
Empirical Evaluation of Cost Overrun Prediction with Imbalanced Dataset

Masateru Tsunoda, Akito Monden, Jun-ichiro Shibata and Ken-ichi Matsumoto

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

{masate-t, akito-m, junichiro-s, matumoto}@is.naist.jp

Abstract—To prevent cost overrun of software projects, it is

necessary for project managers to identify projects which have

high risk of cost overrun in the early phase. So far,

discriminant methods such as linear discriminant analysis and

logistic regression have been used to predict cost overrun

projects. However, accuracy of discriminant methods often

becomes low when a dataset used for predict is imbalanced, i.e.

there exists a large difference between the number of cost

overrun projects and non cost overrun projects. In this paper,

we compared accuracy of linear discriminant analysis, logistic

regression, classification tree, Mahalanobis-Taguchi method,

and collaborative filtering, by changing the percentage of cost

overrun projects in the dataset. The result showed that

collaborative filtering was highest accuracy among five

methods. When the number of cost overrun projects and non

cost overrun was balanced in the dataset, linear discriminant

analysis was second highest accuracy, and when it was not

balanced, Mahalanobis-Taguchi method was second highest

among five methods.

Keywords-biased data; failure prone project; Collaborative

Filtering; Mahalanobis-Taguchi method; risk management

I. INTRODUCTION

Recently, software is widely used as a part of
infrastructure of the our daily life such as banking system
and air traffic control system, while software size and cost
(i.e. development effort) became extremely larger than ever.
As a result, one single overrun project can cause serious
damage to the profit of a software development company.
Therefore, prevention of cost overrun became extremely
important today.

One effective way to prevent cost overrun is to identify
the project which has high risk of cost overrun (project
failure) in the early phase of the project [10][15] so that
countermeasures can be performed. To predict the project
result (project failure), discriminant methods such as linear
discriminant analysis or logistic regression has been used
[10][15][16]. On a discriminant method, the project result is
set as dependent variable, and its value (i.e. cost overrun or
not) is predicted from independent variables which are
known at prediction point of time. Usually, project
manager’s answers for questionnaires related to risk factors
(for example, the question is “Insufficient explanation of the
requirements” [15]) are used as independent variables for
project result prediction model [10][15][16]. The model is

built from past projects’ data, and current project’s data is
input as independent variables to predict the project result.

However, accuracy of discriminant methods often
becomes low when imbalanced dataset is used for prediction
[5]. The imbalanced dataset means that there exists a large
difference between the number of cost overrun projects and
non cost overrun projects. For example, in the company
whose organizational maturity level is high (e.g. CMMI
(Capability Maturity Model Integration) level is over 2),
there would be less cost overrun projects, and that makes the
percentage of cost overrun projects low.

In this paper, we focus on Mahalanobis-Taguchi method
and collaborative filtering to apply cost overrun prediction.
Mahalanobis-Taguchi method is used as one of the
techniques for quality control of the manufacturing industry.
It builds a model using only normal cases (i.e. non cost
overrun projects), and predicts the project result based on the
distance from the normal case group. Therefore, it is
expected that the model is not affected by imbalance of the
dataset. On the other hand, collaborative filtering is
originally used for the item (books or music) recommender
system. Collaborative filtering is based on k-nearest neighbor
algorithm, as the analogy based estimation method [13].
Roughly speaking, collaborative filtering finds projects
similar to the target project, and makes prediction based on
values of dependent variable of similar projects. We applied
it to cost overrun prediction since the dataset used for
prediction is similar to the dataset treated by collaborative
filtering.

We analyzed accuracy of discriminant methods when the
percentage of cost overrun projects and that of non cost
overrun are imbalanced. In the experiment, we changed the
percentage of cost overrun projects by deleting cost overrun
projects in the dataset whose data was collected in a software
development company, and predicted the project result with
linear discriminant analysis, logistic regression, classification
tree, Mahalanobis-Taguchi method, and collaborative
filtering. The result of the experiment makes practitioners
choose discriminant methods more appropriately.

