
An Analysis of Gradual Patch Application:
A Better Explanation of Patch Acceptance

Passakorn Phannachitta∗, Pijak Jirapiwong†, Akinori Ihara∗, Masao Ohira∗ and Ken-ichi Matsumoto∗

∗Graduate School of Information Science,
Nara Institute of Science and Technology, JAPAN

Email: {phannachitta-p, akinori-i, masao, matumoto}@is.naist.jp

†Department of Computer Engineering,
Faculty of Engineering, Kasetsart University, THAILAND

Email: b5005135@ku.ac.th

Abstract—Patch submission has been known as one of the most
important activities to sustain the open source software (OSS).
The patch archive can be analyzed to procure many benefit
cognizance for supporting the OSS project works. The recent
models and methods that analyze the patches acceptance are
quite rack of comprehensive; hence, complex activities such as
a committer portioning the submitted patch out and accept are
still excluded from the analysis. Therefore, the results derived
from those methods would be inadequate to conclude the actual
patch acceptance. In this research, we introduce an algorithm for
analyzing patch acceptance including the partial and gradually
accepted conditions. Validating our algorithm, we present our
methods for indicating the partial and gradual application of
the submitted patch between either mailing list and SVN or
Bugzilla and CVS which are the commonly deployed patch-
activities related system. We studied on two well known OSS
projects; Apache HTTP and Eclipse Platform. We obtained a
fascinating conclusion that larger patches have more confident
to be accepted than the smaller contradicted to other analysis
that came from the recent methods.

I. INTRODUCTION

It has been concluded that the eminently influential of
open source software (OSS) comes from the free willing
collaborative effort between a large number of people who
forming into a community [14]. There are many activities
collaborated between people driving the OSS community.
Patch submitting is one of the most crucial activity to sustain
each project belonged to the OSS community that makes OSS
become a truly community-led development. It provides a
major channel for an explicit discussion between everyone
who is actively involving with the project. Whenever a user
or a developer needs to change some project’s components
(i.e. source codes, documents, or figures), they just submit
their own changes as a patch. The submitted patch will have
a further discussion with more people. At last, if the changes
in the patch are agreed, it will be accepted by committed into
the project repository. That means the changes suggested by
that developer will be released with the software in future
version. From these activities, we can analyze and procure
much benefit cognition in many aspects [5], [7], [11]. In our
study, we interested in finding the characteristic of the patches
submitting that will have more possibility to be accepted. It
will help the developers who are going to submit their patch

by giving them some feedback information.
Since the Bird et.at [4] introduced a direct study on patch

submitting and acceptance, there have been many following
studies tried to discover more explanation about the relation-
ship among the patch-related activities in OSS [1], [6], [7],
[12]. The motivation of our study comes from the conclusion
of Weiβgerber et.al studied [15]. They believed small patches
(i.e. a patch contains small changes) are more preferable to the
committer, and it will have more possibility to be accepted.
We figure out that their demonstration does not reflect well
enough. Since they concluded a patch as accepted if and
only if the whole suggested changes are committed to the
repository at once. Consequently, the “accept by committed at
once” condition will severely decrease tho possibility on large
patches to be concluded as accepted. In fact a patch can be
accepted just its portion as well as it can be accepted gradually
(i.e. a method in each commit). Therefore, more applicable
method to consider the size of accepted patch should concern
those conditions.

We devise an algorithm to analyze the portion patch ac-
ceptance concerning only source-code patches. Evaluating our
proposed algorithm, we develop a method to extract patches
from mailing list and Bugzilla. Mailing list is usually used for
verifying patches, and Bugzilla is for tracking bugs. They are
the common channels that developers discuss about patching.
After we extracted all patches, we identify the percentage of
the acceptance in both fully accepted and partial accepted
cases. An analyzing on partial accepted cases differentiate
us from Weiβgerber’s proposed [15], and the including of
gradual accepted cases will make our proposed method unique.
The further analysis will tell us an approximate lines of
changed code are submitted patches more accepted. In this
study, we perform several experiments on Apache HTTP and
Eclipse Platform projects. They have used totally different
environments. Our delivered results are very interesting that
we can confidently conclude that small patches are not more
accepted than the large patches, which contradicts with our
motivated research.

