
42	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

TO INCREASE PRODUCTIVITY, pro-
grammers often reuse open source soft-
ware (OSS) code as a part of their prod-
uct. Although code reuse is generally
sound practice, software companies are
often unaware of how much reuse oc-
curs, particularly if they outsource de-
velopment. As more reusable OSS code

becomes available online, it’s becom-
ing increasingly important for compa-
nies to inspect their software products
for possible OSS code violations. This
is no trivial task, since there are al-
ready myriad OSS licenses. Indeed, the
violation problem is so pervasive that
OSS developer-side organizations such

as the Software Freedom Law Cen-
ter (www.softwarefreedom.org) and
gpl-violations.org have begun helping
developers detect OSS license violations
in commercial products.

Several services are available for OSS
code detection and license identification
and management. Black Duck Software’s
Protex analyzes source code using
code print technology, comparing the
source code against an OSS repository
of more than 200,000 products
(w w w.b l a c kdu c k s o f t wa r e . c om /
protex). Palamida detects reused OSS
source code through multipattern
searching that involves identifying
matches of code fragments, or clones,
and then ranking the matches according
to relevance (www.palamida.com).
Unfortunately, as far as we know, no one
has published a performance evaluation
of these services with quantifiable
metrics, such as recall and precision or
false-positive/negative detection rate.

We also see flaws in the core
technology that these detection services
use, which is to search for code clone
matches between two programs and
judge reuse if the programs share
a large number of clones or a large
enough single clone. These programs
don’t account for the case in which a
programmer accidentally introduces
clones that don’t expose any licensing
issue. Also, the question is still open as
to what clone number or size translates
to a violation. That is, what number
of clones or what single clone size is
the threshold for determining that the
suspected program is guilty or not
guilty of a licensing violation?

We decided to tackle this open
problem by answering two questions:

•	 What metrics are appropriate in
evaluating the number and size of
code clones between two programs?

•	 What’s the lower bound of code

Guilty
or Not Guilty:
Using Clone Metrics
to Determine Open Source
Licensing Violations

Akito Monden and Satoshi Okahara, Nara Institute of Science
and Technology, Japan

Yuki Manabe, Osaka University

Kenichi Matsumoto, Nara Institute of Science and Technology, Japan

// Programmers often unwittingly violate open source

software licenses by reusing code fragments, or

clones. The authors explore metrics that can reveal the

existence or absence of code reuse and apply these

metrics to 1,225 open source product pairs. //

FOCUS: SOFTWARE PROTECTION

 MARCH/APRIL 2011 | IEEE SOFTWARE 43

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

clone measurement needed to con-
clude that the suspected program is
guilty, and what is the upper bound
needed to conclude that it isn’t?

To answer the fi rst question, we re-
viewed several potential clone metrics
including ones from www.ccfi nder.net,
such as the ratio of similarity between
another fi le and coverage. From these,
we selected three clone-based mea-
sures: maximum length of clones
(MLC), number of clone pairs (NCP),
and clone-based local similarity (LSim),
which looks at the percentage of dupli-
cation within a suspicious pair.

To answer the second question, we
fi rst established the framework in Fig-
ure 1 for defi ning guilty and not guilty
and then used our metrics to deter-
mine the upper and lower bounds. To
experimentally identify these bounds,
we analyzed 1,225 pairs of OSS prod-
ucts for reuse-based clones.

Clone Detection
In the context of our work, code clones
are exact or nearly exact duplicated
lines of code between a pair of source
programs. These interproduct clones
appear when one of the programs has
reused the other’s code or when both
have reused the same piece of third-
party code. We don’t distinguish be-
tween these reuse conditions because
companies must identify both cases to
comply with software licensing.

Accidental interproduct clones are a
case that must be distinguished, how-
ever, because they don’t expose any li-
censing issues. Programmers can intro-
duce accidental interproduct clones by
using code snippets, for example, which
are essentially mental macros—defi ni-
tional computations that a program-
mer frequently codes in a regular style,
such as payroll tax, queue insertion, or
data structure access.1 Fortunately, ac-
cidental clones tend to be smaller than
reuse-based clones, and because size is

one of our metrics, we are able to sepa-
rate them.