In what follows, Section II explains discriminant
methods used in the experiment. Section III describes
procedure of the experiment, the evaluation criterion of the
method, and the dataset used in the experiment. Section IV
shows results of the experiment and discusses it. Section V
introduces related works. In the end, Section VI concludes
the paper with a summary.

II. DISCRIMINANT METHODS

The discriminant method builds a prediction model using
a dataset which includes finished projects whose dependent
variable is already known (i.e. cost overrun or not). The
result of an unfinished project is predicted by the model.

We evaluated accuracy of five types of discriminant
methods for predicting the project result. Linear discriminant
analysis, logistic regression and classification tree are widely
used as discriminant methods in the software engineering
field [6][9][15]. In addition, we applied collaborative
filtering and Mahalanobis-Taguchi method to predicting the
project result, for they are expected to fit to the dataset.

A. Linear discriminant analysis

Linear discriminant analysis makes a line which divides a
dataset into two groups based on a dependent variable. The
model of the line is:

bxaxay nn 11

In the model, y is a discriminant score, xn are independent
variables, an are regression coefficients, and b is an intercept.
The dependent variable is predicted by whether the
discriminant score is plus or minus.

B. Logistic regression

Logistic regression predicts a dependent variable based
on a logistic function. The model of logistic regression is:

)(111

1
bxaxa xne

y

In the model, y indicates probability of the dependent
variable, xn are independent variables, an are regression
coefficients, and b is an intercept. The dependent value is
predicted as probability. For example, when the value y is
0.7, probability of that predicted project will belong to one
group is 70%.

C. Classification tree

Classification tree predicts a dependent variable by a tree
structure model which has leafs and nodes. Each leaf
indicates the predicted value of the dependent variable, and
each node has a condition related to one of independent
variables. Based on independent variables, a path on the
model is chosen, and it predicts the dependent variable.

 There are some algorithms to build classification tree.
For example, CART (classification and regression trees)
algorithm uses Gini index as a model building criterion, and
ID3 (Iterative Dichotomiser 3) and C4.5 algorithms use
information gain. In this paper, we used CART implemented
on R [12].

D. Mahalanobis-Taguchi method

Mahalanobis-Taguchi method [14] was proposed by
Taguchi, and it is used as one of the techniques for quality
control of the manufacturing industry. Mahalanobis-Taguchi

method assumes that although normal cases (projects) are
similar to other normal cases, abnormal cases are not similar
to each other because they became abnormal cases for
different reasons. That is, Mahalanobis-Taguchi method
assumes that when cost overrun is not occurred, the reason is
similar to other non cost overrun projects, but when cost
overrun is occurred, the reason of cost overrun is different
from other cost overrun projects. This assumption was
inspired by the sentence in Anna Karenina, a novel written
by Tolstoy. It said “Happy families are all alike; every
unhappy family is unhappy in its own way.” Based on the
assumption, Mahalanobis-Taguchi method builds a model
using only normal cases (i.e. non cost overrun projects).
Mahalanobis-Taguchi method is used in few software
engineering researches [1].

Mahalanobis-Taguchi method predicts a case (project) as
abnormal one (cost overrun project) when the case is distant
from a normal case group (non cost overrun project group).
The distance is calculated by:

j

jaj

i

iai

ij

ija
s

mm

s

mm
r

k
D

12

In the equation, Da indicates Mahalanobis distance of
predicted project, k is the number of independent variables in
the dataset, rij is the inverse correlation matrix, mai is the
value of i-th independent variable of the predicted project, si
is the standard deviation of i-th independent variable, and

im

is the average of i-th independent variable. Values of rij,
si ,and

im are calculated based on normal cases in the dataset.

