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TO INCREASE PRODUCTIVITY, pro-
grammers often reuse open source soft-
ware (OSS) code as a part of their prod-
uct. Although code reuse is generally 
sound practice, software companies are 
often unaware of how much reuse oc-
curs, particularly if they outsource de-
velopment. As more reusable OSS code 

becomes available online, it’s becom-
ing increasingly important for compa-
nies to inspect their software products 
for possible OSS code violations. This 
is no trivial task, since there are al-
ready myriad OSS licenses. Indeed, the 
violation problem is so pervasive that 
OSS developer-side organizations such 

as the Software Freedom Law Cen-
ter (www.softwarefreedom.org) and 
gpl-violations.org have begun helping 
developers detect OSS license violations 
in commercial products.

Several services are available for OSS 
code detection and license identification 
and management. Black Duck Software’s 
Protex analyzes source code using 
code print technology, comparing the 
source code against an OSS repository 
of more than 200,000 products 
(w w w.b l a c kdu c k s o f t wa r e . c om / 
protex). Palamida detects reused OSS 
source code through multipattern 
searching that involves identifying 
matches of code fragments, or clones, 
and then ranking the matches according 
to relevance (www.palamida.com). 
Unfortunately, as far as we know, no one 
has published a performance evaluation 
of these services with quantifiable 
metrics, such as recall and precision or 
false-positive/negative detection rate.

We also see flaws in the core 
technology that these detection services 
use, which is to search for code clone 
matches between two programs and 
judge reuse if the programs share 
a large number of clones or a large 
enough single clone. These programs 
don’t account for the case in which a 
programmer accidentally introduces 
clones that don’t expose any licensing 
issue. Also, the question is still open as 
to what clone number or size translates 
to a violation. That is, what number 
of clones or what single clone size is 
the threshold for determining that the 
suspected program is guilty or not 
guilty of a licensing violation?

We decided to tackle this open 
problem by answering two questions:

•	 What metrics are appropriate in 
evaluating the number and size of 
code clones between two programs?

•	 What’s the lower bound of code 
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clone measurement needed to con-
clude that the suspected program is 
guilty, and what is the upper bound 
needed to conclude that it isn’t?

To answer the fi rst question, we re-
viewed several potential clone metrics 
including ones from www.ccfi nder.net, 
such as the ratio of similarity between 
another fi le and coverage. From these, 
we selected three clone-based mea-
sures: maximum length of clones 
(MLC), number of clone pairs (NCP), 
and clone-based local similarity (LSim), 
which looks at the percentage of dupli-
cation within a suspicious pair.

To answer the second question, we 
fi rst established the framework in Fig-
ure 1 for defi ning guilty and not guilty 
and then used our metrics to deter-
mine the upper and lower bounds. To 
experimentally identify these bounds, 
we analyzed 1,225 pairs of OSS prod-
ucts for reuse-based clones.

Clone Detection
In the context of our work, code clones 
are exact or nearly exact duplicated 
lines of code between a pair of source 
programs. These interproduct clones 
appear when one of the programs has 
reused the other’s code or when both 
have reused the same piece of third-
party code. We don’t distinguish be-
tween these reuse conditions because 
companies must identify both cases to 
comply with software licensing.

Accidental interproduct clones are a 
case that must be distinguished, how-
ever, because they don’t expose any li-
censing issues. Programmers can intro-
duce accidental interproduct clones by 
using code snippets, for example, which 
are essentially mental macros—defi ni-
tional computations that a program-
mer frequently codes in a regular style, 
such as payroll tax, queue insertion, or 
data structure access.1 Fortunately, ac-
cidental clones tend to be smaller than 
reuse-based clones, and because size is 

one of our metrics, we are able to sepa-
rate them. 

Most existing and proposed tools1–5 
aim to detect three types of interprod-
uct clones:6

• Type 1. An exact copy with no 
modifi cations except white space 
and comments.