The remainder of the paper is organized as follows: Section
II briefly explains the backgrounds related to the patches
submitting activities. Section III introduces our research ques-

2011 Joint Conference of the 21st International Workshop on Software Measurement and the 6th International Conference

on Software Process and Product Measurement

978-0-7695-4565-3/11 $26.00 © 2011 IEEE

DOI 10.1109/IWSM-MENSURA.2011.36

106

tions. Section IV explains our proposed algorithm and its
implementing method. Section V describes the dataset for
our study, explains the experimental setup, and elaborates the
experimental results. Section VI discusses on our finding and
validating our proposed. Section VII provides conclusion. And
finally, section VIII outlines some future works.

II. BACKGROUNDS

A. Repository

Achieving the sustainable community-led development, an
open-source project needs to reveal its components to public.
There is a common place called repository to store all of
the necessary project correspondences (i.e. source code and
documents). Each stored file or even the whole repository itself
(depends on repository-management software) has a revision
number that uses as a checkpoint indicator for any changes
committed to the repository. Revision number increases auto-
matically in every commit, and sometimes revision number is
also used as a version releasing number.

Nowadays, it’s very convenience since there are more tools
accessible to the software repository such as web browser,
client software, integrated development environment (IDE)
tool, and repository-management software. Normally, general
users need just simple tools (i.e. web browser or basic client
software) to access the repository hence those software provide
a plenty of functions covered their needs. For example, they
can automatically collect software packages together with the
dependencies and install them to their local system using just
those simple tools. On the other hand, developers need more
functions for their works. In practical, they usually use more
powerful tools that can check out any file imprinted with
its revision number directly from repository. They can apply
for any case study, fix bugs or develop a new component.
Recently, there are many well-known repository-management
software such as CVS, SVN, and git that provide many
features for managing files as well as an accessibility to
their metadata such as timestamp. One of the most important
features is logging the changed information for every file in
the repository. These logs can be analyzed in many aspects
for the patch-related activities comprehension.

B. Patches

Patches are widely used in OSS. When a non-committer,
who does not have a permission to access the project repos-
itory directly, needs to alter some portions of source code
for fixing a bug, or appending some new features, patch
is an affective approach. They just check out the source
code from the repository and change it as they want. Then,
they will submit their patch to the committers, who have a
higher privilege, through any patch-submitting or bug tracking
system. After a discussion, if the committers accord with those
changes, they will apply for submitted patch to the target file.
(We call a file that the submitted patch needs to fix, as a target
file.) At last, the changed target file will be committed to the
project repositories. We denote this agreement as the patch is

accepted. On the other hand, if none of the patch’s component
is committed to repository, the patch is rejected.

1) Patch Creation: In practical, a submitted patch is a file
that contains only the difference between the original target
file and the non-committer’s edited version. The difference is
indicated line by line showing which lines are removed and
which lines are inserted. We usually called a file contains the
difference as a diff file, which is later become a submitted as
a patch.

The diff files are commonly implemented in 3 distinctive
formats. They are Standard diff, Unified diff and Context diff
format. Each of them describes the changes in different ways.
Nowadays, diff file can be created by many software. The
simplest method is using Unix-base command; however, it’s
can produce results only in Standard diff which lacks of con-
text information [15] especially the lack of timestamp. Context
information is a crucial information source for performing a
patch-related analysis such as our study in detecting the patch
acceptance. Alternately, the two others Unified diff format and
Context diff format has sounded implementation of context
information section, so they are able to be a source for the
further analysis. We decide to omit the analyze of patches
in Standard diff same as Weiβgerber et al.’s proposed [15].
They’ve already concluded that Standard diff are seldom used,
which we agreed with them.