If Da is greater than a certain threshold, the project is
predicted as a cost overrun project. Fig. 1 illustrates an
example of the model of Mahalanobis-Taguchi method. In
the figure, the border line indicates the threshold of
Mahalanobis distance. If predicted project is out of the
border line area, the project is predicted as cost overrun
project.

E. Colaborative filtering

Originally, collaborative filtering is used for the
recommender system which estimates users’ preferences to

0

1

2

3

4

0 1 2 3 4

In
d
e
p
e
n
d
e
n
t

v
a
ri
a
b
le

 2

Independent variable 1

Non cost overrun project

Cost overrun project

Figure 1. An example of the model of Mahalanobis-Taguchi method.

recommend items such as books or music. Collaborative
filtering presumes “Users who have similar preferences like
similar items.” Few software engineering researches used
collaborative filtering for prediction [8].

Collaborative filtering uses m×n matrix shown in Table 1.
In the matrix, Proji is i-th project, Qj is j-th independent
variable, vij is a value of Qj of Proji, and yi is the value of the
dependent variable. We presume Proja is predicted project,
and

aŷ is the predicted value of ya. Procedures of

collaborative filtering consist of the three steps described
below.

Step 1 (normalization): Since a dependent variable and
independent variables have different ranges of value, this
step makes the ranges [0, 1]. The value v´ij, normalized the
value of vij is calculated by:

 jj

jij

ij
QQ

Qv
v

minmax

min

In the equation, max(Qj) and min(Qj) denote the
maximum and minimum value of Qj respectively.

Step 2 (similarity computation): This step computes
similarity Sim(Proja, Proji) between the predicted project pa
and other projects pi by:

m

h

hih

m

h

hah

m

h

hihhah

ia

QvQv

QvQv

ProjProj

1

2

1

2

1,Sim

In the equation,
hQ is average of Qh based on v´ij. With

the equation, the value v´ij which is higher than average
shows positive values, and lower than average shows
negative values to sharpen differences between projects. The
range of the value of Sim(Proja, Proji) is [-1, 1].

Step 3 (computation of predicted value): The predicted
value is computed by weighted average of the independent
variable of similar projects. Formally, the predicted value is
computed by:

sSumprojecth

ha

sSumprojecth

hhhaa

a
ProjProj

vyProjProjv

y
),Sim(

))(,Sim(

ˆ

In the equation, Simprojects denotes the set of k projects
(neighborhoods) which have top similarity with Proja. The
neighborhood size k affects prediction accuracy. The value

ayˆ is the normalized value of
aŷ . The value

hv is the

average of v´ih included in Projh. On the recommender
system, collaborative filtering uses users’ ratings for items.
However, some people tend to rate every item as high, and
on the other hand, some do as low. Hence, this equation uses
difference from average of each people’s rating. We applied
this algorithm to predict the project result, because our
dataset seems to have similar characteristic.

III. EXPERIMENT

A. Overview

In the experiment, to clarify proper discriminant methods
for predicting the project result, we evaluated accuracy of
discriminant methods when the percentage of cost overrun
projects and that of non cost overrun were imbalanced.
Using 28 projects data collected in a software development
company, we changed the percentage of cost overrun
projects by deleting projects in the dataset from 50.0% (14
cost overrun projects) to 6.7% (1 cost overrun project), and
applied discriminant methods. The Methods used in the
experiment were linear discriminant analysis, logistic
regression, classification tree, Mahalanobis-Taguchi method,
and collaborative filtering.

B. Dataset

We used the questionnaire about the software project as
the dataset for prediction. Project data in the dataset were
collected in the 2000s. The questionnaire is originally used
for project management. Although details of the
questionnaire does not described due to confidential, it is
similar to the questionnaire shown in a software project
management guidebook [4], which consists of questions
related to 9 knowledge areas of PMBOK (Project
Management Body of Knowledge) [11]. Similar
questionnaires are also used in other project result prediction
researches [10][15][16]. For example, one of the questions is
“If new or unexperienced technologies are used in the project,
is the project plan sufficient to cope with them? [4]” (Note
that it is not entirely equal to the question in our dataset).
Questions are rated as “high risk”, “middle risk”, “low risk”,
or “unrelated” based on probability of project failure. If new
technology is used but the project plan is insufficient, the
question is rated as “high risk”. If new technology is not used,
it is rated as “unrelated”.

