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ABSTRACT
This paper proposes a systematic method for protect-

ing software against malicious reverse engineering attacks.
Our method aims to increase the cost of obtaining secret
information in a program on the assumption that the adver-
saries have the ability to perform dynamic analysis as much
as static analysis. A program protected by our method
contains many time-sensitive codes, which are overwrit-
ten with fake (dummy) codes. Each time-sensitive code
is modified during execution via self-modification accord-
ing to the time taken to execute a designated block of the
program. If the execution time of the block is within the
predetermined range, the time-sensitive code becomes the
original one. On the other hand, if the execution time is out
of the range, the time-sensitive code becomes the other fake
one. In order to obtain the secret information by static anal-
ysis, the adversary must find the routines that modify time-
sensitive codes which are scattered over the program, and
must guess the predetermined valid execution time of the
target blocks. In order to obtain the secret information by
dynamic analysis, the adversary must make the execution
reach the restricted points of the program without stopping
the execution. As a result, our method helps to construct
highly invulnerable software.
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1 Introduction

There has been an increasing need for protecting secret
information stored in software products, such as algo-
rithms that are commercially valuable, the secret keys for
DRM system, and conditional branch instructions for li-
cense checking [1]. Since the leakage of secret information
causes serious damage to software vendors [2], protecting
software against illegal reverse engineering attacks has be-
come an overarching issue.

Many methods for protecting software have been pro-
posed so far, such as program obfuscation, program en-
cryption, and tamper resistance techniques [3–5]. Many
of the previous methods aim to protect against static anal-
ysis (i.e., analysis without running a program). In practice,

however, the adversaries have the ability to handle dynamic
analysis (i.e., analysis which is performed while running a
program) as well as static analysis because they can easily
obtain the powerful tools for dynamic analysis such as a
debugger. Thus, there is a great demand for the method for
protecting software against attacks based on both static and
dynamic analysis [6].

This paper proposes a systematic software protection
method which is resistant to not only static analysis, but dy-
namic analysis. We introduce the concept of time-sensitive
code, which is dynamically modified at run-time according
to the time (the number of clock cycles) taken to execute a
block of the program. We focus on the point that the dy-
namic analysis with an intentional stop in a program (e.g.,
breakpoint, step-by-step execution) takes much more exe-
cution time than the normal execution does. If the execu-
tion time of the block is within a predetermined range, that
is, the program is likely to be executed normally, the time-
sensitive code becomes the original one. On the other hand,
if the execution time is out of the range, we judge the dy-
namic analysis is being performed, and the time-sensitive
code becomes the fake one. Since time-sensitive codes are
scattered over the program, it is difficult for the adversaries
to succeed in obtaining the secret information.

The time measurement technique itself is known for
detecting if it runs under control of a debugger [5,7]. When
we simply apply this technique to increase the cost of
obtaining secret information, it is easy for the adversary
to find the secret information or to nullify the protection
mechanism through static analysis since the secret informa-
tion and the instructions for measuring time are not hidden.
Then we combine the instruction camouflage method using
self-modification mechanism [8, 9] with the time measure-
ment technique in order to hide them and construct the pro-
gram which is resistant to both static analysis and dynamic
analysis.

The rest of this paper is organized as follows. Sec-
tion 2 shows the adversary model we assume in this pa-
per. Section 3 explains our method in detail. Section 4, we
discuss the difficulty of attacking on a protected program.
Section 5, we examine how much overhead on the execu-
tion time is imposed by the proposed method. In Section 6,
we review the related work. Finally, Section 7 concludes
the paper.
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Camouflage Target C Modify Cts to the
camouflaged code

Figure 1. Basic idea of our method

2 Adversary Model

The adversary is assumed to be as follows.

• The adversary can perform static analysis. Specifi-
cally, the adversary has a tool for disassembling and
the ability to inspect and modify all the instructions
and data of the program in assembly language.

• The adversary can perform dynamic analysis. Specif-
ically, the adversary has a debugging tool which en-
ables the adversary to stop (and restart) the execution
of the program and observe output of the program at
an arbitrary point in the program. Using the tool, the
adversary can also inspect and modify the state of the
registers and the content of the program loaded in the
memory at every program point.