Most existing and proposed tools1–5
aim to detect three types of interprod-
uct clones:6

• Type 1. An exact copy with no
modifi cations except white space
and comments.

• Type 2. A syntactically identical
copy, with only variable, type, or
function identifi ers changed.

• Type 3. A copy with further modi-
fi cations, with statements changed,
added, or removed.

We’re concerned only with the de-
tection of Type 2 clones. The detec-
tion of Type 1 clones isn’t suffi cient for
our goal because programmers often
modify reused code fragments slightly
to adapt them to a new environment or
purpose.6 Type 3 clone detection isn’t
suitable because the defi nition of Type
3 clones is vague, and there’s no clear
consensus on a suitable equivalence or
similarity measure for these clones.6

To detect Type 2 clones, we used
CCFinderX, which is a major upgrade
of the CCFinder clone detector (avail-
able at www.ccfi nder.net).3 CCFinderX

compares the token sequences of lines
of source code and can detect code in
systems up to a million lines within af-
fordable computation time and mem-
ory requirements.

Metrics Defi nition
By applying MLC, NCP, and LSim, we
can distinguish reuse-based clones from
accidental ones. We defi ne these met-
rics as

• MLC—number of tokens of the
largest clone pair detected between
two programs;

• NCP—sum of all clone pairs
greater than 30 tokens; and

• LSim—percentage of duplication
within the most suspicious source
fi le pair (the one with the largest
clone).

LSim is a valuable metric for de-
tecting reuse when a programmer has
copied one or more fi les from the other
product. Given the task of inspecting
programs A and B, LSim(A,B) is

 LSim A B
MLC A B
a b

(,)
(,)

| | | |
= ×

+
×2

100 ,

(1)

Amount/size of code clones between programs
Pe

rc
en

ta
ge

 o
f g

ui
lty

 p
ro

gr
am

s
0

100

All programs
are guilty

LB

All programs
are not guilty

UB

Remain suspicious

FIGURE 1. De� ning guilty and not guilty. If two programs have a large enough number or

size of code clones between them, both are considered guilty, but we need a lower bound

(LB) to make this conclusion. Similarly, a program having only a small number or size of code

clones is not guilty, but we need an upper bound (UB) to make this conclusion. Between these

boundaries are suspicious programs, which require human inspection to determine clone

reuse.

44	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: SOFTWARE PROTECTION

where a and b comprise a file pair with
the largest clone between A and B,
MLC(A,B) is the length of the largest
clones, and |a| and |b| are the lengths of
a and b as number of tokens. If a file
pair a and b are identical, then LSim
becomes 100 percent.

We hypothesized that the larger the
value of MLC, the greater the possibil-
ity of code reuse and that the greater
the value of NCP, the greater the pos-
sibility of code reuse.

Experiment Setting
To test our metrics, we selected 50 OSS
products from the Free Software Di-
rectory (http://directory.fsf.org/), all of
which are in C/C++, and delivered under
a GNU general public license (GPL) or
GNU lesser GPL (LGPL). The selected
products, listed in the “Open Source
Products Evaluated” sidebar, include a
wide range of application domains, in-
cluding security, audio, and gaming.

For these 50 products, we inspected
1,225 product pairs (50C2) to deter-
mine if each pair included reuse-based
clones. Of the clone pairs detected, we

inspected only those greater than or
equal to 30 tokens, a common detec-
tion threshold for token-based clone
detectors.3 Also, as we show shortly,
30 tokens is a small enough value to
identify an upper bound with which
to arrive at a guilty verdict. (Although
technically no pairs can violate OSS
licenses because all are LGPL or GPL;
for illustration, we treat them as if they
could be guilty in terms of whether or
not they contain reused code.)

Of the 1,225 pairs, 796 included
one or more clones. Using the results of
a two-month inspection by an expert
programmer, we identified 121 product
pairs of the original 796 as including re-
use-based clones. We applied the follow-
ing procedure to identify the 121 pairs:

•	 For each pair, an expert programmer
(one of us) picked the largest clone
and judged on the basis of his expe-
rience if it was likely to be produced
accidentally. If no, the clone was con-
sidered reuse-based (guilty); if yes, it
was deemed accidental (not guilty).

•	 If the clone was guilty, the

programmer went to the next pair.
•	 If the clone wasn’t guilty, the pro-

grammer picked the next largest
clone and continued judging until
clone length reached 30 tokens.