We used these questions as independent variables of
prediction models. Only questions whose answers were clear
at early phase of the project were used as independent
variables. Ratings “high risk”, “middle risk”, “low risk”, or
“unrelated” were converted to numerical values (4, 3, 2, and
1) before applying discriminant methods.

Cost overrun was set as the dependent variable. We
defined cost overrun as overrun of actual cost from estimated
cost. Projects whose cost overrun were greater than certain
threshold were defined as cost overrun projects, and values
of their dependent variable were set as 1. Other projects were

TABLE I. MATRIX USED BY COLLABORATIVE FILTERING

 Result Q1 Q2 … Qj … Qn

Proj1 y1 v11 v12 … v1j … v1n

Proj2 y2 v21 v22 … v2j … v2n

… … … … … …

Proji yi vi1 vi2 … vij … vin

… … … … … …

Projm ym vm1 vm2 … vmj … vmn

defined as non cost overrun projects, and values of their
dependent variable were set as 0. Note that the threshold is
not disclosed in this paper because of confidential. Although
there are more than 100 projects in the dataset, cost overrun
projects are fairly fewer than non cost overrun projects.
Therefore, we randomly extracted projects from the dataset
to adjust the balance of cost overrun and non cost overrun
projects.

The dataset contains 120 questions. When the number of
independent variables is much greater than the number of
cases (projects), it is difficult to build a prediction model
appropriately (curse of dimensionality). So when correlation
coefficient between the project result and the question was
greater than or equal to 0.2, we used the question as the
independent variable. Moreover, we eliminated questions
which have missing values, to avoid influence of them. As a
result, 7 questions were selected for independent variables.

C. Evaluation criterion

We used area under the curve (AUC) [2] as the
evaluation criterion of discriminant methods. AUC is
recently used to evaluate discriminant methods in software
engineering researches, for it is more appropriate criterion
for discriminant methods than other criteria like F1 score [7].
The value range of AUC is [0, 1], and higher AUC means
that prediction accuracy of the method is high. AUC is
defined as the area under the receiver operating characteristic
(ROC) curve. ROC curve is drawn by changing threshold
and calculating true positive rate and false positive rate.
These rates are calculated by:

FNTP

TP

RatePositeveTrue

TNFP

FP

RatePositiveFalse

Definitions of TP (true positive), FN (false negative), FP
(false positive), and TN (true negative) are shown in Table 2.
Although high true positive rate and false positive rate means
high accuracy, there is tradeoff between them, and they
depend on a threshold. For example, if prediction is done by
logistic regression and the threshold is set as 0, true positive
rate is very high but false positive rate is very low. AUC can
evaluate performance of discriminant methods independently
from the threshold.

D. Exprrimantal Procedure

We changed the percentage of cost overrun and non cost
overrun projects, and predicted the project result according
to the following procedure. To avoid biased results, the
procedure was repeated 10 times.

1. 14 cost overrun projects and 14 non cost overrun
projects were randomly selected from the dataset to
make a learning dataset (i.e. the learning dataset
contains 28 projects).

2. A test dataset was made in the same way (the test
dataset did not include as same projects as the
learning dataset).

3. Prediction models of five discriminant methods were
built using the learning dataset.

4. Each model was applied to the test dataset to predict
the project result, and the evaluation criterion (AUC)
was computed.

