recorded in the database. Multi-national companies might
have their whole intranet accessing the internet through US-based gateways. This
would cause all remote offices to appear as if they are in the US. We determine the
location of a participant based on the most frequently reported country using the
sender IP address analysis. However, a participant may move from one country to

The response delay and ratio to a newcomer’s initial inquiry depend on the
time when the inquiry was posted and on the country of the participant who
posted it. Open source mailing lists do not operate at full capacity (e.g., 24 hours
over 7 days). Instead the open source mailing lists operate in the similar way as
support lines with high and low staffing periods based on the time of a day.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

74

13

another over the years. We also assume that each participant can reside in a single
country. A cursory analysis of the data shows that almost all participants have 90% of
their posts coming from the same country. Nevertheless, we plan to explore these
assumptions in future work.

A final limitation of our approach is that the correct country of a participant is not
known. In other words, there exists no gold standard to compare against. As a basic
accuracy verification of our approach, we compared the identified participants by
both our approach and prior work [8]. We found that both approaches have a 4-5%
mismatch ratio in identified countries. Studying the mismatches, we find that 70-80%
of them are due to our approach using the most frequent IP location of the sender
instead of mapping a participant to the country indicated by resalable country domain
name.

We have defined a few thresholds, such as the low spread threads (less than 5 time
zones) and the intervals for creating a new thread from an inactive thread (i.e., 30
days). These thresholds work well in analyzing the two studied projects. In the future,
we plan to examine other possible thresholds on more projects.

Much of our findings show correlation between attributes without explaining the
causes. More studies are needed to explore the causes. For example, our findings
show that the initial inquiries submitted by the participants from the regions outside of
the US, Canada, and the EU have a high response delay. However, we need to further
explore the reasons through ethnographical studies.

6 Conclusion

Studying communication on mailing lists shed light into the spread and flow of
knowledge for a project. Through a case study on two large and long-lived open
source projects: PostgreSQL and GTK+, we investigated the impact of having
globally distributed participants communicating on the mailing list. We found that a
small number of participants spread over a larger set of countries dominate the
discussion. We found that the majority of participants contribute a single message to a
single thread. We noted and examined two different uses of the mailing list: a) for
lengthy discussions by core members; b) for inquiries by newcomers. For lengthy
discussions, we found that over time the discussions become more spread out across
the globe for one of the studied projects, while the other project (GTK+) has the same
trend in the beginning but later becomes less spread out. A closer analysis indicates
that mailing list participants often reflect the developer composition of a project. In
the case of the GTK+ project, our analysis noted the migration of the development
team from the US to the EU. As for inquiries by newcomers, we found that delays in
responding to such inquiries depend on the country of the newcomer and the posting
time of the inquiry. Our results help us better understand the social structure and
global nature of open source projects, and their impact on timely and open discussions
in open source projects.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

75

14

References
1. Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swaminathan, A. Mining email social

networks in Postgres. International Workshop on Mining Software Repositories, 2006.
2. Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G. Open Borders?

Immigration in Open Source Projects, International Workshop on Mining Software
Repositories, 2007.

3. Bowman, I. T. and Holt, R. C. Software architecture recovery using Conway's law.
Conference of the Centre For Advanced Studies on Collaborative Research, 1998.

4. Cherry, S., Robillard, P. N. Communication Problems in Global Software Development:
Spotlight on a New Field of Investigation. International Workshop on Global Software
Development, 2004.

5. David, P.A., Waterman, A., Arora, S. FLOSS-US. The free/libre/open source software
survey for 2003. Technical Report, Stanford Institute for Economic and Policy Research,
2003.

6. Dempsey, B.J., Weiss, D., Jones, P., Greenberg, J. Who is an open source software
developer? Communications of the ACM, 45(2), 2002.

7. Ghosh, R.A., Glott, R., Krieger, B., Robles, G. Survey of developers (free/libre and open
source software: survey and study). Technical Report, University of Maastricht, 2002.

8. Gonzalez-Barahona, J. M., Robles, G., Andradas-Izquierdo, R. and Ghosh, R. A.,
Geographic origin of libre software participants, Information Economics and Policy, 20
(4), December 2008.

9. GTK+ developer mailing list, http://mail.gnome.org/mailman/listinfo/gtk-devel-list/, last
accessed on October 29 2009.

10. Hertel, G., Niedner, S., Herrmann, S. Motivation of software developers in open source
projects: an internet-based survey of contributors to the linux kernel. Research Policy,
Volume 32, 2003.

11. IP2Location Database, http://www.ip2location.com/, last accessed on October 29 2009.
12. Lancashire, D. Code, culture and cash: the fading altruism of open source development.

First Monday, 6 (12), December 2001.
13. Robles, G., Gonzalez-Barahona, J. M. Geographic location of developers at SourceForge.

International Workshop on Mining Software Repositories, 2006, pp. 144-150.
14. Robles, G., Scheider, H., Tretkowski, I., Weber, N. Who is doing it? A research on libre

software developers. Technical Report, Technische Universitt, 2001.
15. Member states of the EU, http://europa.eu/abc/european_countries/index_en.htm, last

accessed on October 29 2009.
16. Mockus, A., Two case studies of open source software development: Apache and Mozilla,

ACM Transactions on Software Engineering and Methodology, 11(3), Jul. 2002.
17. Padmanabhan, V., Subramanian, L. An investigation of geographic mapping techniques

for Internet hosts. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2001.

18. PostgreSQL conference, http://postgresqlconference.org/ last accessed on October 29
2009.

19. PostgreSQL contributor profiles, http://www.postgresql.org/community/contributors/, last
accessed on October 29 2009.

20. PostgreSQL developer mailing list, http://archives.postgresql.org/pgsql-hackers/, last
accessed on October 29 2009.

21. SourceForge open source project repository, http://sourceforge.net, last accessed on
October 29 2009.

22. Tang, R., Hassan, A.E., Zou, Y., Techniques for Identifying the Country Origin of
Mailing List Participants, 16th Working Conference on Reverse Engineering, 2009

23. Tuomi, I. Evolution of the Linux credits file: methodological challenges and reference
data for open source research. First Monday, 9(6), June 2004.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

76

Keynote address:

Understanding Networked Collaboration

Shuichiro Yamamoto (NTT Data Corporation, Japan)

ABSTRACT

My recent interest is the mutual interaction among people and IT systems in different research

domains. These domains include Knowledge creation, Requirements Engineering, and Dependable

Systems Engineering. In this talk, I will propose several ideas to understand the mutual interactions

among actors, where both people and IT systems are treated as actors. These ideas are Intermediary

Knowledge, Actor relationship matrix and Engineering case pattern language. I am also planning in

the future to integrate these approaches for designing Knowledge Collaboration through computer

networks.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

77

Identifying the concepts that are searchable with

keywords in code search engines

Toshihiro Kamiya

National Institute of Advanced Industrial Science and Technology

Akihabara Dai Bldg. 1-18-13 Sotokanda, Chiyoda-ku, Tokyo, 101-0021, JAPAN

t-kamiya@aist.go.jp

1 Introduction

Many code search engines, such as Codase (www.codase.com), Codefetch (www.

codefetch.com), Google code search (google.com/codesearch), JExamples (www.

jexamples.com), Koders (www.koders.com), Krugle (www.krugle.org), and Mero-

base (www.merobase.com), have become available recently [1-6]. Most of them have

Google-like interfaces through which a user can enter a set of keywords as a query to

retrieve source code files that are related to the keywords in the query. Some code

search engines also provide options that are specific to source code. For example,

software developers can use options to specify the specific portions (such as com-

ments, code, or functional definitions) in which the search keywords appear.

Such code search engines are important instruments to promote and support soft-

ware reuse. However, their support for reuse may not be sufficient. When software

developers consider reuse, they care about not only the functionality of the code, but

also various characteristics such as performance (“Is the algorithm O(N) or O(N
2
)?”),

usability (“Whether the API is easy to understand and use?”), and maintainability

(“Can the code be easily customized to fit my code?”). This paper tries to evaluate the

capabilities of keyword-based code search engines in terms of their support for

searching reusable code based on multiple characteristics. The paper adopts what we

call an oracle approach for the evaluation: it first identifies a classification schema

that represents different dimensions of code characteristics, and then analyzes whether

we are able to identify, for each dimension of characteristic, a set of intuitive key-

words that can be used in a search query to retrieve effectively reusable code.

2 The Oracle Approach

We describe the oracle approach using a case study of searching code in the fol-

lowing scenario. A developer is writing a Java program that needs an array of bits

with low memory consumption, that is, a class of bit array that uses one bit in the

memory for each element. The developer guesses, by analogy of the class Array of

the standard Java library, that the name of such a class may be called BitArray. So the

developer can use BitArray as the functionality query for searching. However, the

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

78

2 Toshihiro Kamiya

…

…

Concepts

Keywords

Requirement

(set of concepts)

Answer set

(set of files)

High accuracy queries

(set of keywords)

Plausible queries

Repository

(15 BitArray files)
…

Find the files that meet the requirement

Identify plausible (for developers) queries

Examine Extract

Generate queries and evaluate accuracies of them

Fig. 1. Steps of the oracle approach

developer also has other requirements such as performance, comprehensibility and

maintainability, and the question is what kind of keywords that he or she should use

to represent such requirements for the purpose of searching.

To evaluate the oracle approach of finding effective search keywords that capture

the requirements of multiple characteristics, we will use a toy keyword based code

search engine that is prepared for this evaluation. The oracle approach (Fig. 1) of

finding highly discriminative search keywords works as follows. For each predefined

“correct” answer set of desired code that we want to find, we create a series of key-

word sets that are used as search queries. Each query will return a set of search re-

sults, the search results are then measured against the predefined correct answer set.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

79

Identifying the concepts that are searchable with keywords in code search engines 3

Based on the measurement, we will find whether keywords with high discriminating

power exist. More specifically, the approach consists of the following steps:

(1) Prepare a repository of source files, which are the candidates for code search.

(2) Examine each source file in the prepared repository and create a list of concepts

that can be used to describe various features of source files, including basic func-

tionality and other implementation details such as performance and potential usage

pitfalls. This step needs to be performed by a subject expert.

(3) Extract a list of keywords from each source file to represent the source file.

(4) From the list of concepts, create a classification schema by putting each concept

into different categories. This classification schema represents different dimensions

of search requirements. A set of search requirements is created, and each search

requirement contains a subset of the concepts, and in this case study, one search

requirement contains one concept from each category.

(5) For each requirement,

(5-1) Create an answer set, which is a set of source files from the repository that

contain the concepts of the requirement.

(5-2) Determine what words can make a query that returns search results with high

accuracy, namely, identifying the words that have the highest discriminative

power in terms of search accuracy. To do this, we create search queries with

arbitrarily selected keywords from the keyword lists, and then compare the

search results of those queries with the predefined answer set.

(5-3) For each query that achieves high search accuracy, analyze whether it is

plausible for a software developer to include such words in their search queries

based on their search requirements. The search accuracy of a query is evaluated

with precision and recall.

3 A Case Study

3.1 Source files, concepts, and keywords

The repository in the case study contains 15 Java source files of different imple-

mentations of the BitArray class that are found with existing code search engines.

Table 1 shows the concepts that are identified by analyzing the source files. The con-

cepts are classified into 5 categories: basic operation, scale, implementation issue,

rich operation, conversion, and ease of development. The concepts of limited-size,

unlimited-size and re-size are mutually exclusive; that is, a source file can have only

one concept from that category. Non-pack and pack in the implementation category

are also mutually exclusive.

Keyword lists were generated from the 15 Java source files with a small script.

Camel cased identifiers such as getLength are split into separate words (e.g. “get”

and “length”). Tag names (e.g. @author) in JavaDoc comments were removed. Oper-

ators (such as <<=) were extracted as words too.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

80

4 Toshihiro Kamiya

Table 1. Concepts extracted from the source files.