The above adversary corresponds to the level 2 adver-
sary in the adversary model of Monden et al. [10]. This
model also takes into account a realistic model described
by Madou et al. [6]. Assuming the above adversary model,
we propose and discuss our method in the following sec-
tions.

3 Protection Method

3.1 Basic Idea

First, we explain the basic idea of our method. Figure 1 (a)
and (b) shows the basic concept of the original assembly

program P and the protected assembly program Pp respec-
tively. We show examples of assembly programs in the
AT&T syntax based on the Intel x86 architecture [11] in
this paper.

A part of the original program P is selected as the
camouflage target C, which should be hidden from adver-
saries. C is overwritten with a camouflaged (fake) code. In
the example of Figure 1, the instructions cmpl and jne
are selected as the camouflage target, and the instructions
are camouflaged as movl and call in Pp. The camou-
flaged code is called time-sensitive code Cts. Cts is mod-
ified during execution by self-modification routines, i.e., a
restoring routine RR and a hiding routine HR, according
to the time (the number of clock cycles) taken to execute
the part of the program selected as B, the target block of
time measurement. Specifically, RR rewrites Cts to C if
the execution time of B is within a predetermined range,
that is, the program is likely to be executed normally. Oth-
erwise, RR rewrites Cts to the code that is different from
C. If the adversary intentionally stops the program for an-
alyzing purposes (e.g., examining the current state) at an
instruction in B by means of a breakpoint or step-by-step
execution, the execution time easily exceeds the predeter-
mined range. As a result, Cts is not modified to the original
code C (C is not appeared in any registers and memory) in
this case. In order to obtain C via dynamic analysis, the
adversary has to stop the program at instructions between
RR and HR without any stops at B. In order to increase
the cost of obtaining C by the adversary, we build many

326



time-sensitive codes in the program.

3.2 Procedure for constructing a protected program

A protected program Pp is obtained by repeating the fol-
lowing Step 1 to Step 6.

(Step 1) Determining the camouflage target C

First, the camouflage target code C is determined. A user,
a person who uses our method, selects a part of P as C. C
should be what the user wants to hide from adversaries. As
an example of C, we take the following examples:

• The secret information itself such as constant values
(secret keys) for DRM system, conditional branch in-
structions which branches based on input password,
and main instructions of secret algorithm.

• Instructions or data which can be a clue to locate
secret information such as an instruction for calling
a dialog-box to input a password, and an (interrupt)
instruction for operating an external device (e.g., a
CD/DVD drive) to check if the product is legitimate
or not.

• Instructions which contained in the protection mech-
anism such as restoring routines, hiding routines and
instructions for measuring time. It is important for
users to select these instructions as C and hide the
existence of the protection mechanism in order to in-
crease the cost of attack.

(Step 2) Generating camouflaged code

We generate Cts, which aims to camouflage C. Cts is de-
termined at random, or the user may specify directly. The
context of the program should be taken into account in or-
der to make it difficult for adversaries to find Cts. The
generated Cts overwrites C.

(Step 3) Determining B and the positions of the restor-
ing/hiding routines

B and the positions of RR and HR in the program are de-
termined. Below, the positions of RR and HR are denoted
as P (RR) and P (HR), respectively.

First, B is determined at random from among the
blocks composing P , or the user may specify B directly.
A control flow graph (directed graph) with each instruction
in the assembly program is considered as a node. P (RR)
and P (HR) are chosen so that the following five conditions
are satisfied. The conditions are intended to assure that Cts

is certain to be rewritten as C before it is executed, and
is certain to be rewritten again as Cts before the program
ends, as long as the execution time of B is valid.

1. B is a basic block, that is, a linear sequence of pro-
gram instructions having one entry point and one end
point [12].