5. One cost overrun project was randomly deleted from
the learning dataset.

6. Step 3 to 5 were repeated until the number of cost
overrun projects in the learning dataset was equal to
1.

The percentage of cost overrun projects was fixed as
50.0% in the test dataset. When a model of Mahalanobis-
Taguchi method was built, step 5 and 6 were not performed
because Mahalanobis-Taguchi method does not use cost
overrun project to build the model, and hence accuracy of
the model is not affected by the percentage. The
neighborhood size of collaborative filtering was set as 5.
When using linear discriminant analysis and logistic
regression, both variable selection model and non variable
selection model were built, because these discriminant
methods have commonly-used variable section method.

IV. RESULTS AND DISCUSSION

Results of the experiment are shown in Fig. 2. In the
figure, the virtual axis indicates AUC and the horizontal axis
indicates the number of cost overrun projects. AUC is
average of 10 results of the experiment. Regardless of the
number of cost overrun projects, collaborative filtering
showed highest accuracy among five discriminant methods.

Table 3 shows one of 10 prediction results by
collaborative filtering when number of cost overrun projects
in the learning dataset was 1 (AUC was 0.77). As shown in
the table, collaborative filtering chose similar projects
appropriately. Although projects P27 and P28 did not have
similar projects whose actual values were 1, predicted values
were 1. This is because when average of independent
variables is high, predicted value of the dependent variable is
also high by (6). Note that even if average of independent
variables is high, predicted value of the dependent variable
can be low as shown in Table 4. Equation (6) reflects the
assumption that in particular projects, dependent variable can
be low in spite of high average of independent variables.
Actually, average values of independent variables of P08,
P10, and P11 were same as P28, but predicted values were
different from P28.

The reason of high accuracy of collaborative filtering
would be that both our dataset and a dataset used by a
recommender system based on collaborative filtering have

TABLE II. DEFINITIONS OF TP, FN, FP, AND TN

Actual value

True False

Predicted
value

True TP FP

False FN TN

similar characteristics (they are rating data). Moreover,
accuracy of the method kept high when the percentage of
cost overrun projects got low. Collaborative filtering does
not build a model before prediction but uses prepared
equation (lazy learning). As a result, when collaborative
filtering fits well to a dataset, accuracy is not considered to
be affected very much by imbalance of the dataset. Therefore,
collaborative filtering is most suitable for predicting the
project result, no matter what the percentage of cost overrun
projects is.

When the percentage of cost overrun projects and non
cost overrun projects was balanced, accuracy of
Mahalanobis-Taguchi method was lower. One of the reasons
may be that Mahalanobis-Taguchi method does not use cost
overrun projects to build a prediction model, and
consequently, available information amount is less than other
discriminant methods. However, when the percentage of cost
overrun projects was lower than 30.0% (6 cost overrun
projects), accuracy of Mahalanobis-Taguchi method was
second among five discriminant methods. This would be
because other discriminant methods were overly affected by
non cost overrun projects, and as a result, accuracy of
Mahalanobis-Taguchi method was comparatively higher.
Although Mahalanobis-Taguchi method is not fit well for
predicting the project result, it can be a candidate of
prediction methods when the dataset is imbalanced.

Accuracy of classification tree was the lowest in the
discriminant methods except the percentage of cost overrun
projects was 30.0% (6 cost overrun projects). Thus,
classification tree is not suitable for project result prediction.
Also, classification tree failed to build a model when the
percentage of cost overrun projects was low. When the

percentage of cost overrun projects was lower than 39.1% (9
cost overrun projects), classification tree failed to build a
model in some cases of 10 repeated experiments, and when
the percentage was lower than 30.0%, it failed to build
models in all cases. The result means that classification tree
is greatly affected by imbalance of a dataset.

Accuracy of linear discriminant analysis was higher than
logistic regression at any percentage of cost overrun projects.
In linear discriminant analysis models, accuracy of models
applied variable selection was almost higher than not
applied. In logistic regression models, when the percentage
of cost overrun projects was high, accuracy of models
applied variable selection was lower than not applied, but
when the percentage was low, accuracy of models applied
variable selection was higher. So affects of the percentage of
cost overrun projects for variable selection is considered to
be different for discriminant method types.