Concept Description

basic Can store bits and retrieve the stored bits.

limited-size The max count of bits are hard-corded in a source file (a constat).

unlimited-size Size of a bit array is specified on instance creation.

re-size Size of a bit array can be modified with methods.

non-pack One byte or more stroage is required to store a bit.

pack Less than a byte is required to stroe a bit.

mask A workaround to prevent a time-consuming micro operation.

break-encap. Has methods that return internal data (stored bits).

search Has methods to search true bits in a bit array.

merge Has methods to merge two bit arrays.

value Has a predicate for equality/comparision between two bit arrays.

shift Has methods to shift bits in a bit array.

logical Has methods to calculate "and" or "or" of two bit arrays.

range Has methods to obtain or modify bits within a range on a bit array.

XML Convertible from/to XML strings.

booelan[] Convertible from/to a "boolean[]" object.

byte[] Convertible from/to a "byte[]" object.

file-io Can write to/read from a file.

copy Has methods (or constructors) to duplicate a bit array.

tostring Has a method of a "debug" print.

Classi-

fication

e. o. d.

basic op.

scale

impl.

issue

rich op.

conv.

basic op. = basic operation, break-encap. = break encapsulation, conv. = conversion, e. o. d.
= ease of development , impl. issue = implementation issue, rich op. = rich operation.

The keywords extracted from source files were divided into equivalence classes: If

keyword “a” appears in source files “f” and “g” only, and keyword “b” also appears

in “f” and “g” only, then “a” and “b” are put into one equivalence class because they

are equivalent in terms of their discriminative power. For each equivalence class of

keywords, we need evaluate only one word from that class. In this case study, among

the total 197 equivalence classes, 131 classes have only one word and the other 66

classes have an average 11.4 words, with the largest class having 236 words.

3.2 Overall evaluations

Table 2 shows queries with high accuracy (high precision and/or high recall) for

each concept. We evaluated queries of one word, two words and three words. The

queries shown in the table are queries of single word. If two or three word queries had

higher precision and recall values than that of single-word queries for a particular

concept, such queries are shown in the remark column in Table 2. Also, when the

high discriminative queries in the second column are not intuitive ones, namely, those

words seemed too difficult for a developer to guess from the concepts of the given

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

81

Identifying the concepts that are searchable with keywords in code search engines 5

Table 2. High-accuracy queries for each concept

Max

prec. * recall

Max

prec.

Max

recall
Remark

basic ← ← { & } = 13/14 * 13/14

← ← { size } = 1/13 * 1/1

{ size }

= 9/13 * 9/9

{ size }

= 9/9

{ limitations } = 2/4 * 2/9, { ++, size } = 9/12 *

9/9, { ++, copy, size } = 9/11 * 9*9

re-size
{ initial }

= 3/4 * 3/3
{ size } = 2/13 * 2/3, { initial, size } = 2/3 * 2/3

{ name }

= 2/2 * 2/2
← ←

{ size } = 2/13 * 2/2, { byte } = 0/9 * 0/2,

{ representing } = 2/3 * 2/2

pack
{ copy }

= 12/13 * 12/12

{ packed } = 0/4 * 0/2, { & } = 12/14 * 12/12.

The equivalence class of "packed" includes "̂ ".

mask
{ prevent }

= 2/2 * 2/2
← ← { mask } = 2/8 * 2/2, { fast, mask } = 2/3 * 2/2

break-

encap.

{ mutable }

= 1/1 * 1/1
← ←

The equivalence class of "mutable" includes

"corruption", "performance", and "sanity".

search
{ serialized }

= 3/3 * 3/3
← ←

{ first } = 3/5 * 3/3, { pos } = 3/5 * 3/3,

{ position } = 2/6* 2/3, { <=, pos } = 3/3 * 3/3

merge ← ←

value ← ← { equals } = 5/7 * 5/5, { !, * } = 5/5 * 5/5

shift
{ <<= }

= 2/2 * 2/2
← ←

{ shift } = 1/3 * 1/2, { << } = 1/11 * 1/2,

{ >> } = 1/5 * 1/2, { >>> } = 1/5 * 1/2,

{ >>= } = { >>>= } = 1/1 * 1/2

logical
{ ^= }

= 3/3 * 3/3
← ←

{ and } = 3/13 * 3/3, { or } = 2/5 * 2/3,

{ nor } = 2/2 * 2/3, { and, or } = 2/5 * 2/3

range ← ← { range } = 0/3 * 0/1, { bounds } = 1/7 * 1/1

XML ← ← { xml } = 1/4 * 1/1, { string, xml } = 1/1 * 1/1

{ booleans }

= 3/3 * 3/3
← ← { boolean } = 3/7 * 3/3

byte[]
{ gets }

= 4/5 * 4/4

{ gets }

= 4/4
{ byte } = 4/9 * 4/4

file-io ← ← { file } = 4/7 * 4/6, { file, input } = 4/4 * 4/6

copy
{ >= }

= 8/10 * 8/8

{ >> }

= 5/5

{ >= }

= 8/8

{ copy } = 8/13 * 8/8, { clone } = 6/6 * 6/8,

{ !=, >= } = 8/9 * 8/8, No three-word queryies

outperformed.

{ string }

= 11/12 * 11/11

{ / }

= 9/9
{ to, string } = 11/11 * 11/11tostring

{ initial }

= 3/3

{ string }

= 11/11

e
.

o
.

d
.

{ word } = 1/1 * 1/1

{ reserved }

= 3/3

booelan[]

{ ~ }

= 10/10

{ copy }

= 12/12

{ input } = 6/6 * 6/6

{ merge } = 2/2 * 2/2

{ code } = 5/5 * 5/5

non-pack

sc
a
le

im
p

l.
 i

ss
u

e
ri

ch
 o

p
.

c
o

n
v

.

Requirement

(concept)

unlimited-

size

{ supplied }

= 1/1 * 1/1

{ exceed }

= 2/2

limited-size

{ replace } = 1/1 * 1/1

{ + } = 14/14 * 14/14

{ || }

= 5/5

The “{…}” are queries. The values at right side of “=” are precisions and recalls. Each of
these values is denoted by a fraction, whose denominator and numerator are counts of source
files, without canceling down (reduction). A bold-font query is the query that looks the most
intuitive one for the given requirement. A left arrow “←” means the query in the cell is the
same to one in the left cell.

requirement, the more intuitive queries were shown in the remark.

Recall values in Table 2 are relatively high, and this is not surprising for this study

because each concept and queries are both extracted from the source files. In other

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

82

6 Toshihiro Kamiya

words, it is guaranteed that some source files contain words of that concept. If the set

of concepts were prepared without reading the source files, the recall values would be

smaller.

Precision values varied among categories of concepts. From Table 2, we can find

that the category of the ease of development have both intuitive and high-precision

queries. The categories of implementation issue and rich operation, some concepts

have both intuitive and high-accuracy queries while some don’t. For the categories of

conversion and scale, no intuitive and high-precision queries were found. For the

category of basic operation, because 14 of total 15 source files have the concept, prac-

tically there is no need to query about this category.

3.3 Conclusions

The findings of the case study can be summarized as follows. Intuitive and high-

precision queries are possible when (i) the name of the method that implement a con-

cept is easy to guess from the coding convention of Java, such as copy → clone(),

value → equals(), and tostring → toString(), or (ii) some unique words (operators) are

required to implement the concept, such as, pack → ~ and shift → <<=. On the other

hand, if the concepts are implemented without unique words, such as scale and con-

version, it is difficult to find intuitive and high-precision queries.

Acknowledgements. I am deeply grateful for Dr. Yunwen Ye for his comments,

advice, and proofreading. This research is supported by JSPS Grant-in-Aid for Chal-

lenging Exploratory Research (No. 21650008).

References

1. O. Augusto, L. Lemos, S. Bajracharya, J. Ossher, “CodeGenie: a Tool for Test-Driven

Source Code Search”, Proc. ASE’07 pp. 525-526 (2007).

2. S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, C. Lopes, “Sourcerer: a

search engine for open source code supporting structure-based search”, Proc. OOPSLA’06:

pp. 681-682 (2006).

3. K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, S. Kusumoto, “Compo-

nent Rank: Relative Significance Rank for Software Component Search”, Proc. ICSE’03,

pp14-24, (2003).

4. D. Mandelin, L. Xu, R. Bodik, D. Kimelman, J. Mining, “Helping to Navigate the API

Jungle”, Proc. PLDI’05, pp.48-61 (2005).

5. Steven P. Reiss, “Semantics-Based Code Search”, Proc. ICSE’09, pp. 243-253 (2009).

6. Y. Ye, G. Fischer, “Supporting Reuse by Delivering Task-Relevant and Personalized Infor-

mation”, Proc. ICSE’02, pp. 513-523 (2002).

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

83

DesignMinders: A Design Knowledge Collaboration
Approach

Gerald Bortis and André van der Hoek

University of California, Irvine

Department of Informatics
Irvine, CA 92697-3440

{gbortis, andre}@ics.uci.edu

Abstract. Software developers face numerous challenges in capturing and
reusing knowledge during informal design sessions. While the knowledge that
is brought to bear and generated during these sessions provides valuable
insights that can ideally be reused, informal software design is a time when
developers are gathered at the whiteboard working to solve problem and during
which the developer must remain “in the moment” while engaged in discussion
and sketching. In this paper we describe DesignMinders, a tool currently being
developed to address these issues by augmenting an electronic whiteboard with
the ability to capture, refine and explore design knowledge in the form of
notecards. This paper documents our progress and describes several key
challenges that we face.

Keywords: Software design, knowledge reuse, whiteboards, notecards

1. Introduction

Consider a team of software developers starting a new project. They hold a meeting to
discuss the design and to look for some inspiration from solutions applied in other
projects. They are not looking for a specific approach or technique; they just want to
get a general idea of what others have done or problems they have encountered when
working on similar projects. What if they had a way to easily explore this
information?

Consider another group of developers gathered at a whiteboard in a meeting room
working on a design problem. As they work through a potential solution, one of the
developers recalls a certain constraint that had to be worked through the last time a
similar problem was encountered. None of the developers can recall it, and the
meeting stops. What if they were using a system that could automatically provide
them with this information?

Finally, consider yet another group of developers, in the midst of session, when
they realize that they are making some crucial decisions about the design that they
would like to keep for later. What if they could easily capture these decisions, and
have them presented when needed during subsequent sessions?

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

84

This is the space on which our research is focused: supporting software designers
in capturing and using design knowledge in a lightweight way when they are
designing at the whiteboard. This paper presents a vision of how this might be done,
documents our progress towards it, and discusses several key challenges that we face.

2. Background

The above scenarios highlight obstacles that are commonly encountered by
developers during informal software design. This is a time when developers are
gathered at the whiteboard to better understand and work through a design problem. It
is an activity that spans the development lifecycle and during which developers bring
to bear knowledge from past projects or personal experiences that influence the
decisions that are made [1-3]. The knowledge involved is at times explicit, easily
conveyed, and about general software development practices, solution patterns, or a
particular application domain. It can also be tacit knowledge that is specific to the
organization or project [4]. As this knowledge is applied to the design, new
knowledge is generated in the form of discussions and artifacts on the whiteboard that
can provide valuable insights into how the system was designed; insights that in the
ideal world are easily recalled during subsequent design sessions.

Unfortunately, as in the above scenarios, most of this knowledge “vaporizes” and
fails to be reused after these design sessions, since it is difficult to capture and
represent using existing approaches [5]. Informal design is a time when developers
are engaged in ad hoc sketching and discussion, and are unlikely to follow a formal or
prescribed process. It is crucial that developers be able to capture knowledge in a
lightweight and informal way using a representation that allows for the knowledge to
be refined at a later time. The developers also must be able to explore the collected
knowledge and have it presented in a relevant way.