To identify the lower bound of each
clone metric, for a given metric value
(which we consider a temporal ������ as op-
posed to a true �������������������� lower bound)�������� , we la-
beled all product pairs with a greater
metric value as potentially guilty. We
then computed precision and recall.
Precision is the number of correctly la-
beled pairs divided by the total number
of pairs potentially labeled guilty. Re-
call is the number of correctly labeled
products divided by the total number of
pairs that are actually guilty. The lower
bound is then the lowest metric value
that meets 100 percent precision: no
pair classified as guilty is misclassified.
Similarly, to identify each metric’s upper
bound, we labeled all pairs with a lower
metric value as belonging to not guilty
and identified the largest value that
meets 100 percent precision—no pair
classified as not guilty is misclassified.

OPEN SOURCE PRODUCTS EVALUATED
We evaluated 50 products from among
those listed at the Free Software
Directory:

abcm2ps-3.7.20
acme-2.0.2
aide-0.9
aliens_V1.0.0
asteroids3D
avdbtools-0.3
barcode-0.98
battstat_applet-2.0.11
bc-1.06
beecrypt-4.1.2
bmi-1.3.1
calcoo-1.3.16
ccvssh-0.9.1
cdcd-0.6.6

cdparanoia-III-alpha9.8
cdrtools-2.0
cflow-1.2
check-0.8.4
chemtool-1.6.11
cinepaint-0.19-0
cvsgraph-1.5.2
cvsps-1.3.3
danpei-2.9.6
dap-3.6, Deki_Wiki_8.08.1_Kilen_
	 Woods_source
dox-1.0beta4
easytag-1.1
electrocardiognosis
euler-1.60
fdm-1.392
ffproxy-1.6
filemanager-0.972

firestarter-1.0.3
fnord-1.9
FreeCAD-0.33
gaby-2.0.3
galculator-1.2.4
gbonds-2.0.2
gcal-3.01
geomview-1.8.1
gforge-3.0
gimp-2.3.19
glabels-2.0.3
glame-2.0.1
glom-0.9.8
gmandel-1.1.0
gmmusic-1.1.91
gnofin-0.8.4
gnubg-0.14.3
gnugo-3.6

 MARCH/APRIL 2011 | IEEE SOFTWARE 45

Results
Figure 2 shows the resulting MLC val-
ues. Figure 2a shows precision and re-
call for identifying guilty products by
MLC. We identifi ed an MLC of 305 as
the lower bound for a guilty verdict—
that is, all product pairs are guilty if
they contain clones greater than or
equal to 305 tokens. At this point, re-
call is 75.2 percent, which means that
relying solely on the MLC metric over-

looks 24.8 percent of the guilty pairs.
As Figure 2b shows, we identifi ed an
MLC of 58 as the upper bound for a not
guilty verdict—that is, all pairs are not
guilty if they contain clones less than
or equal to 58 tokens. At this point, re-
call is 84.8 percent, which means 15.2
percent of the not guilty pairs are be-
ing overlooked. The rest of the product
pairs—those with an MLC value of 59
to 304, which constitute 16.1 percent

of all the pairs—remain suspicious,
needing human inspection for a conclu-
sive verdict.

As Figure 3 shows, we found
neither an upper bound NCP nor a
lower bound NCP for distinguishing
accidental and reuse-based clones. Our
fi nding implies that clone pairs of 30
tokens exist everywhere regardless of
whether or not they contain reused
code. This result confi rmed, somewhat

100

90

80

70

60

50

40

30

100

95

90

85

80

75

70
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

MLC: maximum length of clone MLC: maximum length of clone(a) (b)

Pr
ec

is
io

n
an

d
re

ca
ll

(%
)

Pr
ec

is
io

n
an

d
re

ca
ll

(%
)

MLC = 305

Guilty

MLC = 58

Precision
Recall

Precision

Recall

Not guilty

FIGURE 2. Resulting MLC values. (a) Precision and recall for identifying guilty products by MLC. We identi� ed an MLC of 305 as the lower

bound for a guilty verdict. (b) Precision and recall for identifying not guilty products by MLC. We identi� ed an MLC of 58 as the upper bound for

a not guilty verdict—that is, all pairs are not guilty if they contain clones less than or equal to 58 tokens.