2. B must exist on every control flow path from the pro-
gram entry to the P (RR).

3. P (RR) must exist on every control flow path from B
to Cts.

4. P (HRi) must not exist on every control flow path
from P (RR) to Cts.

5. P (RR) must exist on every control flow path from
P (HR) to Cts.

6. P (HR) must exist on every control flow path from
Cts to the end of the program.

(Step 4) Inserting instructions for measuring the time of
B

The instructions for measuring the time of B are inserted
to P . To measure the time of B, we use an instruction
for counting clock cycles such as RDTSC (read time-stamp
counter) instruction in Intel IA-32 architecture [13].

A simple example of measuring the time of a basic
block using RDTSC instruction is shown below. The pro-
gram includes the line numbers (in brackets) for ease of
reference. In this example, the value which is in proportion
to the number of clock cycles taken to execute the instruc-
tions between the RDTSC instructions (instructions at lines
from 2 to 5) is obtained in the edx register.

[01] rdtsc
[02] movl %edx, CLOCK
[03] movl (%ebp), %ecx
[04] imull (%ebp), %ecx
[05] sall $2, %ecx
[06] rdtsc
[07] subl (CLOCK), %edx

(Step 5) Determining the threshold time

The threshold time to detect dynamic analysis (i.e., to judge
whether the adversary performs dynamic analysis) is deter-
mined based on the content of B.

Now we define Tmin as the minimum execution clock
cycles, and Tmax as the maximum execution clock cycles,
and TB as the number of clock cycles taken to execute B.
We judge that the execution is normal if TB is over Tmin

but less than Tmax. Otherwise, we judge that dynamic anal-
ysis is performed or B is tampered with.

Tmin and Tmax is estimated based on the instructions
composing B.
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[01]      rdtsc

[02]      movl  %edx, CLOCK

(Target Block B)

[03]      rdtsc

[04]      subl (CLOCK), %edx

[05]      addl $0x38, %edx

[06]      movb %dl, TARGET1       

[07]      movl  -8(%ebp), %eax

[08]      imull -8(%ebp), %eax

[09]      sall $2, %eax

TARGET1:  

[10]      movl  -4(%ebp), %eax

[11]      jne  L3

[12]      call  _success

[13]      movb $0x8B, TARGET1

:

:

:

:

RR

HR

Cts

(the original is cmpl)

:

:

[01]      push  %dx

[02]      movl  %eax, BUF2

(Target Block B)

[03]      pop   %dx

[04]      addl (BUF1), %eax

[05]      movl  $0xFA, %ebx

[06]      movb %ah, TARGET5       

[07]      movl  -8(%ebp), %eax

[08]      imull -8(%ebp), %eax

[09]      sall $2, %eax

TARGET1:  

[10]      movl  -4(%ebp), %eax

[11]      jne   L3

[12]      call  _success

[13]      movb $0x8B, TARGET1

:

:

:

:

Cts

:

:

Cts

Cts

Cts

Cts

Cts

Cts

(a) Program to which the procedure is applied once (b) Program to which the procedure is applied many times

Figure 2. Example of a protected program

(Step 6) Generating restoring/hiding routines

Restoring routines RR and hiding routines HR are gener-
ated according to the following procedure:

1. A sequence of instructions which fulfills the follow-
ing condition is constructed and is defined as RR: if
Tmin ≤ TB < Tmax is satisfied, then it modifies Cts

to C, otherwise, it modifies Cts to a code which is
different from C.

2. A sequence of instructions for modifying C to Cts is
constructed and is defined as HR.

Both restoring routines and hiding routines can be
composed of instructions of high frequency such as mov
instruction [8]. The generated RR and HR are inserted to
the position which is determined in Step 3.

In order to make the self-modification routines diffi-
cult to find, the routines should be complicated by the use
of conventional techniques such as obfuscation of machine
language instructions [14] and mutation techniques [15].

3.3 Example

Figure 2 shows an example of an assembly program which
is protected by the proposed method. This program has a

simple password checking routine. The program includes
the line numbers (in brackets) for ease of reference.