Existing techniques for capturing and reusing this design knowledge either fail to
address these challenges altogether, or are focused on capturing knowledge during the
more formal specification or implementation phases of the development process,
when the informal design knowledge has already been lost. For example, knowledge
management systems that allow developers to populate and search a knowledge base
containing formal design documents fail to address the need for concise and relevant
representations of knowledge during informal software design sessions when the
design problem is still being understood. On the other hand, design rationale
techniques attempt to capture the decisions that were made during a design session
using an argumentation schema that is incompatible with the activities and processes
that developers engage in while at the whiteboard. Such techniques are difficult to
apply during informal software design when developers are engaged both with the
whiteboard and with each other in discussion, and are unlikely to interrupt an
opportunistic exploration of the design problem to populate the knowledge base with
recently acquired knowledge about the design problem, or to formalize their partial
solutions into an argumentation schema [6].

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

85

3. DesignMinders

To address these challenges, we present DesignMinders, a software design knowledge
reuse tool to support developers in: capturing design knowledge in an easy way,
organizing the collected knowledge as a set of notecards, and making this collection
available for exploration and search during design sessions. We began by extending
the electronic whiteboard and sketching tool Calico [7] that provides developers with
distinct advantages over traditional whiteboards, the most important of which is the
ability to directly manipulate sketches that are made on the whiteboard by selecting
and moving them around. This allows for anything drawn or written on the
whiteboard to become elements of design knowledge that can be built upon. As a
result, we envision DesignMinders being used alongside Calico by developers during
design sessions. To better understand how DesignMinders accomplishes this, imagine
the following scenario.

A team of developers gathers to discuss the design of a new clinical application for
viewing and managing patient account information. Before they begin sketching
concepts for the user interface, they turn to the DesignMinders noteboard running
alongside the electronic whiteboard and begin exploring the available notecards. They
search for all cards tagged with the “ui” keyword, and are presented with a list of
notecards. They quickly browse through the names of the notecards, reading the
descriptions and glancing at some of the associated diagrams, and quickly assess if a
notecard is relevant to their application. They drag-and-drop several relevant
notecards from the search list to the noteboard and create a stack.

One of the selected notecards is named “Multiple Monitors” and describes how a
user interface can be designed to take advantage of multiple displays by allowing
certain elements to be expanded outside of the primary window. Similar to a design
pattern, the notecard’s name provides a brief description of the situation in which the
knowledge can be applied. Brief, descriptive names allow for notecards to be easily
identified when browsing a large collection. The body of the notecard contains the
details of the design knowledge that is being captured, like a concise description of
the commonly encountered situation and a suggestion for a possible solution.
Realizing that the approach suggested by the notecard is relevant to their application
since the primary window could potentially be cluttered with other information, they
incorporate it into their discussion.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

86

Fig. 1 DesignMinders running alongside Calico on a pair of electronic whiteboards showing (1)

a notecard, (2) the noteboard, and (3) the search list.

The developers then proceed to use Calico to draw sketches of what the user
interface will look like, numerous class diagrams describing the model that will be
used to represent the account information, and a list of tasks that will need to be done
to complete this part of the project. They decide on a user interface that provides
search functionality that populates a list of accounts. As they work through the design,
DesignMinders is running on a secondary display alongside Calico and is monitoring
their canvas actions for keywords that can be used to bring up notecards that are
relevant to the design problem. It notices that the word “search” was written and
automatically brings up any notecards that are tagged with the keyword. As the
notecards are displayed on the noteboard, the title “Large Search Results” catches the
attention of one of the developers. He selects the notecard to view more details and
sees a description of a problem commonly encountered when displaying search
results. The details of the notecard describes an approach to breaking the results into
smaller sets that can be retrieved one at a time, a technique which the creator of the
notecard had employed in a previous project. The reverse side of the notecard
contains a class diagram created in a previous design session that roughly describes
the implementation. Realizing that this problem most certainly does apply to their
application, the developer brings up the notecard and the team re-evaluates their
existing design to incorporate the pattern and address the issue.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

87

Fig. 2 Notecards showing name, details, tags, and reverse side with image captured from

whiteboard.

As the session progresses, the developers come up with numerous conceptual
sketches of the user interface, brief notes on how patient account information will be
retrieved, and some network diagrams describing the eventual deployment of the
application. Realizing that these sketches and notes could be useful for future design
sessions, they lasso several areas of the Calico canvas and select the “Create
Notecard” function, which result in several new notecards in the DesignMinders
interface. The developers decide that the user interface notecards should be colored
green, the patient account notes yellow, and the deployment diagrams red. The
notecards are automatically tagged with the day’s date and the internal name of the
project. With the cards now on the noteboard, they quickly go through each one and
give it a name and provide additional details or tags. The following week, the
developers return to the conference room to further work out details of the design.
They use the previously created notecards as a starting point to continue their
discussion.

Fig. 3 Noteboard with several notecards.

4. Discussion

DesignMinders faces the knowledge reuse challenges that exist during informal
software design by presenting developers with a lightweight means of capturing,

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

88

representing, and applying design knowledge. This is partially accomplished by
representing bits of knowledge using notecards that mimic physical index cards.
Physical cards lend themselves to easy browsing, manipulating, annotation, and ad
hoc organization through stacks. Our goal was to reproduce this interaction in an
electronic form to take advantage of the indexing and searching that can be
performed. The ease with which a notecard can be created “in the moment” and the
fact that none of the elements of a notecard (name, details, and tags) are required
significantly lowers the barrier to capturing important knowledge during design
sessions. The conciseness of the notecards also lends themselves to quick browsing to
determine relevancy to a particular design. Our goal of a lightweight knowledge
retrieval tool is also accomplished through the use of a search interface that allows for
quick browsing of collected notecards and a reduction of the search space through the
use of tags and colors to indicate significance or categories. The noteboard also
allows for the ad hoc creation of localized groups by stacking relevant cards, much
like one would create a stack of index cards.

5. Challenges

We see much promise in DesignMinders as a design knowledge reuse tool that can
aid in collaboration during software design sessions and answer the “what if?”
questions. Our lightweight and informal approach to knowledge reuse presents several
challenges for future work.

The first challenge is to continue to lower the barrier to quickly and easily
capturing knowledge by improving the integration between the ongoing design and
the knowledge representation. This includes the current ability to manually select
elements of the Calico canvas and create new notecards on the noteboard, as well as
to have notecards be created automatically based on groupings or certain criteria such
as the amount of time spent on a specific canvas. Also, we would like to increase the
amount of information that is automatically collected from Calico by taking
advantage of contextual elements, like UML diagrams and lists, to automatically
populate detail and tag fields on new notecards.

The second challenge is to allow developers to easily annotate the design with
reusable knowledge. Notecards are currently retrieved by browsing a list that allows
for filtering by any of the fields on the notecard as well as the color. Relevant cards
can be dragged onto the noteboard to create stacks of cards. We are exploring the
ability to drag-and-drop cards from the DesignMinders interface directly into the
Calico canvas, like attaching a sticky-note to a whiteboard. This would allow for the
notecards to essentially become part of the design, and even become rationale for
certain design decisions that are made.

The third challenge is to improve the relevance of the knowledge that is presented
to the developer during a design session. This includes adding the ability to recognize
words and phrases written on the canvas and present the designer with relevant cards
based on keywords. This further reduces the amount of work that the developer must
do to locate prior knowledge. There is also the potential to find relevant cards based
on similar diagrams. For example, if a UML diagram is drawn on the Calico canvas

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

89

while in UML mode, notecards with similar diagrams could be retrieved and
displayed alongside, or even directly incorporated into the canvas as reusable palette
elements.

6. Conclusion

A prototype version of DesignMinders is currently being developed. While the basic
functionality that we have described provides a novel approach for capturing and
presenting knowledge during informal software design sessions, DesignMinders can
be improved by addressing the challenges presented. We began by posing several
scenarios in which developers were hindered in their ability to capture and recall
previously gained insights during a software design session. We see DesignMinders
as a way to remove these barriers to knowledge reuse while addressing the needs of
the developers in capturing and presenting knowledge during this distinct activity.

Acknowledgments. Effort partially funded by the National Science Foundation under
grant number 0920777.

References

[1] G. Fischer, "Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing
and Evolving Knowledge in Domain-Oriented Design Environments," Automated
Software Engineering, vol. 5, pp. 447-464, 1998.

[2] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, "Let's go to the whiteboard: how
and why software developers use drawings," Proceedings of the SIGCHI conference
on Human factors in computing systems, 2007.

[3] A. Murray and T. C. Lethbridge, "On generating cognitive patterns of software
comprehension," Proceedings of the 2005 conference of the Centre for Advanced
Studies on Collaborative research, 2005.

[4] I. Frank M. Shipman and C. C. Marshall, "Formality Considered Harmful:
Experiences, Emerging Themes, and Directions on the Use of Formal
Representations in Interactive Systems," Computer Supported Cooperative Work,
vol. 8, pp. 333-352, 1999.

[5] R. Farenhorst, "Tailoring knowledge sharing to the architecting process," SIGSOFT
Software Engineering Notes, vol. 31, p. 3, 2006.

[6] A. Aurum and M. Handzic, Managing Software Engineering Knowledge. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2003.

[7] N. Mangano, A. Baker, and A. v. d. Hoek, "Calico: a prototype sketching tool for
modeling in early design," Proceedings of the 2008 international workshop on
Models in software engineering, 2008.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

90

On the Use of Emerging Design as a Basis for
Knowledge Collaboration

Tiago Proenca, Nilmax Teones Moura, and André van der Hoek

University of California, Irvine, Department of Informatics, Irvine CA 92697, USA
{tproenca, nmoura, andre}@ics.uci.edu

Abstract. Abstractions in software engineering have been used for guid-
ance and understanding of software systems. Design in particular is a key
abstraction in this regard. However, design is often a static representation
that does not evolve with the code and therefore cannot help developers
in collaborating after it becomes out-of-date. Our research group is ex-
ploring the use of Emerging Design, a dynamic abstraction, as the basis
for knowledge collaboration through its implementation in a coordina-
tion portal called Lighthouse. This paper presents the state of the art of
Lighthouse and discusses three knowledge collaboration problems that
we are currently addressing.

1 Introduction

Collaboration is related to mutual sharing of knowledge [1] and has become an
essential part of software development and indeed an important research field
in software engineering. Today, most knowledge sharing is either informal or
decoupled from the actual artifacts to which it pertains. For instance, in the
Knowledge Depot [2], an email-based group memory tool, knowledge is stored
in a separate repository that must be queried to find a particular piece of in-
formation. This not only creates a hurdle to accessing knowledge, but also leads
to the update problem, i.e., in the presence of changes, one has to update two
places: the artifacts themselves and the Knowledge Depot.

Our research group is exploring a different kind of solution, one where the
knowledge is essentially attached to an abstraction that we are creating as part
of a collaboration infrastructure. This abstraction is called Emerging Design [3]
and is defined as the design representation of source code as it changes over time.
With each code change, the Emerging Design is updated accordingly. Emerging
Design satisfies the traditional roles of abstraction (guidance and understanding)
and includes support for new roles such as coordination, project management,
and detection of design decay.

While the original focus of our use of Emerging Design was on detecting
conflicts in code changes, it seems a particularly promising abstraction to address
a broader class of collaboration issues. In this paper, we talk about three such
collaboration problems and how we believe Emerging Design serves as good basis
for exploring them.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

91

The remainder of this paper is organized as follows. In Section 2, we review
Emerging Design and its implementation in Lighthouse. Section 3 presents three
knowledge problems in collaboration and how we believe they can be addressed
by building upon Emerging Design. In Section 4, we summarize our idea and
discuss some challenges and future directions to improve our work.