V. RELATED WORK

There are some researches about project result prediction
such as cost overrun [10][15][16]. For instance, Takagi et al.
[15] proposed delivery delay project prediction method using
logistic regression and a questionnaire about the project.
However, these researches did not compare accuracy of
discriminant methods, changing the percentage of failure
projects in a dataset, and therefore they did not clarify which
method is better when a dataset is imbalanced.

In the software engineering field, there are few
researches using Mahalanobis-Taguchi method or
collaborative filtering. Aman et al. [1] proposed the
prediction method which identifies program modules whose

TABLE III. PREDICTION RESULTS BY COLLABORATIVE FILTERING

Predicted

value
Actual
value

Actual value of
similar projects

P01 0 0 0 0 0 0 0
P02 0 0 0 0 0 0 0
P03 1 0 0 1 0 0 0
P04 0 0 0 0 0 0 0
P05 1 0 0 1 0 0 0
P06 0 0 0 0 0 0 0
P07 0 0 0 0 0 0 0
P08 0 0 0 0 0 0 0
P09 0 0 0 0 0 0 0
P10 0 0 0 0 0 0 0
P11 0 0 0 0 0 0 0
P12 1 0 0 1 0 0 0
P13 1 0 0 1 0 0 0
P14 0 0 0 0 0 0 0

P15 1 1 0 0 0 1 0
P16 1 1 1 0 0 0 0
P17 1 1 1 0 0 0 0
P18 1 1 0 1 0 0 0
P19 1 1 0 1 0 0 0
P20 0 1 0 0 0 0 0
P21 0 1 0 0 0 0 0
P22 1 1 0 1 0 0 0
P23 0 1 0 0 0 0 0
P24 1 1 0 0 1 0 0
P25 1 1 0 0 0 1 0
P26 0 1 0 0 0 0 0
P27 1 1 0 0 0 0 0
P28 1 1 0 0 0 0 0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1234567891011121314

A
U

C

The number of cost overrun projects

Linear discriminant analysis

Linear discriminant analysis (variable selection)

Logistic regression

Logistic regression (variable selection)

Classification tree

Mahalanobis-Taguchi method

Collaborative filtering

Figure 2. Relationship between accuracy and the number of cost

overrun projects.

modification effort is high by Mahalanobis-Taguchi method.
Motomura et al. [8] proposed cost overrun project prediction
using collaborative filtering. Again, these researches did not
clarify accuracy of discriminant methods when a dataset is
imbalanced.

As contrasted to Mahalanobis-Taguchi method, positive
unlabeled learning builds a prediction model without
negative cases (i.e. use only cost overrun projects). Hata et al.
[3] proposed applying positive naive Bayes to predict fault
prone modules. One of our future research issues is to apply
positive naive Bayes to project result prediction.

Kamei et al. [5] proposed applying oversampling to an
imbalanced dataset before predicting fault prone modules.
Oversampling duplicates one group whose number of cases
is smaller than the other group, to align imbalance of the
dataset. The other future issue of our research is applying
oversampling and comparing accuracy of discriminant
methods, changing the percentage of cost overrun projects.

VI. CONCLUSIONS

In this paper, we compared accuracy of discriminant
methods, changing the percentage of cost overrun projects.
We predicted cost overrun projects by linear discriminant
analysis, logistic regression, classification tree, Mahalanobis-
Taguchi method, and collaborative filtering, using the
questionnaire about the software project. The result showed
that collaborative filtering was highest accuracy among five
discriminant methods. When the dataset was not very
imbalanced, linear discriminant analysis was second highest
in the methods, and when it is imbalanced, Mahalanobis-
Taguchi method was second highest. Classification tree was
not fitted to project result prediction. Our future works are to
apply positive naive Bayes and oversampling to predict the
project result, changing the percentage of cost overrun
projects.