• Type 2. A syntactically identical 
copy, with only variable, type, or 
function identifi ers changed.

• Type 3. A copy with further modi-
fi cations, with statements changed, 
added, or removed.

We’re concerned only with the de-
tection of Type 2 clones. The detec-
tion of Type 1 clones isn’t suffi cient for 
our goal because programmers often 
modify reused code fragments slightly 
to adapt them to a new environment or 
purpose.6 Type 3 clone detection isn’t 
suitable because the defi nition of Type 
3 clones is vague, and there’s no clear 
consensus on a suitable equivalence or 
similarity measure for these clones.6

To detect Type 2 clones, we used 
CCFinderX, which is a major upgrade 
of the CCFinder clone detector (avail-
able at www.ccfi nder.net).3 CCFinderX 

compares the token sequences of lines 
of source code and can detect code in 
systems up to a million lines within af-
fordable computation time and mem-
ory requirements.

Metrics Defi nition
By applying MLC, NCP, and LSim, we 
can distinguish reuse-based clones from 
accidental ones. We defi ne these met-
rics as 

• MLC—number of tokens of the 
largest clone pair detected between 
two programs; 

• NCP—sum of all clone pairs 
greater than 30 tokens; and 

• LSim—percentage of duplication 
within the most suspicious source 
fi le pair (the one with the largest 
clone).

LSim is a valuable metric for de-
tecting reuse when a programmer has 
copied one or more fi les from the other 
product. Given the task of inspecting 
programs A and B, LSim(A,B) is
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FIGURE 1. De� ning guilty and not guilty. If two programs have a large enough number or 

size of code clones between them, both are considered guilty, but we need a lower bound 

(LB) to make this conclusion. Similarly, a program having only a small number or size of code 

clones is not guilty, but we need an upper bound (UB) to make this conclusion. Between these 

boundaries are suspicious programs, which require human inspection to determine clone 

reuse.
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where a and b comprise a file pair with 
the largest clone between A and B, 
MLC(A,B) is the length of the largest 
clones, and |a| and |b| are the lengths of 
a and b as number of tokens. If a file 
pair a and b are identical, then LSim 
becomes 100 percent.

We hypothesized that the larger the 
value of MLC, the greater the possibil-
ity of code reuse and that the greater 
the value of NCP, the greater the pos-
sibility of code reuse.

Experiment Setting
To test our metrics, we selected 50 OSS 
products from the Free Software Di-
rectory (http://directory.fsf.org/), all of 
which are in C/C++, and delivered under 
a GNU general public license (GPL) or 
GNU lesser GPL (LGPL). The selected 
products, listed in the “Open Source 
Products Evaluated” sidebar, include a 
wide range of application domains, in-
cluding security, audio, and gaming. 

For these 50 products, we inspected 
1,225 product pairs (50C2) to deter-
mine if each pair included reuse-based 
clones. Of the clone pairs detected, we 

inspected only those greater than or 
equal to 30 tokens, a common detec-
tion threshold for token-based clone 
detectors.3 Also, as we show shortly, 
30 tokens is a small enough value to 
identify an upper bound with which 
to arrive at a guilty verdict. (Although 
technically no pairs can violate OSS 
licenses because all are LGPL or GPL; 
for illustration, we treat them as if they 
could be guilty in terms of whether or 
not they contain reused code.)

Of the 1,225 pairs, 796 included 
one or more clones. Using the results of 
a two-month inspection by an expert 
programmer, we identified 121 product 
pairs of the original 796 as including re-
use-based clones. We applied the follow-
ing procedure to identify the 121 pairs:

•	 For each pair, an expert programmer 
(one of us) picked the largest clone 
and judged on the basis of his expe-
rience if it was likely to be produced 
accidentally. If no, the clone was con-
sidered reuse-based (guilty); if yes, it 
was deemed accidental (not guilty). 