2 Emerging Design

Since a design document illustrates the interactions among modules, it can help
developers to gain an understanding of the high-level structure of the system and
its interactions [3, 4]. However, design is often a static representation that does
not evolve (automatically) with the code. Therefore, as it becomes out-of-date,
it loses value for developers who need to collaborate.

Our research group is exploring the use of Emerging Design as the basis for
collaboration. Emerging design is defined as the design representation of source
code as it changes over time. It is a live document that stays up-to-date with all
changes made to the system. It is annotated with information about the changes
made, helping developers to be aware about how the code structure evolve, and
with whom they may need to coordinate their actions in order to reduce and
prevent conflicts.

We implemented this idea as an Eclipse plug-in called Lighthouse [5]. Cur-
rently, Lighthouse has only the Emerging Design view that shows a UML-like
class diagram which is built dynamically as developers implement or make
changes in the code. One particular characteristic of Lighthouse is that it does
not require check-in of the changes made. Instead, it tracks workspaces, since
the goal is help people collaborate and coordinate before sending the changes to
the source code repository, so merge conflicts are avoided.

Figure 1 shows the Emerging Design basic representation. It shows the pri-
mary elements found in UML class diagrams, such as classes, fields, and rela-
tionships, as annotated with additional information. In particular, Lighthouse
shows information about the evolution of the code. The plus symbol represents
an addition of a class/method/field, minus represents a removal and triangle
represents a change. For instance, in the ATM class, the field value was added by
Max. Another example is the field balance inquiry. We can see that Theo and
Bob changed that field, and finally Anna removed it. Notice that the evolution
or history of changes is presented in a top-down manner, time-ordered with the
most recent changes in the bottom.

The use of Lighthouse in a large software product naturally introduces scal-
ability issues with respect to the visualization. In order to address this problem,
we are developing a variety of filters. With these filters, the information shown
can be reduced by focusing on particular packages, developers, or some combi-
nation of them. Figure 2 shows an Emerging Design representation with several
classes, where each class has numerous events representing the activities of four
developers (Max, Bob, Ana, Jim), who are all coding a particular part of the
project. The following picture (Figure 3) illustrates how Lighthouse allows users

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

92

Fig. 1. Emerging Design Basic Representation. ATM class blows up to show detail.

to turn on the filter by developer. In this specific example, the user has chosen
to show Bob’s code changes. Other filters exist as well. As a result, crowded
visualizations that clearly indicate a problem can be examined for what that
problem exactly is.

To date, Lighthouse is a collaboration portal focused on detecting conflicts.
It uses the Emerging Design concept to show who is making the changes where,
and by looking at that, enable developers to find where their changes may be
conflicting with somebody else’s. In this paper, we take this work a step further.
We outline how we believe the concept of Emerging Design is not only useful
for detecting conflicts, but also as a basis for knowledge collaboration. In the
next section we talk about three particular knowledge collaboration problems
and how Emerging Design can be used as a basis for exploring them.

3 Three Knowledge Problems

Knowledge collaboration manifests itself in many different forms and may revolve
around many issues. In this section, we discuss the following three problems: (1)
How to support developers in determining where the implementation is deviating
from the original design; (2) How to support finding the right expert related to a
given design; and (3) How to support identification of those parts of the program
with less than ideal quality.

3.1 Design Decay

It is well known that software changes, and that such changes involve modi-
fications to the original design that may lead to design decay [6]. Prior to the

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

93

Fig. 2. Emerging Design Basic Representation with four developers (Max, Bob, Ana,
Jim).

Fig. 3. Emerging Design Basic Representation with filtering. Just modifications in
Bob’s workspace are shown.

implementation phase, some conceptual design diagrams are usually constructed
to guide developers and help them understand the project’s high-level picture.
The reasons why a particular design decays generally are not available, and
therefore could be said to represent a knowledge collaboration problem. In fu-
ture, other developers must understand why a certain piece of code is like it is,
and much rationale resides behind the code changes from the original design to
the current state.

We can address this issue by marking the Emerging Design, so it shows de-
viation, and providing facilities for developers to provide contextual information
pertaining to the changes they make. Imagine a developer restructuring a cer-
tain piece of code in a certain way that is counter-intuitive. By leaving a note,
directly visible on the diagram (Figure 4) they now can motivate their change.
Other developers can respond either in the affirmative or by expressing concerns

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

94

Fig. 4. Design Decay Representation.

and such. A discussion can ensue, for which it is crucial to note that the discus-
sion takes place directly in the context of the artifacts and as the changes are
happening. Design decay can be avoided this way, and design evolution becomes
under joint ownership of the developers.

In Figure 4, the green overlays are used for elements that are present in both
conceptual and emerging design, i.e., the ones that were implemented according
to the original design. Red overlays are used on items that are in the emerging
but not in the conceptual design, meaning that the implementation diverges from
the original design. Elements left in white are the ones that are in the conceptual
but not in the emerging design. These elements have not been implemented yet.

The Emerging Design provides a natural basis for addressing design decay
because it already tracks design evolution. By now using this basis with sim-
ple but powerful extensions, the Emerging Design provides instant knowledge
collaboration, both implicitly because it makes visible the design as it evolves
and explicitly because its evolution can be gauged, questioned, discussed, and
resolved as needed.

We also note that this can take place both among individual developers at the
level of individual or small sets of changes, and by team leaders and architects
based upon views of the code as a whole.

3.2 Expertise

The time taken to find an expert is one of the major reasons that co-located
work tends to take less time than similar development work split across sites [9].
Quickly finding the right expert related to a given design and/or implementation
issue is critical to the success of any software development project. There is a
clear knowledge collaboration problem when one needs to understand how some
class/method works, why it is as it is, and how it may need to evolve. Often, an
expert can provide useful assistance in this regard.

We again explore how the basis of Emerging Design can be leveraged to ad-
dress this problem. Particularly, we envision exploring the use of a visualization

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

95

Fig. 5. Expertise Representation.

to allow users to browse through the Lighthouse diagram in order to find the
proper expert. Since Lighthouse already provides the basis for who made which
changes, now we can actually build various overlays that make it possible, for
instance, to click on one of the authors on a particular method and have the
other pieces that they changed highlighted.

In another form, we note that it is often difficult to find someone with broader
knowledge pertaining to multiple artifacts and methods. We plan to develop a
feature that allows the user to select a group of methods and classes in order to
find the expert related to those couple of artifacts, as shown in Figure 5.

The advantage here is that, while most expertise systems are limited to work
at the level of artifacts, our approach can provide more fine-grained as well as a
broader range of answers.

3.3 Code Quality

Software quality metrics can drive software process improvements [7]. Explicit
attention to characteristics of software quality can lead to significant savings
in software life-cycle costs [8]. Some information that could be useful in this
regard is the overall quality of each class, which if available would enable the
identification of the most problematic or complex parts of a project. This kind
of information is not usually accessible, representing the third knowledge collab-
oration problem that we address in this paper.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

96

Fig. 6. Code Quality Representation

The use of Emerging Design in this situation would help developers and
managers to quickly spot code that is growing without proper quality. Then we
envision a software quality visualization that will show individual factors, such
as number of developers, number of recent bugs, how well the class/method was
tested, and number of changes/code volatility at the bottom of each class. We
also take these individual factors in consideration to provide an overall quality
measure, and we represent this high level awareness information by using color
border scale, in which green means good quality and red means bad quality
(Figure 6).

We increased the capability of Emerging Design to deal with software quality
considerations. This approach is good for understanding which classes/methods
are producing higher quality code and also a project’s progress in the quality
perspective over time. In this way, managers would be able to identify areas
that need attention, and for example tell what parts of the project are in need
of more tests and what parts have enough coverage already.

4 Related Work

Several tools have been created to help people collaborate and to enhance in-
dividuals’ awareness. The War Room Command Console [9] shows in a public
display the current state of a system across workspaces in real-time. The visual-
ization shows the ongoing changes made by developers in thumbprints, a graph-
ical representation of the source code, displayed in a topographic layout. This

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

97

work, like Lighthouse, uses a program-centered approach to show how changes
made by developers are related with the artifacts and how the system is evolving.
Its display, however, is in a central location and not on a per-developer basis.
Furthermore, the information that it shown is compacted, and does not allow
easy access to details.

Palant́ır [10] provides real-time awareness of changes made by developers
and estimates the impact of how severe these changes are. Palant́ır, like Light-
house, does not require developers to check-in the changes made and presents
a view with information of all developers’ workspaces. However, Palant́ır differs
from Lighthouse since it uses a low-level abstraction that focuses on files, while
Lighthouse uses the concept of Emerging Design.

FastDash [11] and CollabVS [12] both use a collaboration-centered approach
to display the artifacts’ interaction among developers. Unlike Lighthouse, this
approach uses real-time awareness of developers’ activities instead of focusing
on program artifacts. The visualization shows people and the activities they
currently undertake, e.g., who has which file open or who is editing which file.
This approach has the drawback of not providing a spatial awareness of artifacts
and it does not provide an historical view of changes made.

5 Summary

In this paper we recapped Emerging Design and presented our vision of the
potential role it can play in knowledge collaboration. We described Lighthouse
briefly and addresses three knowledge collaboration problems: design decay by
providing developers with the rationale resides behind the code changes from
the original design to the current state; expertise by finding the proper expertise
for a particular group of methods and/or classes; and code quality by providing
developers the identification of parts of the program with less than ideal quality.

The benefit we can see is that the knowledge is directly anchored to the
artifacts to which it pertains and is thereby easily accessible and intuitive since
it fits with the task that a developer is currently working on. Presently, we are
engaged in providing this support and we will perform various explorations and
evaluations as we build our extensions to Lighthouse. A particular question is
whether Emerging Design is useful to support other knowledge collaboration
problems. Another question is how it can support multiple problems in parallel,
as some of our solutions use similar techniques and thus cannot be used at the
same time.

6 Acknowledgments

Effort partially funded by the National Science Foundation under grant number
0920777.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

98

References

1. Rus, I., Lindvall, M.: Knowledge management in software engineering. IEEE
Software 19(3) (2002) 26–38

2. Kantor, M., Zimmermann, B., Redmiles, D.: From group memory to project aware-
ness through use of the knowledge depot. In: CSS ’97: California Software Sym-
posium. (1997)

3. Van der Westhuizen, C., Chen, P.H., van der Hoek, A.: Emerging design: New
roles and uses for abstraction. In: ROA ’06: Proceedings of the 2006 International
Workshop on Role of Abstraction in Software Engineering, New York, NY, USA,
ACM (2006) 23–28

4. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE Transaction on Software Engineering 12(2) (1986) 251–257

5. da Silva, I.A., Chen, P.H., Van der Westhuizen, C., Ripley, R.M., van der Hoek, A.:
Lighthouse: Coordination through emerging design. In: Eclipse ’06: Proceedings
of the 2006 OOPSLA Workshop on Eclipse Technology Exchange, New York, NY,
USA, ACM (2006) 11–15

6. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J., Mockus, A.: Does code decay?
assessing the evidence from change management data. IEEE Transactions on Soft-
ware Engineering 27(1) (2001) 1–12

7. Livingston, J., Prosise, K., Altizer, R.: Process improvement matrix: A tool for
measuring progress toward better quality. In: Proceedings of 5th International
Conference on Software Quality. (1995)

8. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality.
In: ICSE ’76: Proceedings of the 2nd International Conference on Software Engi-
neering, Los Alamitos, CA, USA, IEEE Computer Society Press (1976) 592–605

9. O’Reilly, C., Bustard, D., Morrow, P.: The war room command console: shared vi-
sualizations for inclusive team coordination. In: SoftVis ’05: Proceedings of the
2005 ACM symposium on Software visualization, New York, NY, USA, ACM
(2005) 57–65

10. Sarma, A., Noroozi, Z., van der Hoek, A.: Palant́ır: raising awareness among
configuration management workspaces. In: ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, Washington, DC, USA, IEEE
Computer Society (2003) 444–454

11. Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G.: Fastdash: a visual dash-
board for fostering awareness in software teams. In: CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing systems, New York, NY, USA,
ACM (2007) 1313–1322

12. Hegde, R., Dewan, P.: Connecting programming environments to support ad-
hoc collaboration. In: Automated Software Engineering, 2008. ASE 2008. 23rd
IEEE/ACM International Conference on. (2008) 178–187

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

99

A Proposal of TIE Model for Communication in
Software Development process

Masakazu Kanbe1,2

, Shuichiro Yamamoto1 and Toshizumi Ohta2

1 Research Institute for System Science, NTT DATA CORPORATION,
3-3-9 Toyosu Koutoku Tokyo, Japan

2 Graduate Department of Social Intelligence and Informatics,
Graduate School of Information Systems, The University of Electro-Communications,

1-5-1 Choufugaoka, Choufushi, Tokyo Japan

kanbems@nttdata.co.jp, yamamotosui@nttdata.co.jp, ohta@is.uec.ac.jp

Abstract. Communication is more important in software development fields.
We proposed the intermediary knowledge model to analyze the enterprise
communication by extending traditional knowledge creation model. In this
article, we propose TIE models based on intermediary knowledge. TIE model is
the knowledge network model to explain the just in time documentation in the
CMC tools like wiki. We analyzed the case of wiki based software development
and showed the effectiveness and efficiency of the CMC tools in software
development in certain conditions.