For example, when a non-committer modifies source code
in //local/m/hi.c as shown in Figure 1 and then he wants to
create a patch for applying with //repos/m/hi.c in revision 1.2
They just use a diff command from repository software and
get the diff result including header, time stamp and changed
information that use as a patch. Figure 2 shows the result
for each diff format applying each diff command on cvs
repository.

1 void main() { 1 #include <stdio.h>
2 printf(“Hi”); 2 void main() {
3 } 3 char n[] = ABC;
4 /* Say Hi */ 4 printf(“Hi %s”, n);

5 }
//repos/m/hi.c (revision 1.2) //local/m/hi.c (modified in local)

Last Modified: May 2010 21:01:44 Last Modified: Jun 2010 17:56:08

Fig. 1. An example on comparing between changed source code and its
target file

C. Partial Patch Acceptance

When a non-committer submits his patch to the OSS com-
munity, others who are actively joining the community can
see and may have some comments discussed on the submitted
patch. The discussion will help the committers to decide if they
should accept that patch or not. In case a submitted patch is
source code, it may be accepted only in portion (i.e., some
lines of code). For an example scenario, after a patch has
already been discussed, if the committers conclude to accept
that patch, but it still has some small defects or it has a
room for an improvement, they will modify some portion of

107

Format Standard Diff Unified Diff Context Diff
Command
(CVS)

cvs diff -r 1.2 /m/hi.c cvs diff -u -r 1.2 /m/hi.c cvs diff -c -r 1.2 /m/hi.c

Header (CVS)

Index: hi.c
==============================
RCS file: /m/hi.c,v
retrieving revision 1.2
retrieving revision

Modified time
— hi.c 28 May 2010 21:01:44 -0000 1.2
+++ hi.c 14 Jun 2010 17:56:08 -0000

Modified contents

0a1 @@ -1,4 +1,5 @@ ***************
> #include <stdio.h> +#include <stdio.h> *** 1,4 ****
2c3,4 void main () { void main () {
< printf(Hi); - printf(Hi); ! printf(Hi);
— + char n[] = ABC; }
> char n[] = ABC1; + printf(“Hi %s”, n); - /* Say Hi */
> printf(“Hi %s”, n); } — 1,5 —-
4d5 - /* Say Hi */ +#include <stdio.h>
< /* Say Hi */ void main () {

! char n[] = ABC;
! printf(“Hi %s”, n);
}

Fig. 2. Obtained Information form each kind of the diff format

that patch before commit it. Certainly, this patch is accepted.
On the contrary, some prior studies concluded this type of
situation as rejected [15]. Moreover, size of patch is also
related to the chance of the fully acceptance, a large patch may
contain several methods that committer can decide to accept
only some methods. We called this a gradually accpetance.
In order to reflect these situations, we need an analysis of the
patch acceptance in portion that include the partial and gradual
patch acceptance case. It will give us more precise details such
as we can achieve information about the patch acceptance in
percentage. For examples, if a patch contained twenty lines of
changed code was submitted, then it is committed just fifteen
lines of diff code. This patch is accepted by 75%. Further, with
this analysis, we can approximate the range of the submitted
patch which has a sufficient confidence to be accepted. This
information could not be obtained with an analysis concerning
only the fully acceptance.

Recently, an analysis in partial and gradual acceptance cases
are still nonexistence. In this research, we want to appraise
how much benefit will we procure when we finer the grain
from the completely whole patch accepted to partial patch
accepted. At least, we believe firmly that the results from our
analysis method will give the OSS developers or users more
comprehensiveness on the patches submitting and acceptance
activities beside the result from recent methods.