NCP: number of clone pairs NCP: number of clone pairs(a) (b)

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

Pr
ec

is
io

n
an

d
re

ca
ll

(%
)

Pr
ec

is
io

n
an

d
re

ca
ll

(%
)

0 200100 300 400 500 0 2010 30 40 50600

Precision

Recall

Precision

Recall

FIGURE 3. Resulting NCP values. (a) Precision and recall for identifying guilty products by NCP, and (b) precision and recall for identifying not

guilty products by NCP. Because clone pairs of 30 tokens exist in all cases, there’s no upper or lower bound value for distinguishing accidental

and reuse-based clones.

46 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: SOFTWARE PROTECTION

to our surprise, that NCP is not a useful
metric with which to identify reuse-
based clones, although many people
consider it an effective measure.

Figure 4 gives the resulting values
for LSim. As Figure 4a shows, we iden-
tifi ed a lower bound of 25.2 percent
for a guilty product—that is, a pair
of source fi les with the largest clone
is guilty if its clone coverage (within a
fi le) is greater than 25.2 percent. How-
ever, because recall is 76 percent at this
point, 24 percent of the guilty pairs are
being overlooked. As Figure 4b shows,
we identifi ed an upper bound of 2.79
percent for a not guilty product. At
this point, recall is 91.1 percent, which
means that 8.9 percent of the not guilty
pairs are being overlooked. The rest of

the product pairs—those with an LSim
value of 2.8 to 25.1 percent, which is
10.4 percent of all pairs—remain suspi-
cious, needing human inspection for a
conclusive verdict.

These results aren’t without limita-
tions, the foremost being that we in-
spected only 50 OSS products. Others
must take care in using our boundary
values, although we believe that these
values can certainly lead to the correct
identifi cation of reuse-based OSS code
in most products.

Another limitation of our results
is that Type 2 clones are susceptible
to program-transforming attacks. Fu-
ture work might use Type 3 clones
or some other plagiarism-detection
method such as software birthmarks,7

which can better withstand program
transformation.

Finally, our results did rely heav-
ily on our expert programmer’s initial
categorization. However, we believe
that the programmer has suffi cient ex-
perience reading and writing a vari-
ety of software to make his judgment
reliable. Moreover, for many prod-
uct pairs, there is no other realistic
way to distinguish reuse-based and
accidentally produced clones. Such
judgment is both diffi cult and time-
consuming, and we know of no conven-
tional study that has tried to identify
the upper and lower bounds of clone
metrics that can reveal guilty and not
guilty products.

Classifi cation Performance
Our results show that both MLC and
LSim are effective metrics in identify-
ing OSS code reuse. Both metrics are
also effective as predictor variables to
classify guilty/not guilty product pairs
through a logistic regression model—
a common modeling technique for
two-group classifi cation problems. To
evaluate the model’s classifi cation per-
formance, we used 100 repetitions of
twofold cross validation, in which we
randomly took two-thirds of the en-
tire dataset to build a model and used
the remaining third for performance
evaluation.

LSim = 25.2%

LSim: local similarity (%)

LSim = 2.79%

LSim: local similarity (%)(a) (b)

100

90

80

70

60

50

40

30

Pr
ec

is
io

n
an

d
re

ca
ll

(%
)

Pr
ec

is
io

n
an

d
re

ca
ll

(%
)

0 20 40 60 80 100 0 2 4 6 8 1410 12

Precision

Recall

Precision

Recall

Guilty
Not guilty

100

95

90

85

80

FIGURE 4. Resulting LSim values. Identi� cation of (a) guilty and (b) not guilty product pairs. A product is guilty if its clone coverage is greater

than 25.2 percent and not guilty if coverage is less than or equal to 2.79 percent.

Precision Recall(a) (b)

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

FIGURE 5. Result of logistic regression to identify guilty product pairs. (a) Precision and

(b) recall.