Figure 2(a) illustrates a part of the protected program
to which the procedure shown in Section 3.2 was applied
once. In Figure 2 (a), the instruction “cmpl -4(%ebp),
%eax” is selected as C, and is overwritten by Cts (“movl
-4(%ebp), %eax”). For measuring TB (the execution
time of B), RDTSC instruction [13] is used. TB is ob-
tained by calculating the difference between the time-stamp
counter (the system clock) just before starting B (which is
obtained by the RDTSC instruction at line 1) and the one
just after ending B (which is obtained by the RDTSC in-
struction at line 3). RR (at line 6) modifies Cts according
to TB . The instruction addl (at line 5) calculates the value
of the code which RR rewrites. In the normal execution,
RR rewrites movl at line 10 to cmpl, that is, rewrites the
first byte of movl to 3B. The longer TB is (i.e., the longer
the adversary stops at B), the more the value of rewriting
increases. If TB is over Tmax, RR rewrites Cts to the code
that is more than 3B. Even if the adversary tampers with
RR or removes instructions for measuring time, Cts is not
modified to C as long as the adversary cannot estimate the
valid execution time correctly. HR (at line 13) rewrites
the instruction which is rewritten by RR to the camouflage
code movl again.

Figure 2(b) illustrates a part of the program which
is obtained by applying the procedure to the program
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showed in Figure 2(a) many times. In Figure 2(b), the
self-modification routines and the instructions for measur-
ing time are selected as time-sensitive codes. As compared
with Figure 2(a), it is difficult for the adversary to find that
movl at line 10 is time-sensitive since the restoring routine
and the instructions for measuring time are camouflaged.
As seen in this example, we can increase the cost of at-
tacking by repeating the procedure and constructing many
time-sensitive codes.

4 Discussion

Here we discuss the difficulty of attacking on programs
which is protected by the proposed method. Consider the
case in which the adversary described in Section 2 attempts
to obtain the secret part S(Pp) in the protected program Pp.
We assume that S(Pp) is selected as C and is camouflaged
as Cts. The goal of the attack is defined as obtaining S(Pp)
correctly. Below we discuss the difficulty of achieving the
goal by two types of attacks: static analysis and dynamic
analysis.

4.1 Difficulty of Static Analysis

First, we discuss the case that the adversary performs static
analysis to obtain S(Pp).

In the protected program, S(Pp) (i.e., the code which
is selected as C) does not exist in the program since the
code is camouflaged with Cts. Thus, the adversary can
not find S(Pp) by searching for a specific instruction or
data. For example, when the adversary searches for a cam-
ouflaged compare instruction in order to find a password
checking routine, it is difficult to find the instruction be-
cause it does not exist in the program.

In addition, if instructions or data which can be a clue
to locate secret information (e.g., an instruction for call-
ing a dialog-box, an instruction for operating an external
device) are camouflaged, it is difficult for the adversary to
narrow the range of analysis to reduce the cost of program
understanding.

In order to obtain the original content of the camou-
flaged code by means of static analysis, the adversary must
find the restoring routines which are scattered over the pro-
gram, and must guess the predetermined valid execution
time of the target blocks (Tmin and Tmax), which requires
a tremendous effort.

4.2 Difficulty of Dynamic Analysis

Next, we discuss the case that the adversary performs dy-
namic analysis to obtain S(Pp). The adversary is able to
run Pp using debugging tools, and try to identify and un-
derstand S(Pp) based on the output information from the
tools. The tools also enable the adversary to stop (and
restart) the execution of the program and observe output
of the program at an arbitrary point in the program.

When the adversary stops the execution at B to in-
spect or modify some code via debugging tools, TB in-
creases according to the stop time. If TB exceeds Tmax, the
adversary can not obtain C because RR modifies Cts to a
code which is different from C. Even if the adversary tam-
pers with RR or removes instructions for measuring time,
Cts is not modified to C as long as the adversary cannot
estimate the valid execution time correctly.

In order to obtain C via dynamic analysis, the ad-
versary must make the execution reach the instructions be-
tween RR and HR without stopping at B. The cost of ob-
taining C becomes more expensive if many time-sensitive
codes are built in the program. (e.g., in case that the instruc-
tions between RR and HR is B for the other time-sensitive
code).