ACKNOWLEDGMENT

This work is being conducted as a part of the StagE
project, The Development of Next-Generation IT
Infrastructure, and Grant-in-aid for Young Scientists (B),
22700034, 2010, supported by the Ministry of Education,
Culture, Sports, Science and Technology. We are deeply
grateful to Mr. Yutaka Fukuchi (Hitachi Ltd.), Mr. Tetsuya

Yonemitsu (Hitachi Ltd.), and people who cooperated for
data collection. Also, we would like to thank Dr. Naoki
Ohsugi for offering the collaborative filtering tool.

REFERENCES

[1] H. Aman, N. Mochiduki, and H. Yamada, “A Model for Detecting
Cost-Prone Classes Based on Mahalanobis-Taguchi Method,” IEICE
transactions on information and systems, vol.E89-D, no.4, pp.1347-
1358, 2006.

[2] J. Hanley, and B. McNeil, “The meaning and use of the area under a
receiver operating characteristic (ROC) curve,” Radiology, no.143,
pp.29-36, 1982.

[3] H. Hata, O. Mizuno, and T. Kikuno, “Application of Machine
Learning Without Negative Examples to Fault-Prone Module
Detection,” Proc. Software Engineering Symposium 2009 (SES 2009),
pp.133-138, 2009 (in Japanese).

[4] IPA/SEC Japan, Visualization of IT Project (lower process edition).
p.211, Nikkei Business Publications, 2006.

[5] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.
Matsumoto, “The Effects of Over and Under Sampling on Fault-
Prone Module Detection,” Proc. International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007),
pp.196-204, 2007.

[6] T. Khoshgoftaar, and N. Seliya, “Comparative Assessment of
Software Quality Classification Techniques: An Empirical Case
Study,” Empirical Software Engineering, vol.9, no.3, pp.229-257,
2004.

[7] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Transactions on Software
Engineering, vol.34, no.4, pp.485-496, 2008.

[8] T. Motomura, T. Kakimoto, M. Tsunoda, N. Ohsugi, A. Monden, and
K. Matsumoto, “Prediction of Project Cost Overrun Based on
Collaborative Filtering,” Technical report of IEICE. SS, vol.105,
no.229, pp.35-40, 2005.

[9] N. Nagappan, and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” Proc. International Conference on
Software Engineering (ICSE 05). pp.580-586, 2005.

[10] J. Procaccino, J. Verner, S. Overmyer, and M. Darter, “Case study:
factors for early prediction of software development success,”
Information and Software Technology, vol.44, no.1, pp.53-62, 2002.

[11] Project Management Institute, A Guide to the Project Management
Body of Knowledge: (Pmbok Guide). p.459, Project Management
Institute, 2008.

[12] R Development Core Team, R: A language and environment for
statistical computing. R Foundation for Statistical Computing, 2009.
http://www.R-project.org.

[13] M. Shepperd, and C. Schofield, “Estimating software project effort
using analogies,” IEEE Transactions on Software Engineering, vol.23,
no.12, pp.736-743, 1997.

[14] G. Taguchi, R. Jugulum, The Mahalanobis-Taguchi Strategy: A
Pattern Technology System. Wiley, 2002.

[15] Y. Takagi, O. Mizuno, and T. Kikuno, “An Empirical Approach to
Characterizing Risky Software Projects Based on Logistic Regression
Analysis,” Empirical Software Engineering, vol.10, no.4, pp.495-515,
2005.

[16] J. Verner, W. Evanco, and N. Cerpa, “State of the practice: An
exploratory analysis of schedule estimation and software project
success prediction,” Information and Software Technology, vol.49,
no.2, pp.181-193, 2007.

TABLE IV. RELATIONSHIP BETWEEN PREDICTED VALUE

AND SIMILAR PROJECTS

Similar projects
(Learning dataset)

Predicted project
(Test dataset)

Dependent
variable

Average of
independent

variable

Average of
independent

variable

Predicted
dependent
variable

Low High High Low

Low Low High High