Keywords: Knowledge communication, Software development, Knowledge
network

1 Introduction

Software developments become more complex and lots of people, which has various
backgrounds participant in its processes. Various communications occurred in the
field of the software development. The communication style of software
developments contains regular meetings, ad hoc conversations in the local office, and
acceptances of document by e-mail. Furthermore, CMC (Computer Mediated
Communication) tools such as wiki, SNS, blogs and communication plug-ins of
Integrated Development Environment support the developers’ communication. In this
article, we propose TIE model as knowledge network model for software
development communication. TIE model is three layered network model. The three
layers are tacit knowledge network, intermediary knowledge network and explicit
knowledge network. We analyzed the case of wiki used software development
process by TIE model. We also investigate the effectiveness and efficiency of wiki
used software development process.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

100

2 Related Works

In this chapter, we introduce the previous related works to explain our model.

2.1 Intermediary knowledge model

We proposed the intermediary knowledge model as knowledge sharing model in
enterprises [1] [2]. Intermediary knowledge is the knowledge statement in which
employees share the knowledge by the CMC tools. Intermediary knowledge model is
one of the extended models of tacit and explicit knowledge concept [3].

The traditional knowledge creation model has tacit and explicit knowledge and
four knowledge transformation modes; socialization, externalization, combination and
internalization [4]. Intermediary knowledge model is proposed to solve problems and
perform business tasks without the knowledge spirals of the organizational process.
Employees can share the knowledge in intermediary knowledge statement by using
CMC tools. In intermediary knowledge model, employees can exchange the
knowledge that cannot be shared in tacit knowledge with less cost compared to
explicit knowledge.

Fig. 1 shows the intermediary knowledge model. The dashed lined square in Fig. 1
indicates the traditional knowledge creation model. We add the intermediary
knowledge to the traditional model. This model indicates that the employees can
rapidly develop the knowledge in the CMC tools by using the intermediary
knowledge transformation modes. The modes consist of publication, fragmentation,
collaboration, resonant formation, and sophistication. Publication means to publish
individual experience or ideas. Fragmentation means to import the parts of explicit
knowledge. Collaboration means to react with employees’ problems or opinions.
Resonant formation means to accept and understand the others’ opinions.
Sophistication means to develop explicit knowledge from intermediary knowledge.

According to the traditional knowledge spiral condition, if employees intend to use
the knowledge formally and inter-organizationally, each organization have to generate
the explicit knowledge through the inner organizational knowledge spirals. Formally
making explicit knowledge needs high cost and much labor through the inner
organizational knowledge spirals. Intermediary knowledge transformation modes
explain lower cost and labor in the knowledge exchange than the traditional
knowledge transformation modes.

Also intermediary knowledge model explains the effectiveness of communication
records. CMC tools create the more interaction points for employees than they do not
use CMC tools. The employees have new communication in CMC tools. The
communication in CMC tools are recorded as intermediary knowledge and employees
reused the knowledge efficiently.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

101

Socialization

Combination

Externalization
Internalization

Publication

Collaboration

Resonant formation

Fragmentation

Sophistication

Explicit
Knowledge

Tacit
Knowledge

Intermediary
knowledge

Knowledge shared
in CMC tools

Traditional knowledge creation model

Fig. 1 Intermediary knowledge model

2.2 IBIS model

IBIS [5] and gIBIS [6] [7] are the traditional software engineering method. One of the
purposes of these IBIS methods is to fully record and structuralize the discussion
processes and progresses in software developments. Recording and structuring all the
discussion processes and progresses, software developers could find the important
information in developments. Although the records and structures of IBIS or gIBIS
may be useful, the costs or labors are too large to make and reuse the full documented
records.

2.3 Recent software engineering researches

Software engineering researches supports the software developers’ communication.
Software developments need the knowledge communication among software
developers. Ko et al. [8] analyzed the software developers’ activities and found that
the developers used coworker as information source. This research indicates that the
communication among the developers is very important in recent software
developments.

Ye et al. [9] [10] helped the software developers to search the knowledge from the
software libraries and members of software development team. They proposed the
personalized search engine for API documents and communication channels for
experts in software development team. Their researches implicate the way to make
developers communicate each other for efficient software development.

Marczak et al. [11] indicated the importance of information brokers in requirement
change management. As their research, the information brokers have important roles
in the social network of software development team. The information brokers

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

102

facilitate information flow to avoid misinterpretations of requirements. These
researches indicate the importance of the developers’ communication in software
development.

3 TIE model

3.1 Overview of TIE model

We propose TIE model as CMC model for dynamic communication in software
development process. TIE model has three layers consisted of Tacit Knowledge
Network (TKN), Intermediary Knowledge Network (IKN) and Explicit Knowledge
Network (EKN). Table 1 shows features of these three layers. Table 1 indicates the
definitions of TIE model.

Table 1. Features of layers of TIE model

Knowledge
Network

Network
node Media Documentation Examples of products

Tacit
Knowledge

Network
Human

Face to Face,
Telephone,

Video
conference

No
documentation Discussions, Meetings

Intermediary
Knowledge

Network

CMC
content CMC tools Just in time

documentation CMC logs

Explicit
Knowledge

Network
Document

Document
management

services

Full
documentation

Requirements,
Specifications, Source

codes, Manuals

TKN has roles to exchange the tacit knowledge. The network node of TKN is

human. TKN is related to organization structures, roles of members, processes of
decision making and so on. TKN is occurred in face to face meeting, telephone or
video conference communication. It seems that TKN brings down no documentation
for the software development. We assume TKN does not create any formal documents.
The products of TKN are discussions and meetings. TKN does not always create the
tangible products to be observed.

IKN has roles to exchange the intermediary knowledge. The network node of IKN
is CMC content. IKN is related to CMC network in the software development team.
These CMC contents grow up in CMC tools such as Wiki, Blog, and SNS. IKN
provides just in time documentation with the developers. If one needs to coordinate
with others, one can use CMC tools to coordinate with others. And the coordination

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

103

records are published for all the members of software developmental teams. These
published coordination records are useful documents for software development. We
call this process “Just in time documentation.” Just in time documentation means that
the necessary knowledge becomes documents when the developers communicate each
other in CMC tools. The products of IKN are CMC logs.

EKN has roles to exchange the explicit knowledge. EKN is related to document
network in the software development process. The network node of EKN is document.
This document network grows up in document management services, which of
functions are the document traceability, the historical management, the full text search
and the file sharing. EKN provides full documentation with developers. The products
of EKN are documents, such as requirements, specifications, source codes, manuals
and guidelines.

The network edges of TKN mean human oral communication. The edges of IKN
mean the concatenations of CMC contexts. The edges of EKN mean the
interrelationship among documents. The edges between TKN and IKN mean the
processes of intermediary knowledge provisions and acquisitions via CMC tools. The
edges between IKN and EKN mean the processes of quotations and documentations
of explicit knowledge via CMC tools.

3.2 TIE model for software development communication

TKN do not create any formal document. We call this TKN statement “no
documentation.” EKN aims to create the documents elaborately. We call this EKN
statement “full documentation.” Traditional software developments use the TKN and
EKN as the knowledge process.

However, the knowledge processes in the traditional software developments has
two problems. First problem is the loss of the important information of software
developments. The knowledge processes in TKN are communication in discussions
and meetings. Communication records of TKN are almost disappeared when the
meetings or discussions ended. Communication contents of TKN are not always
described in documents and merely shared with all the members.

Second problem is the difficulty to record the all the important information of
software developments. If all the events in software developments were documented
fully at right time, each member could understand requirements, specification, and
source codes perfectly. However, it is difficult to achieve full documentation because
its cost is very high and its range is very ambiguous.

Fig.2 shows TIE model we proposed. TIE model adds IKN to the traditional
knowledge process in software developments. CMC tools support IKN. Balloons
express the representative knowledge process of TIE model. The square balloon
means the knowledge processes of traditional software development style. Round
balloon means the knowledge processes of particular TIE model.

The knowledge processes in IKN are open and agile communication on CMC tools.
The open CMC tools facilitate the communication of software development teams.
IKN records the CMC logs. These CMC logs are not formal document, but very
useful knowledge for software development. The development team members can
read the knowledge processes each other in CMC tools. The knowledge processes in

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

104

TIE model have correspondence relation with the knowledge transfer modes in the
intermediary knowledge model in Fig. 1. Tacit knowledge, intermediary knowledge
and explicit knowledge are corresponded with TKN, IKN and EKN respectively.

Tacit Knowledge
Network

Explicit Knowledge
Network

■Internalization
・Documents and
source codes review

■Externalization
・Making documents and
source codes based on
discussions or coordination

■Socialization
・Discussions
・Meetings

■Combination
・Management of
documents

Intermediary Knowledge
Network

■Publication
•Publication of personal
experiences of software
development

■Collaboration
•Open and agile
communication on
CMC tools

■Sophistication
•Revising documents
based on open and
agile communication

■Resonant formation
•Agreeing with others
opinions

■Fragmentation
•Picking up task lists
from documents

Fig.2 TIE model and knowledge processes

4 Case Study of TIE Model for Software Development

To confirm the effectiveness and efficiency of TIE model, we analyzed the case of the
wiki based software development. Wiki was used to facilitate the communication in
software development case.

4.1 Aim of the case study

The case study aims to verify assumptions below;
• A1: CMC tools can record the important knowledge for the software development.
• A2: CMC tools can facilitate to share knowledge which did not efficiently share in

traditional software development style.
• A3: CMC tool can provide the appropriate communication occasions.
These assumptions are set to confirm the effectiveness and efficiency of CMC tools in
software development. We define that to verify these assumptions are to verify the
effectiveness and efficiency of TIE model in software development communication
because CMC tools support IKN.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

105

4.2 Overview of case

We selected the wiki based software development case. The number of software
developers in this case was nine. Nine members belonged to two other companies.
They cooperated to develop the software system development with unfamiliar devices.
This software development had the processes; document production, program coding,
and program test. These two companies office were in different location with no time
zone difference. Although the members had the face to face meetings at once a week
regularly, some communication mistakes occurred and caused negative effects for the
software development. To deal with the communication mistakes, this software
development team determined to use wiki to compliment with team communication.
Appendix shows the outlines of the wiki communication. This wiki had 13 pages.
There were 21 items in 13 wiki pages.