•	 If the clone was guilty, the 

programmer went to the next pair. 
•	 If the clone wasn’t guilty, the pro-

grammer picked the next largest 
clone and continued judging until 
clone length reached 30 tokens. 

To identify the lower bound of each 
clone metric, for a given metric value 
(which we consider a temporal ������ as op-
posed to a true ��������������������   lower bound)��������  , we la-
beled all product pairs with a greater 
metric value as potentially guilty. We 
then computed precision and recall. 
Precision is the number of correctly la-
beled pairs divided by the total number 
of pairs potentially labeled guilty. Re-
call is the number of correctly labeled 
products divided by the total number of 
pairs that are actually guilty. The lower 
bound is then the lowest metric value 
that meets 100 percent precision: no 
pair classified as guilty is misclassified. 
Similarly, to identify each metric’s upper 
bound, we labeled all pairs with a lower 
metric value as belonging to not guilty 
and identified the largest value that 
meets 100 percent precision—no pair 
classified as not guilty is misclassified.

OPEN SOURCE PRODUCTS EVALUATED
We evaluated 50 products from among 
those listed at the Free Software 
Directory: 

abcm2ps-3.7.20 
acme-2.0.2 
aide-0.9 
aliens_V1.0.0 
asteroids3D 
avdbtools-0.3
barcode-0.98 
battstat_applet-2.0.11 
bc-1.06 
beecrypt-4.1.2 
bmi-1.3.1
calcoo-1.3.16 
ccvssh-0.9.1 
cdcd-0.6.6

cdparanoia-III-alpha9.8 
cdrtools-2.0 
cflow-1.2 
check-0.8.4 
chemtool-1.6.11 
cinepaint-0.19-0 
cvsgraph-1.5.2 
cvsps-1.3.3
danpei-2.9.6 
dap-3.6, Deki_Wiki_8.08.1_Kilen_ 
	 Woods_source 
dox-1.0beta4
easytag-1.1 
electrocardiognosis 
euler-1.60
fdm-1.392 
ffproxy-1.6 
filemanager-0.972

firestarter-1.0.3 
fnord-1.9 
FreeCAD-0.33
gaby-2.0.3 
galculator-1.2.4 
gbonds-2.0.2 
gcal-3.01 
geomview-1.8.1 
gforge-3.0 
gimp-2.3.19 
glabels-2.0.3 
glame-2.0.1 
glom-0.9.8 
gmandel-1.1.0 
gmmusic-1.1.91 
gnofin-0.8.4 
gnubg-0.14.3 
gnugo-3.6



 MARCH/APRIL 2011  | IEEE SOFTWARE  45

Results
Figure 2 shows the resulting MLC val-
ues. Figure 2a shows precision and re-
call for identifying guilty products by 
MLC. We identifi ed an MLC of 305 as 
the lower bound for a guilty verdict—
that is, all product pairs are guilty if 
they contain clones greater than or 
equal to 305 tokens. At this point, re-
call is 75.2 percent, which means that 
relying solely on the MLC metric over-

looks 24.8 percent of the guilty pairs. 
As Figure 2b shows, we identifi ed an 
MLC of 58 as the upper bound for a not 
guilty verdict—that is, all pairs are not 
guilty if they contain clones less than 
or equal to 58 tokens. At this point, re-
call is 84.8 percent, which means 15.2 
percent of the not guilty pairs are be-
ing overlooked. The rest of the product 
pairs—those with an MLC value of 59 
to 304, which constitute 16.1 percent 

of all the pairs—remain suspicious, 
needing human inspection for a conclu-
sive verdict.

As Figure 3 shows, we found 
neither an upper bound NCP nor a 
lower bound NCP for distinguishing 
accidental and reuse-based clones. Our 
fi nding implies that clone pairs of 30 
tokens exist everywhere regardless of 
whether or not they contain reused 
code. This result confi rmed, somewhat 
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to our surprise, that NCP is not a useful 
metric with which to identify reuse-
based clones, although many people 
consider it an effective measure.