 MARCH/APRIL 2011 | IEEE SOFTWARE 47

Figure 5 shows the resulting box
plots of precision and recall for iden-
tifying guilty products. The average
precision was 0.955, which indicates
very low (4.5 percent) misclassifi cation
of guilty products. Similarly, the aver-
age recall was 0.871, which indicates
that this classifi cation overlooked a
reasonably low percentage (12.9 per-
cent) of guilty products. In addition,
the average false-positive rate (ratio
of misclassifi ed not guilty products
to total not guilty products) was ex-
tremely low (0.51 percent). Thus,
MLC and LSim together can result
in a high precision of guilty product
identifi cation with relatively low false
negative error and very low false-pos-
itive error.

W e identifi ed and experi-
mentally tested clone-
based metrics and their

threshold values for distinguishing
accidental and reused-based OSS
code. Through this work, we were
able to ascertain that MLC and LSim
are the most effective clone metrics
in identifying software reuse and
that both MLC and LSim had both
a lower-bound threshold to identify
guilty products and an upper-bound
threshold to identify not guilty prod-
ucts. NCP, on the other hand, wasn’t
effective in distinguishing guilty or
not guilty products.

Our logistic regression model for
classifying guilty products using MLC
and LSim together correctly identi-
fi ed 95.5 percent of guilty products,
while overlooking only 12.9 percent of
guilty products on average. We believe
that our results offer a viable alterna-
tive to existing detection services and
a low-cost, relatively painless way to
avoid reuse violations.

References
 1. I.D. Baxter et al., “Clone Detection Using Ab-

stract Syntax Trees,” Proc. IEEE Int’l Conf.

Software Maintenance, IEEE CS Press, 1998,
pp. 368–377.

 2. B.S. Baker, “On Finding Duplication and
Near-Duplication in Large Software Systems,”
Proc. 2nd Working Conf. Reverse Eng., IEEE
Press, 1995, pp. 86–95.

 3. T. Kamiya, S. Kusumoto, and K. Inoue,
“CCFinder: A Multi-Linguistic Token-Based
Code Clone Detection System for Large Scale
Source Code,” IEEE Trans. Software Eng.,
vol. 28, no. 7, 2002, pp. 654–670.

 4. J. Krinke, “Identifying Similar Code with Pro-
gram Dependence Graphs,” Proc. 8th Work-
ing Conf. Reverse Eng., IEEE Press, 2001, pp.
301–309.

 5. J. Mayrand, C. Leblanc, and E.M. Merlo,
“Experiment on the Automatic Detection of
Function Clones in a Software System Using
Metrics,” Proc. Int’l Conf. Software Mainte-
nance, IEEE CS Press, 1996, pp. 244–254.

 6. S. Bellon et al., “Comparison and Evaluation
of Clone Detection Tools,” IEEE Trans. Soft-
ware Eng., vol. 33 no. 9, 2007, pp. 577–591.

 7. H. Tamada et al., “Java Birthmarks—De-
tecting the Software Theft,” IEICE Trans.
Information and Systems, vol. E88-D, no. 9,
2005, pp. 2148–2158.

AKITO MONDEN is an associate professor in the Graduate School of
Information Science at the Nara Institute of Science and Technology,
Japan. His research interests include software protection and empirical
software engineering. Monden has a DE in information science from the
Nara Institute of Science and Technology. He is a member of IEEE, the
ACM, the Institute of Electronics, the Information and Communication
Engineers (IEICE), the Information Processing Society of Japan (IPSJ),
and the Japan Society for Software Science and Technology. Contact

him at akito-m@is.naist.jp.

SATOSHI OKAHARA is a systems engineer at TIS. His research in-
terests include protection of intellectual property of software. Okahara
has an ME in information science from the Nara Institute of Science and
Technology, Japan. Contact him at sokahara@tis.co.jp.

YUKI MANABE is a doctoral candidate in the Graduate School of
Information Science and Technology at Osaka University. His research
interests include software reuse, software license protection, and
software evolution. Manabe has an MS in information science and tech-
nology from Osaka University. He is a member of the ACM and the IPSJ.
Contact him at y-manabe@ist.osaka-u.ac.jp.

KENICHI MATSUMOTO is a professor in the Graduate School of
Information Science at Nara Institute Science and Technology, Japan.
His research interests include software measurement and software
process. Matsumoto has a PhD in information and computer sciences
from Osaka University. He is a senior member of IEEE, and a member of
the ACM, the IEICE, and the IPSJ. Contact him at matumoto@is.naist.jp.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