We observed the knowledge processes of TIE model, 18 publications, 5
fragmentations and 2 collaborations in wiki. An example of the publication was W3
in Appendix. The case of W3 was that a member imagined the tasks to be done for
this process and published them. An example of fragmentation was W12 in Appendix.
The case of W12 was that a member extracted documents lists from the development
conference regulations in this organization. An example of collaboration was W8 in
Appendix. The case of W8 was that members communicated about the test policy in
wiki. We did not observe the knowledge process of resonant formation and
sophistication. These two knowledge processes might occur outside wiki in this case.

4.3 Verifying the assumptions

To verify the assumptions, we picked up the evidences from the CMC in the wiki.

• Verifying A1: CMC tools can record the important information for the software

development.

This assumption is related to “recording.” The wiki recorded the important
information for the software development. Nine members used the wiki and recorded
the 21 important knowledge items for the software development. For example, there
were design documents lists in W1 and W2 of Appendix. These lists were fragmented
intermediary knowledge from the explicit knowledge such as document inventories. A
member considered that it is necessary for the software development team to share the
documents lists. This member extracted the document names from the document
inventories.

This member did not use e-mail to share the document lists, but used wiki. Other
members added the progress information with the document items in wiki. To add the
progress information is publication of intermediary knowledge. All the member
shared the dairy progress information of each document by wiki. The knowledge in
the wiki is open to all the members and shared one target. If they shared this progress
information by e-mail, they would not continue to refine the progress information
because e-mail has the feature of cross in the post.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

106

• Verifying A2: CMC tools can facilitate to share information which did not
efficiently share in traditional software development style.

This assumption is related to “effective knowledge sharing.” The wiki facilitated to
share knowledge which did not efficiently share in traditional software development
style. “Development know-how” in W15 of Appendix is one of the evidences for A2.

This development know-how was published by a member who had a similar
development experiences. This member wrote politely the knowledge to treat with
specific devices of such as tips of particular sensors or actuators control. This
knowledge was based on the member’s own experiences and not formalized yet. In
traditional software development, such know-how may be orally transferred among
developers who joined the oral communication in TKN. In this case, the knowledge
sharing in the wiki might avoid the rediscovery of this the knowledge to treat specific
devices.

• Verifying A3: CMC tool can provide the appropriate communication occasions.

This assumption is related to “efficient interaction.” The wiki provide the appropriate
communication occasions for software development. “Policy for test items (W7)” and
“Comment for policy (W8)” of Appendix are the evidences for A3. In W7, a member
published the policy for the test item for all the members in the wiki. In W8, Another
member in other location replied for the policy by the wiki.

In traditional software development, this communication between members might
suspend until regular weekly meeting. In this case, using the wiki provided the
appropriate communication occasions and eliminated the delay factor in software
development.

5 Discussions

We analyzed the case in former section. In this section, we discuss on the
effectiveness and efficiency of wiki in the view points of “recording”, “effective
knowledge sharing” and “efficient interaction.” We also discuss on the limitation of
our analyses based on TIE model for software development communication.

5.1 Recording

We discuss the conditions that software developers record the important knowledge in
CMC tools. We assume two reasons why they wrote the important knowledge in the
wiki.

First reason is that the contents to be shared should be open. The wiki provided the
developers with the open communication environment consistently. If they did not
use the wiki, they might communicate by face to face meeting, telephone or e-mail.
Wiki is more open than these communication methods. The open feature of wiki
facilitates developers to write their knowledge. The open feature made casual

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

107

communication and the developers published the progress information each other. In
face to face meeting, powerful members may interfere in the remarks of other low
powered members. Wiki may facilitate the remarks of low powered members.

Second reason is that the content in wiki is a single object. In the case, they added
the progress information to the document list. If they did not use the wiki, they might
share the progress information of each document with e-mail. By e-mail, it is difficult
to catch up with the progress information of all the members, because e-mail
communication has the feature of cross in the post and makes multi objects to
coordinate. The feature of cross in the post of e-mail caused distributes their
knowledge. It is not efficient that someone should gather the distributed knowledge
by e-mail. The members also need to read all the e-mail to comprehend the all the
members’ progresses. Because the shared contents feature is open and single object to
edit, software developers record the important knowledge in CMC tools.

5.2 Effective knowledge sharing

We discuss the conditions that software developers can share the knowledge
effectively. We assume that CMC usage is suitable for sharing developers’ personal
experiences. Particularly, developers’ personal experiences are very useful knowledge
for the software development with unfamiliar devices. If there is a member who
treated with unfamiliar devices, the software development will advance smoothly with
the developer’s knowledge of unfamiliar devices. As theses kinds of knowledge are
not always systematized, the developers can share the knowledge with tacit
knowledge network communication. CMC tools facilitate these kinds of knowledge to
be share among the members. If this member wrote the knowledge in the wiki in 30
minutes and other eight members read the knowledge 5 minutes, the amount of the
time is 70 minuets. On the other hands, if all the nine members acquired the
knowledge by try and error in 120 minuets and the amount of the time is 1080
minutes. Although this is an extreme example, knowledge sharing in the CMC tools
may be very effective. We assume that sharing unfamiliar knowledge is effective
usage of CMC tools.

5.3 Efficient interaction

We now discuss the conditions that software developers can interact efficiently. We
presume that two imaginary conditions of the software development communication;
wiki style and traditional style. We suppose that wiki style has the regular weekly face
to face meetings and wiki based communication. Traditional style is assumed to have
only the regular weekly face to face meetings.

The relations between the amount of knowledge and time of each style can be
described in Fig. 3 based on the above two conditions. Fig. 3 expresses the only the
amount of knowledge increased by developers’ communication, does not express the
amount of the software development works. Straight line in Fig. 3 shows the increase
of knowledge in wiki style. The dashed line also shows the increase of knowledge in
traditional style.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

108

The amount of increase of knowledge in wiki style is Y(a,b).

Y(a,b) = a*wi + b*m (1)

In formula (1), a is the number of communication of wiki, wi is the amount of
knowledge increase per one wiki communication, b is the number of the face to face
meetings and m is the amount of knowledge increase per one meeting.

The amount of increase of knowledge in traditional style is Y(c).

Y(c) = c*m (2)

In formula (2), c is the number of the face to face meetings and m is the amount of
knowledge increase per one meeting. To explain simply, wi and m are fixed in this
formula. However, wi and m are variable by the features of communication of wiki
and meetings in the real case.

We plot these two formulas in Fig.3 Both wiki and traditional styles have the first
meeting in zero point in Fig.3. Both styles gain the same amount of knowledge by
first meeting. In wiki style, developers may increase their knowledge to communicate
each other three times via wiki. In traditional style, developers may not try to increase
the knowledge to communicate each other. Although both styles increase the amount
of knowledge by meeting, traditional style may gain the only half amount of the
knowledge which wiki style may gain. As a result, wiki style will end the knowledge
sharing at point EWi, and its period L may be 3 weeks. Traditional style will end the
knowledge sharing at point EM, and its period L+D may be 6 weeks.

A
m

ount of know
ledge

W0=M0

EWi EM

m

1 week 2 week 3 week 4 week 5 week 6 week 7 week

m

m

Level K

m

wi
wi

wi

0

Regular weekly meeting only

Regular weekly meeting
and wiki

L D
Y

Fig. 3 The relation between time and amount of works

Fig. 3 is the suggestion that effective increases of communication occasions by the
wiki cause the knowledge increase. In this suggestion, three interactions to gain the
knowledge in wiki match one meeting communication to gain the knowledge. In
traditional style, until the development team ends the knowledge sharing, they need
seven meetings. In wiki style, they end the knowledge sharing with four meetings and

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

109

nine interactions in wiki. We suppose the wiki style may be more efficient knowledge
communication environment than traditional style.

However, we also found a condition to establish our estimation in Fig.3. The
condition is that the knowledge gained by wiki communication should be the same
type of knowledge gained by face to face meetings. We supposed that in the real
software development field, there are two types of knowledge. One is the knowledge
which can be gained by CMC tools such as wiki. Another is the knowledge which can
be gained only by face to face meetings. We should distinguish the knowledge to
investigate the knowledge communication conditions under which CMC tools such as
wiki work adequately.

5.4 Limitations

As analyzing the case, we discuss that CMC tools record the important knowledge
and make software development process more effective and efficient under the certain
conditions. We assure that CMC tools have the ability to facilitate the software
development when the development team uses these tools well. In this article, we
picked up the few positive effects of CMC tools. We should declare the conditions
under which the CMC tools facilitate the software development more circumstantially.
Also, we should analyze the negative factors of CMC tools such as false information
in the wiki, information overload for developers. And we should investigate the
relations among human, CMC content and document, which are the nodes of TIE
model.

6 Summary

It is important to facilitate the knowledge communication among software developer.
We proposed the intermediary knowledge model and TIE model for software
development. Traditional software development researches focused on mainly human
properties as experts and the quality of documentation. TIE model is software
development communication model to explain the just in time documentation. We
analyzed the case of the wiki based software development to show the effectiveness
and efficiency of the wiki for software development. By analyzing the case, we
discussed the conditions to facilitate the software development process by CMC tools.
For further study, we should analyze more cases of CMC based software development
by using our TIE model. We should also investigate the relation between the
communication works and the other important works such as making document or
coding.

 References
1. Yamamoto, S and Kanbe, M. : Knowledge Creation by Enterprise SNS. The International

Journal of Knowledge, Culture and Change Management. Vol.8 No.1 255--264 (2008)
2. Kanbe, M. and Yamamoto, S. : An Analysis of Computer Mediated Communication Patterns.

The International Journal of Knowledge, Culture and Change Management. Vol.9 No.3 35--
47 (2009)

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

110

3. Polanyi, M. : The Tacit Dimension, Routledge & Kegan Paul Ltd., (1966)
4. Nonaka, I. and Takeuchi, H. : The knowledge creating company How Japanese Companies

Create the Dynamics of Innovation, Oxford Univ., (1995)
5. Rittel, H. and Kunz, W. : Issues as elements of information systems., Working paper# 1 31.

Institute fur Grundlagen der Planung I.A.University of Stuttgart.
6. Conklin, J. and Begeman, M.L. : gIBIS: A Hypertext Tool for Exploratory Policy

Discussion., ACM Transactions on Office Information Systems, 4, 6, pp. 303--331 (1988)
7. Conklin J., Selvin A., Shum S., B. and Sierhuis M. : Facilitated Hypertext for Collective

Sensemaking: 15 Years on from gIBIS., Hypertext’01 Conference. (2001)
8. Ko, A.J. , DeLine, R. and Venoloa, G. : Information Needs in Collocated Software

development teams., 29th International Conference on Software Engineering (ICSE'07)
(2007).

9. Ye, Y., Yamamoto, Y. and Nakakoji, K. : Expanding the Knowing Capability of Software
Developers through Knowledge Collaboration., International Journal of Technology, Policy
and Management Vol. 8, No. 1, pp. 41--58 (2008)

10. Ye, Y., Yamamoto, Y., Nakakoji, K., Nishinaka, Y. and Asada, M. : Searching the Library
and Asking the Peers: Learning to Use Java APIs on Demand., in V. Amaral, L. Veigaet al
(eds.): Proceedings of 2007 International Conference on Principles and Practices of
Programming in Java, ACM Press: Lisbon, Portugal, pp. 41--50 (2007).