III. RESEARCH QUESTIONS

First of all, not only deeper particulars on patch acceptance
we gain by the finer measuring, but we also implicitly gain

benefit knowledge that we are unable to achieved without an-
alyzing the patch acceptance in partial. Our goal on observing
the partial acceptance is to answer two questions:
Q1 We would like to know how large of submitted patches are
really more accepted:
In this research we will analyze the patch acceptance using as
small grain as the lines of submitted code, and we measure
the acceptance in percentage of the partial accepted in each
classified length of patches. For example, we will conclude if
5 of 10 changed lines code in the submitted patch are accepted
as 50% accepted. It is be more appropriate to conclude a patch
as accepted than the recent method that conclude a patch
as accept if the whole patch is accepted [15]. Furthermore,
when we aggregate all information that we have, we will
have sufficient information, and be able to clearly visualize
the acceptance rate and lead us to the conclusion the size of
patches that are really more accepted.
Q2 How long is the considerable lines of changed code of
the submitted patch that have a high confident enough to be
accepted:
Finding how much confidence of a submitted patch to be
accepted will be very precious. The direct benefit is guiding
the non-committer the minimum length of patches should they
submit in order to achieve a high enough confidence of an
acceptance. There is also an indirect benefit, which we think it
is more precious. It will be an excellent and influent feedback
to encourage the non-committer to contribute and submit more
patch if the acceptance rate is high. Non-committer will feel
like they are well-treated by the committers. It also incites the

108

committers to be more open to the non-committers and accept
their patches and suggestion more in case the acceptance rate is
low. Eventually, It will increase the number of mutual activities
that lead the OSS community to have more comprehension
between everyone.

IV. METHODOLOGY

The main idea of our proposed methodology is demon-
strated in the following scenario, and it is illustrated in the
Figure 3.

Fig. 3. Outline Scenario

A non-committer ’A’ checked out file.c from the repository
on 2011/05/01. At that time, the repository’s revision number
is 51. Then he removed two lines and appended one line
of code to that file in his local. To submit these changes,
he prepared a file-v01.diff using the diff command between
the checked out file and his edited. Then, he submitted it.
Not that, this patch has three changed lines of code. At the
software repository side, the corresponded target file may
be committed several times after that patch is submitted. In
this given example, the first adjoining updated on the future
revision (rev.72) of the target file has updated four changed
lines of code, and there are two corresponded changed lines
that are matched with the submitted patch. Its means the
committer had accepted two changed lines of code suggested
by this non-committer. If the analysis ended here, we will
conclude this submitted patch as 66.67% accepted (two of
three lines of code is accepted). However, one other line was
appeared in next revision (rev.87), so at this point of time this
patch is concluded as fully accepted. Next, in file-v02.diff’s
case, the next adjoining updated revision (rev.72) contained
only one corresponding changed line, and there was not any
other corresponding changed line in that future revisions, so
we will conclude this patch as 50% accepted.

In detail of our implementation, we divided our proposed
method into three phases. They are Patch extraction, Diff file

creation, and Partial acceptance identification. The first and
the second phase is a data preparation. At the Patch extraction
phase, since we decided to study on two systems, Mailing list
and Bugzilla, which are totally different, we need two specific
patch extraction methods. There are several recently proposed
methodologies for extracting patches from mailing list [2], [3],
[9] . We choose to improvise and extend the Weiβgerber et al.’s
proposed [15] . Their proposed method is straightforward that
is the most suitable for us since improving a method to extract
patches from an email is out our scope. On the other hand, we
have to develop a method to extract patches from bug-tracking
system from the scratch since such an explicated proposed
method is nonexistent. After the patch extraction is finished,
we will start the second phase at the software repository side.
Our goal on this step is to gather required information in
repository that can match with the extracted patches data.
Matching them will lead us to obtain the acceptance rate.
We also have two types of software repositories: CVS and
SVN. For each type of repositories, first, we gather all revision
number and timestamp of each file in the repository, and
then we dump them to a file called committed log. Note that
there is one commit log per each target file. Next, we will
detect the difference (lines of changed code) between each
adjoining updated revision and dump all the difference into a
file called diff file. At the third phase, we will compare each
line of changed code between the repository’s diff file and
the extracted patch. The final result will deliver us the partial
patch acceptance information.