Figure 4 gives the resulting values 
for LSim. As Figure 4a shows, we iden-
tifi ed a lower bound of 25.2 percent 
for a guilty product—that is, a pair 
of source fi les with the largest clone 
is guilty if its clone coverage (within a 
fi le) is greater than 25.2 percent. How-
ever, because recall is 76 percent at this 
point, 24 percent of the guilty pairs are 
being overlooked. As Figure 4b shows, 
we identifi ed an upper bound of 2.79 
percent for a not guilty product. At 
this point, recall is 91.1 percent, which 
means that 8.9 percent of the not guilty 
pairs are being overlooked. The rest of 

the product pairs—those with an LSim 
value of 2.8 to 25.1 percent, which is 
10.4 percent of all pairs—remain suspi-
cious, needing human inspection for a 
conclusive verdict.

These results aren’t without limita-
tions, the foremost being that we in-
spected only 50 OSS products. Others 
must take care in using our boundary 
values, although we believe that these 
values can certainly lead to the correct 
identifi cation of reuse-based OSS code 
in most products.

Another limitation of our results 
is that Type 2 clones are susceptible 
to program-transforming attacks. Fu-
ture work might use Type 3 clones 
or some other plagiarism-detection 
method such as software birthmarks,7 

which can better withstand program 
transformation.

Finally, our results did rely heav-
ily on our expert programmer’s initial 
categorization. However, we believe 
that the programmer has suffi cient ex-
perience reading and writing a vari-
ety of software to make his judgment 
reliable. Moreover, for many prod-
uct pairs, there is no other realistic 
way to distinguish reuse-based and 
accidentally produced clones. Such 
judgment is both diffi cult and time-
consuming, and we know of no conven-
tional study that has tried to identify 
the upper and lower bounds of clone 
metrics that can reveal guilty and not 
guilty products.

Classifi cation Performance
Our results show that both MLC and 
LSim are effective metrics in identify-
ing OSS code reuse. Both metrics are 
also effective as predictor variables to 
classify guilty/not guilty product pairs 
through a logistic regression model—
a common modeling technique for 
two-group classifi cation problems. To 
evaluate the model’s classifi cation per-
formance, we used 100 repetitions of 
twofold cross validation, in which we 
randomly took two-thirds of the en-
tire dataset to build a model and used 
the remaining third for performance 
evaluation.
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Figure 5 shows the resulting box 
plots of precision and recall for iden-
tifying guilty products. The average 
precision was 0.955, which indicates 
very low (4.5 percent) misclassifi cation 
of guilty products. Similarly, the aver-
age recall was 0.871, which indicates 
that this classifi cation overlooked a 
reasonably low percentage (12.9 per-
cent) of guilty products. In addition, 
the average false-positive rate (ratio 
of misclassifi ed not guilty products 
to total not guilty products) was ex-
tremely low (0.51 percent). Thus, 
MLC and LSim together can result 
in a high precision of guilty product 
identifi cation with relatively low false 
negative error and very low false-pos-
itive error.

W e identifi ed and experi-
mentally tested clone-
based metrics and their 

threshold values for distinguishing 
accidental and reused-based OSS 
code. Through this work, we were 
able to ascertain that MLC and LSim 
are the most effective clone metrics 
in identifying software reuse and 
that both MLC and LSim had both 
a lower-bound threshold to identify 
guilty products and an upper-bound 
threshold to identify not guilty prod-
ucts. NCP, on the other hand, wasn’t 
effective in distinguishing guilty or 
not guilty products.

Our logistic regression model for 
classifying guilty products using MLC 
and LSim together correctly identi-
fi ed 95.5 percent of guilty products, 
while overlooking only 12.9 percent of 
guilty products on average. We believe 
that our results offer a viable alterna-
tive to existing detection services and 
a low-cost, relatively painless way to 
avoid reuse violations.
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