11. Marczak, S., Damian, D., Stege, U. and Schroter, A. : Information Brokers in Requirement-
Dependency Social Networks., 16th

Appendix: Contents and intermediary knowledge transformation
mode in the wiki in software development process

 IEEE International Requirement Engineering
Conference, pp. 53--62 (2008)

Fragmentation・Document list for Development meeting #1 ・Development conference #1
document list

W12Development
conference #1

W21

W20

W19

W18

W17

W16

W15

W14

W13

W11

W10

W9

W8

W7

W6

W5

W4

W3

W2

W1

ID

Collaboration・Comment for policy of W7・Comment for Policy

Fragmentation,
Publication

•Documents list and working memos・Documents list

Fragmentation,
Publication

Publication,
Fragmentation,
Collaboration

Publication

Publication

Publication

Publication

Publication

Fragmentation

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Fragmentation,
Publication

Fragmentation,
Publication

Knowledge
transformation mode

・phases of demonstration and the To Do lists・Proposal of the demonstration

・Description of use cases for office and factory・Scenario

・List of the materials; software and hardware ・List of the test materials

・ Estimation with number of test items and scales・Estimation method of test density

・Descriptions of policy for test items and conditions・Policy for test items

・Estimation with number of test items and scales・Estimation method of test density

・Tasks in this process・Tasks

・Chapter and correction comments for documents

・Purpose of demonstration

・Communication method for project management

・Know-how from the similar system experienced worker

・Graph specification of system

・Document list for Development meeting #2

・Message to make the run time test guideline

・Descriptions of policy for test items and conditions

･Discussion memo for the decision items

・Member added the progress for each items.

・Member added the progress for each items.

contents

Name of
Documents

Demonstration

Memo for Project
management

Know-how

Graph

Development
conference #2

Run time test

System integration
test

Make and Unit test

Detail design

Basic design

Names of pages

・Chapters

・Purpose

・Items to be improved for project
management

・Development Know-how

・the graph description specification

・Development conference #2
document list

・Call for comments

・Policy for test items

・FYI

・Detail design documents List

・Basic design documents List

Items

Fragmentation・Document list for Development meeting #1 ・Development conference #1
document list

W12Development
conference #1

W21

W20

W19

W18

W17

W16

W15

W14

W13

W11

W10

W9

W8

W7

W6

W5

W4

W3

W2

W1

ID

Collaboration・Comment for policy of W7・Comment for Policy

Fragmentation,
Publication

•Documents list and working memos・Documents list

Fragmentation,
Publication

Publication,
Fragmentation,
Collaboration

Publication

Publication

Publication

Publication

Publication

Fragmentation

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Publication

Fragmentation,
Publication

Fragmentation,
Publication

Knowledge
transformation mode

・phases of demonstration and the To Do lists・Proposal of the demonstration

・Description of use cases for office and factory・Scenario

・List of the materials; software and hardware ・List of the test materials

・ Estimation with number of test items and scales・Estimation method of test density

・Descriptions of policy for test items and conditions・Policy for test items

・Estimation with number of test items and scales・Estimation method of test density

・Tasks in this process・Tasks

・Chapter and correction comments for documents

・Purpose of demonstration

・Communication method for project management

・Know-how from the similar system experienced worker

・Graph specification of system

・Document list for Development meeting #2

・Message to make the run time test guideline

・Descriptions of policy for test items and conditions

･Discussion memo for the decision items

・Member added the progress for each items.

・Member added the progress for each items.

contents

Name of
Documents

Demonstration

Memo for Project
management

Know-how

Graph

Development
conference #2

Run time test

System integration
test

Make and Unit test

Detail design

Basic design

Names of pages

・Chapters

・Purpose

・Items to be improved for project
management

・Development Know-how

・the graph description specification

・Development conference #2
document list

・Call for comments

・Policy for test items

・FYI

・Detail design documents List

・Basic design documents List

Items

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

111

Comparison of Coordination Communication and
Expertise Communication in Software Development:

Their Motives, Characteristics and Needs

Kumiyo Nakakoji1,2, Yunwen Ye3, Yasuhiro Yamamoto1

1 RCAST, University of Tokyo, Japan
2 SRA Key Technology Laboratory Inc., Japan

3 Software Research Associates Inc., Japan

kumiyo@kid.rcast.u-tokyo.ac.jp, ye@sra.co.jp, yxy@kid.rcast.u-tokyo.ac.jp

Abstract. Nurturing communication in software development is not about
increasing the amount of communication but about increasing the quality of
communication experience in the context of software development. Existing
studies have shown that different motives and needs are embedded when
developers communicate with one another. Identifying coordination
communication and expertise communication as two distinct types of
communication, we characterize the difference between the two and discuss
important factors to take into account in designing mechanisms to support each
type of communication.

Keywords: nurturing communication in software development, knowledge
collaboration, continuous coordination, unified interface for communication,
coordination communication, expertise communication, design considerations

1 Introduction

Communication has been taken as an important element in software development.
More and more studies argue that socio-technical aspects of software development
need to be seriously taken into account in supporting software development. The
underlying premise is that peer developers are important knowledge resources in the
same way as other artifacts, such as source code, comments, design documents,
release notes and bug reports, and that obtaining knowledge and information from
their peers is quintessential in software development. Communication should not be
regarded as something to get rid of, but instead as something to be nurtured [Nakakoji
et al. 2010].

The media currently used in such communication demonstrate a variety of means,
including face-to-face, telephone, personal email, mailing-list, Wiki, Internet Relay
Chat (IRC), video conferencing, or digital and physical artifacts (e.g., comments
inserted in source code or post-it notes pasted on a printed document). Awareness

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

112

mechanisms may also be regarded as a form of communication media in the sense
that one can obtain information about what other members of the projects are doing.
As the communication media vary, styles of communications in software
development ranges from indirect to direct, from asynchronous to synchronous, and
from intentional to unintentional. It might be one to one, one to designated some, or
one to unknown numbers of many.

Such peer-to-peer communication in general aims at sharing information and
knowledge about a developer's task at hand. By looking into motives of
communicative activities of software developers, we have identified two distinctive
types of needs in such communications: coordination communication and expertise
communication [Nakakoji et al. 2010].

In coordination communication, a developer tries to coordinate his or her task with
the dependent peers in order to avoid and/or to solve emerging or potential conflicts.
In expertise communication, a developer seeks for information to solve his or her task
at hand and asks his or her peers for help. Note that by expertise communication, we
do not mean that a certain group of developers have general expertise therefore they
are to transfer their knowledge to novice developers through communication. In
contrast, our view is that expertise is always defined in terms of some context, for
instance, in terms of a particular method, of a particular class, of a particular release,
or of a particular bug report at a particular point in time; and that expertise is not
something definable without context. With this view, each developer has his or her
own expertise in some aspects of the system and the project. Expertise
communication, therefore, may take place among all members of the peer developers
in every direction [Ye et al. 2008].

Developers currently do not distinguish the two types of communication, which are
driven by their “information needs” and are carried out through common
communication channels. Coworkers were the most frequent source of information by
software developers and that two most frequently sought information by software
developers that depended on their coworkers were “what have my coworkers been
doing?” and “in what situations does this failure occur?” [Ko et al. 2007]. The former
information is sought primarily for the purpose of coordinating the work and the latter
is for the purpose of getting some knowledge about the source code. Data on three
well-known open source projects have shown that text-based communication (mailing
lists and chat systems) are the developers’ primary source of acquiring both general
knowledge about other developers (to know who has necessary expertise) and specific
awareness of who is working on their relevant parts of the system (to coordinate their
tasks) [Gutwin et al. 2004].

Developers often mix the two types of communication within a single discourse
session without paying an attention to distinguish the two. For instance, a developer
John first asks his colleague Mary over the cubicle wall if she knows why the class C
calls a method X instead of Y, then Mary answers that it is because Y is planned to be
thrown away, and that by the way Mary has just been working on X and checked-in
the changes therefore he had better check the latest version of X if he is working on C.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

113

Thus, while the initial question posed by John is expertise communication (i.e., he
wanted to ask Mary to give him the answer as to why C calls X instead of Y), the
subsequent conversation provided by Mary turns out to be coordination
communication (i.e., C that John is working on depends on X that Mary is working
on).

Why does it matter then to distinguish the two types of communication if developers
do not distinguish the two? It matters because when it comes to design computational
mechanisms for supporting communication in software development, each type of
communication demands different types of concerns.

This position paper first describes what fundamental differences exist between the
two types of communication in software development. We then explain how different
aspects need to be considered in designing computational support mechanisms. We
conclude with a list of research issues in developing such support.

2 Expertise communication and Coordination Communication

A few distinctive features are involved in each of expertise communication and
coordination communication.

Let us first illustrate coordination communication. Suppose a developer X initiates
communication with another developer Y, which turns out to be coordination
communication. The purpose of the coordination communication is to coordinate
tasks to resolve emerging conflicts or to avoid possible future conflicts among the
tasks X and Y are engaged in. X and Y are called “socially dependent developers” [de
Souza et al. 2007] in the sense that they have to coordinate their tasks through social
interactions when the perceived conflicts become necessary to be resolved. X and Y
together form an “impact network” [de Souza et al. 2008]. Coordination
communication is a part of impact management, which is “the work performed by
software developers to minimize the impact of one’s effort on others and at the same
time, the impact of others into one’s own effort” [de Souza et al. 2008]. X may need
to further involve those developers who are part of the impact network.

In contrast, suppose a developer A initiates communication with another developer B,
which turns out to be expertise communication. The purpose of the expertise
communication is for A to get some information about A’s task at hand. A is asking B
to help A by providing some information for A’s particular task. As noted above, we
use expertise communication to refer to the kind of activities by seeking information
that is essential to accomplish A’s software development activities, not for the
purpose of learning, but for the purpose of performing A’s job. If A does not get
satisfying information from B, A might need to ask other peers for the same question.

Thus, while the relation between X and Y in the coordination communication is
reciprocal, that of A and B in the expertise communication is not. In coordinating

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

114

communication, there is a symmetric or reciprocal relation between those who initiate
communication and those who are asked to communicate with roughly equal interests
and benefits. In expertise communication, in contrast, there is an asymmetric and
unidirectional relation between the one who asks a question and the one who is asked
to help. The benefit would primarily for the communication initiator and the cost (i.e.,
additional efforts) is primarily paid by those who are asked to participate in the
communication; that is, the cost of paying attention to the information request, of
stopping his or her own ongoing development task, of composing an answer for the
information-seeking developer while collecting relevant information when necessary,
and of going back to the original task [Ye et al. 2007].

The role and value of resulting communicative actions would also differ between the
two types of communication. When developers communicate with one another, their
conversations as well as produced artifacts (mail message contents or white board
drawings, for instance) can be stored (if appropriate media is used).

Such recorded communication can be useful if generated through expertise
communication. Email exchange about a particular design of a class, for example,
would serve as a valuable auxiliary document for the class, and another developer
might find it useful to read when using the class at a later time.

Archived communication generated through coordination communication might be
useful to inform other developers within the same impact network for the time being.
However, the impact network constantly changes over time and such information
communicated over a particular class would soon become obsolete. Moreover,
coordination communication without its temporal context could be quite harmful
when misused. A collection of the coordination communication about a particular
object over a long period of time may serve as the object's development log but it
would not be more than the existing developmental records captured within current
development environments.

Table 1 summarizes the differences of coordination communication and expertise
communication.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

115

The next section compares the different aspects of concerns in designing mechanisms
for supporting each type of the communication.

3. Different Needs for Supporting the Two Types of
Communications

“A thing is available at the bidding of the user--or could be--whereas a person
formally becomes a skill resource only when he consents to do so, and he can
also restrict time, place, and method as he chooses” [Illich 1971].

In talking about depending on teachers as knowledge resources, Illich argued that
their willingness to participate is essential in regarding people as information
resources. Using peers as potentially relevant information resources is likely to
increase cognitive load for both of those who initiate communication, and those who
are asked to participate in the communication. Unlike the Help Desk where the jobs of
those who are asked is to answer [Ackerman et al. 1990], peer developers are not
there to communicate but to perform their own development tasks in a time-critical
fashion. They might be willing to communication if they had more time and less
stressful situations; they might not otherwise unless they see immediate needs for
themselves to communicate.