5 Performance Overhead

In this section, we examine how much overhead on the exe-
cution time is imposed by the proposed method. The target
is a program which decrypts 8 bytes of the encrypted data
in the program, based on the 7 bytes of input data. The en-
cryption algorithm used in the program is C2 (Cryptome-
ria Cipher) [16], which is designed for the CPPM(Content
Protection for Prerecorded Media)/CPRM(Content Protec-
tion for Recordable Media) Digital Rights Management
scheme.

First, we applied the proposed method to the sub-
routine of the program for decryption algorithm. Then,
we measured the execution time of decrypting data 10,000
times for each version with different proportion of the time-
sensitive instructions (Cts) to the total instructions in the
subroutine. The proportion of the time-sensitive instruc-
tions was varied from 0% to 30% with an interval of 10%.

The execution time was measured as the difference in
the value of the processor’s time-stamp counter (the num-
ber of clock cycles) using RDTSC instruction from just be-
fore the start of the protected program to just after the end
of the program.
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Figure 3. Overhead on the execution time
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Figure 3 shows the result of the execution time mea-
surement. The horizontal axis shows the average program
execution time (clock cycles), while the vertical axis shows
the proportion of time-sensitive instructions. It can be seen
from Figure 3 that the average execution time tends to in-
crease with the number of time-sensitive instructions. In
particular, there is a large difference between the program
that has no time-sensitive code (the original code) and the
program which the proportion of time-sensitive instructions
is 10%. When the proportion of time-sensitive instructions
is approximately 30%, the average execution time is ap-
proximately 1.513 ×1011 clock cycles. This is approxi-
mately 1.38 times the execution time (approximately 1.097
×1011 clock cycles) of the original program. We guess
that the added instructions for constructing time-sensitive
codes impose an extra overhead to the CPU. In particu-
lar, the self-modification mechanism can impose expen-
sive overhead due to architectural issues such as incoher-
ence of cache memory and prediction failure of conditional
branches [17].

6 Related Work

Many methods for protecting secret information contained
in software have been proposed so far, such as program ob-
fuscation, program encryption and tamper resistance tech-
niques [3–5].

The instruction camouflage [8, 9] is a straightforward
obfuscation method using self-modification mechanism. In
this method, some routines restore camouflaged instruc-
tions (i.e., instructions which are overwritten with dummy
code) back to the original during execution. This method
is especially effective in protecting against static analy-
sis. There are some other protection methods using a
self-modification mechanism, which includes the methods
which dynamically decrypt the encrypted part of the pro-
gram at some point in the execution [18, 19], and the
method which mutates the program repeatedly during ex-
ecution according to an edit script [20].

In addition, there are some anti-debugging methods
using time measurement techniques such as [5, 7]. These
methods use the techniques for detecting if it runs under
control of a debugger. There is also a method for con-
structing a time-sensitive code exploiting characteristics of
multiprocessor systems [21].

Our method aims to protect secret information against
both static and dynamic analysis based on the combina-
tion of the instruction camouflage technique which is resis-
tant to static analysis and the time measurement technique
which helps detect dynamic analysis. Our method is sys-
tematic, thereby is easy to follow and easy to be automated.

7 Conclusion

In this paper, we proposed a systematic method for
protecting software against malicious reverse engineer-

ing attacks, using time-sensitive codes based on self-
modification mechanism.

In order to obtain the secret information by means of
static analysis, the adversary must find the restoring rou-
tines within the whole program and must guess the target
block and the predetermined valid execution time, which
requires a tremendous effort. In order to obtain the secret
information via dynamic analysis, the adversary must make
the execution reach restricted points of the program without
stopping the execution. The cost of obtaining the secret in-
formation becomes more expensive if many time-sensitive
codes are built in the program.

It can be seen in the experiment about performance
overhead that the more we build time-sensitive codes in the
program, the more expensive the performance overhead be-
comes. That is, the more protected program suffers from
the more overhead, which is a trade-off relation.

A systematic method for calculating the threshold
time to detect dynamic analysis and its evaluation are left
as a challenging issue in future work.
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