Therefore, asymmetric nature of the beneficiary and benefactors in expertise
communication demands a critical attention in designing communication support

Table 1: Comparing Coordination Communication and
Expertise Communication

 Coordination

Communication
Expertise
Communication

purpose to coordinate work to get information
needs conflict avoidance, conflict

resolution
problem solving

cost & benefit reciprocal between a
communication initiator and
the other communication
participants

asymmetric between a
communication initiator
and the other
communication
participants

expanding
participants

when others are part of the
impact network

when the initiator could
not get satisfying
information

recorded
communication

useful for the time-being
until the impact network
changes

become valuable
document for later use

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

116

mechanisms. For an information-seeking developer, involving more participants in
the communication means having more potential information resources, implying a
better chance of obtaining necessary information at the cost of information overload;
thus high quality ranking and triaging mechanisms would become essential. For those
who are asked to participate in the communication and provide information, however,
responding to the request becomes yet another task [Ye et al. 2007].

On one hand, when the relation between the communication initiator and the rest of
the communication participants is symmetrical and reciprocal, those who are asked to
participate in the communication would feel the equal importance of engaging in the
communication. On the other hand, when the relation is asymmetrical where the
initiator would be a beneficiary and the other participants would be benefactors,
mechanisms to persuade people to participate in the communication are necessary.

Although there had been no explicit distinctions of the two types of communications
in software development, existing research currently demonstrates different emphases
on supporting each aspect of the communication with regard to key concepts, tools,
and the primary functionality. Both approaches stress the importance of taking socio-
technical aspects into account, but in different contexts.

Table 2 illustrates the two distinctive approaches.

Table 2: Different Present Research Emphases on the Two Types of
Communication

 Coordination Communication Expertise Communication
key concepts continuous coordination [Redmiles

et al. 07]
impact management [de Souza et
al. 08]

developer as knowledge resources
[Nakakoji 06]
communication channel [Ye et al.
07]

primary
functionality

awareness
visualization

finding expertise
choosing experts
socially-aware communication
channel

tools Palantir [Sarma et al. 03]
Ariadne [de Souza et al. 07]

Expert Finder [Vivacqua et al.
2000]
Expertise Browser [Mockus et al.
2002]
STeP_IN_Java [Ye et al. 2007]

socio-
technical
aspects

social interaction needs are inferred
from the technical (structural)
dependencies of the tasks
[Herbsleb et al. 1999]

communication participants are
selected based on their technical
experiences on sought information
and previous social relations with
an information seeker [Ye et al.
2007]

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

117

Supporting coordination communication has been primarily studied in such research
areas as coordinating programmers and programming tasks. Supporting expertise
communication has been primarily studied in such research areas as knowledge
sharing and experts finding.

Although they do not explicitly use the term coordination communication, Redmiles
et al. [2007] present the continuous coordination paradigm for supporting
coordination activities in software development. The paradigm contains with the
following four principles: first, to have multiple perspectives on activities and
information; second, to have non-obtrusive integration through synchronous messages
or through the representation of links between different sites and artifacts; third, to
combine socio-technical factors by considering relations between artifacts and
authorship so that distributed developers can infer important context information; and
fourth, to integrate formal configuration management and informal change
notification via the use of visualizations embedded in integrated software
development environments [Redmiles et al. 2007].

This paradigm stresses the importance of integrating the coordination activities within
the programming environment, and of making developers aware of the need of
communication and simultaneously minimizing the distraction of software developers
by using formal configuration management mechanisms and informal visual
notification and awareness techniques. They focus on socio-technical factors in the
sense that peer-to-peer coordination communication needs are inferred by analyzing
structural (technical) dependencies of the system components they are working on
because they have to coordinate their tasks through social interactions when the
perceived conflicts become necessary to be resolved [Wagstrom et al. 2006; de Souza
et al. 2008].

Nakakoji et al. [2010] present nine design guidelines for expert communication
support mechanisms. The guidelines state that expert communication support
mechanisms should: be integrated with other development activities; be personalized
and contextualized for the information-seeking developer; be minimized when other
types of information artifacts are available; take into account the balance between the
cost and benefit of an information seeking developer and the group productivity;
consider social and organizational relationships when selecting developers for
communication; minimize the interruption when approaching those who are selected
to be communicated with; provide ways to make it easier for developers to ask for
help; provide ways to make it easier for developers to answer or not to answer for the
information requested; and be socially aware.

The guidelines stress the importance of finding communication participants who not
only have necessary information, but are also willing to provide the sought
information in an appropriate way in a timely manner. The guidelines also pay an
attention to the cost of those who are asked to engage in expertise communication,
and argue for the use of socially-aware communication channels. They focus on
socio-technical aspect in a sense that finding potential communication participants

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

118

takes into account not only technical skills of developers but also their social
relationship with the information-seeking developer.

Such differences of the two types of communication necessitate fundamental
differences in designing communication support mechanisms in:
• how to select who to participate in communication,
• in what timing to start communication,
• how to invite people to participate in the communication,
• through which communication channel, and
• how to use the resulting communicative session (i.e., communication archives).

Table 3 lists factors that are common and distinctive to the two types of
communications in software development.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

119

Figure 1 illustrates how communication support mechanisms should be built in
support of software developers. On one hand, there should be a unified interactive
framework with communication for a software developer that is integrated within a

Table 3: Comparison of Design Factors

 Coordination Communication Expertise Communication
in relation to the
development
environment

integrate with the development environment

disturbance minimize
communication
needs are identified
when:

conflicts are detected or
possible conflicts are detected

a developer is in need of
information about the task at
hand

trade-off of not
communicating

potential risks of conflicts that
might arise by not coordinating

potential risks of problems
when appropriate information is
not provided to the information-
seeking developer

alternative means
to minimize
communication

to visualize the status of the
potential conflicts so that a
developer may not need to
engage in explicit
communication by glancing at
the visualized information

to guide the information
seeking developer to relevant
artifacts such as source code
and documents so that a
developer may not need to
engage in explicit
communication

the use of the object
a developer works
on

by looking at what objects a
developer presently works on in
order to infer the impact
network

by looking at what objects a
developer previously worked
on in order to infer the technical
expertise of the developer

the use of who is
initiating the
communication

by using the communication
initiator’s impact network in
selecting communication
participants

by using the communication
initiator’s social relations in
selecting communication
participants

helping one in
initiating
communication

mechanisms to switch to an
explicit communication mode
with the peers in the impact
network when urgent
communication needs are
detected

mechanisms to ask without
worrying about bothering peers

helping those who
are asked to
participate in the
communication

mechanisms to judge how
urgent and important the
conflict is

mechanisms to minimize
feeling guilty not responding to
the request

communication
channel needs to
be:

impact-aware so that developers
can easily judge and
communicate how much impact
the emerging conflict might
have and how to avoid and
solve the conflict.

socially-aware so that
developers use the right channel
instead of the channel that is
easier to use (whom to ask,
through which media)

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

120

development environment. They should not be needed to explicitly choose which
communication type they would like to be engaging in. Communication with peer
developers should be supported as another type of information usage during software
development, and needs to be integrated with a program- and document-authoring and
browsing environment. On the other hand, how the communication is designed and
structured needs to be tuned to each of the two types of communication. What is
needed is to take the above differences seriously into account and design the
communication support mechanisms accordingly.

Figure 1: An Architecture of Communication Support Mechanisms
that Takes Into Account Two Types of Communication

4. Concluding Remarks

Nurturing communication in software development is not about increasing the amount
of communication but about increasing the quality of communication experience in
the context of software development. Although having been recognized merely as
communicative acts, different motives and needs are embedded when developers
communicate with one another. Different computational mechanisms are necessary to
realize successful communication. This paper presents our initial attempt to list
different aspects necessary to take into account in designing mechanisms to support
each of the coordination communication and expertise communication. There are no
general communication needs but either coordination communication needs or
expertise communication needs. A real challenge would be to design a developer-
centered unified interactive framework that seamlessly integrates the two.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

121

References

[Ackerman et al. 1990] Ackerman, M. S., T. W. Malone, Answer Garden: A Tool for Growing
Organizational Memory. Proceedings of the ACM Conference on Office In-formation
Systems. Cambridge MA: 31-39, 1990.

[de Souza et al. 2007] de Souza CRB, Quirk S, Trainer E, Redmiles D: Supporting
collaborative software development through the visualization of socio-technical
dependencies. In: Proc. of GROUP'07, pp 147–156, 2007.

[de Souza et al. 2008] de Souza CRB, Redmiles D: An empirical study of software developers
management of dependencies and changes. In: Proc. of ICSE'08, pp 241–250, 2008.

[Gutwin et al. 2004] Gutwin C, Penner R, Schneider, K., Group awareness in distributed
software development, Proceedings of the 2004 ACM conference on Com-puter supported
cooperative work, 72-81, 2004.

[Herbsleb et al. 1999] Herbsleb, J., Grinter, R. E. Splitting the Organization and Integrating the
Code: Conway's Law Revisited. Proceedings of International Conference on Software
Engineering (ICSE99): 85-95, 1999.

[Illich 1971] Illich, I., Deschooling Society. New York, Harper and Row, 1971.
[Ko et al. 2007] Ko AJ, DeLine R, Venolia G: Information needs in collocated software

development teams. In: Proc. Of ICSE’08, pp 344–353, 2007.
[Mockus et al. 2002] Mockus A, Herbsleb J: Expertise Browser: A quantitative approach to

identifying expertise. In: Proc. of ICSE'02, pp 503–512, 2002.
[Nakakoji 2006] Nakakoji K: Supporting software development as collective creative

knowledge work. In: Proc. of KCSD2006, Tokyo, pp 1–8, 2006.
[Nakakoji et al. 2010] Nakakoji, K., Ye, Y., and Yamamoto, Y.: Supporting expertise

communication in developer-centered collaborative software development environments. In:
Finkelstein, A., van der Hoek, A., Mistrik, I., Whitehead, J. (eds) Collaborative Software
Engineering, Springer-Verlag, 2010 (forthcoming).

[Redmiles et al. 2007] Redmiles D, van der Hoek A, Al-Ani B, Hildenbrand T, Quirk S, Sarma
A, Filho RSS, de Souza C, Trainer E: Continuous coordination: a new paradigm to support
globally distributed software development projects. Wirtschaftsinformatik J, 49: S28–S38,
2007.

[Sarma et al. 2003] Sarma, A, Noroozi Z, van der Hoek, A,: Palantir: raising awareness among
configuration management workspaces. In: Proc. of ICSE'03, pp 444–454, 2003

[Vivacqua et al. 2000] Vivacqua A, Lieberman H: Agents to assist in finding help. In: Proc. of
CHI'00, pp 65–72, 2000

[Wagstrom, et al. 2006] Wagstrom, P. and J. Herbsleb, Dependency Forecasting, CACM
49(10): 55-56, 2006.

[Ye et al. 2007] Ye Y, Yamamoto Y, Nakakoji K: A socio-technical framework for supporting
programmers. In: Proc. of ESEC/FSE'07, pp 351–360, 2007.

[Ye et al. 2008] Y. Ye, Y. Yamamoto, K. Nakakoji, Expanding the Knowing Capability of
Software Developers through Knowledge Collaboration, IJTPM (International Journal of
Technology, Policy and Management), Special Issue on Human Aspects of Information
Technology Development, Inderscience Publishers, Vol.8, No.1, pp.41-58, 2008.

The 3rd International Workshop on Knowledge Collaboration in Software Development (KCSD2009), Tokyo, Japan, Nov. 2009.

122

	front_cover
	toc.pdf
	proceedings_of_kcsd2009
	KCSD2009
	proceedings_of_kcsd2009.pdf
	keynote_1
	F5_rev
	P11
	F1_rev
	F03
	F10
	F02_rev
	keynote_2
	P7_rev
	F6_rev
	F09_rev
	F4_rev
	F08
	F12