A. Patch Extraction

1) Patch extraction from mailing list: At the beginning step,
we follow the Weiβgerber et.al’s proposed [15] to extract raw-
patch from emails. The goal of this phase is to transform those
extracted raw-patch data into proper format. There are three
kinds of patches that we need to identify at first. From this
step we will exclude the standard diff format from our study
since it has insufficient information. We then break the rest
of Context diff and Unified diff format into readable line of
changed code. After that we make records composed all the
necessary information. Let a tuple (Ip, Pp, tp, Lp, [cp]) denotes
a patch, where Ip is the patch’s index, Pp is the patch’s
absolute path that we can identify the corresponded target
file in the repository, tp is the patch’s submitting time as a
timestamp of each patch. It is indicated at the mail header. Lp

is the total number of the changed lines of code, and [cp] is
a list contained all the individual changed lines of code. Note
that we choose the line of changed source code as our grain
since it is the smallest meaningful grain that we can assure
the intense committed code.

There is an issue on indicating (Ip, Pp, tp, Lp, [cp]) from raw
patch data. It is about the time zone that affects the timestamp
(tp). We observe our data manually and found that there are
many types of time zone indicator such as UTC, EST, and
EDT. Without parsing them into a common time zone, it will
certainly affect the accuracy of the analysis. Even so this issue
has not been discussed in any existing works. In our work, we

109

decide to parse all time zone into UTC. At last, After we finish
composing the patches record, we will store them in database.

2) Patch extraction from Bugzilla: We developed a sim-
ple web-site crawler for gathering the raw patch data from
Bugzilla, because it is deployed in web-base application. The
crawled data are in HTML format, which we need to parse
them and discover where the raw patch data are located. We
use an Html-parsing tool named Jericho HTML parser [8].
It is an outstanding effective HTML parser implemented in
Java [10] . Unfortunately we have ascertained that patches
are always augmented in the attachment section of Bugzilla,
so that we need to enhance our simple web crawler into a
specific one dedicated for this task. After we had gathered
the attachments, we explored them manually, and we have
found that there are many types of the file archive containing
the patches. Note that our developed web crawler has already
respect to the politeness policy on crawling the Bugzilla.

Since everyone is allowed to submit any type of files to
Bugzilla. (i.e., patches, documents, or figures). We have to
distinguish the raw patches out of the others. Ideally, if a file
contains some patch-indicating messages, we can conclude
if that file is a patch easily. However the patch-indicating
messages are not widely used, so we need a deepen inspection
to find out more patch-indicated characteristics. We develop a
heuristic to handle that issue. It works as following. At the first
step, we recursively extract all the attach file archives ignoring
any non text-base file. (i.e. .jpg and .dll) Then, we scan each
text-base file thoroughly, and match them with the patch’s
keywords. Those are “Index:”, “RCS file:”, or “diff”. At last,
we will conclude if an observing file is a patch by finding
the name of an existed target file, which the patch needs to
fix. Finding the corresponded target file is mandatory because
it is impossible to analyze the patch acceptance without that
information. From this step we can follow the method in the
mailing list patch extraction those are identifying the patch
type, excluded the standard diff, clarifying the time stamp,
composing them into records and at last store them into
database.

B. Diff-file extraction

At the beginning of this phase, we check out all the
project’s source code from the repository. Then, we create
its corresponding committed log linked by its file name.
Figure 4 shows an example of our committed log. Each line
represents one revision. There are three columns separated by
a whitespace in each line. Numbers in the first column indicate
the revision number. The second column and the third column
indicate the timestamp.

After we had all committed logs of every file in the repos-
itory, we create diff file that contain the difference between
the adjoining updated revision. In our study, the diff file is in
context diff format.

We also treat the diff files as a tuple as the extracted patch
same as patches. Let a tuple (Ir, Pr, tr, [cr]) denotes each diff
file. Pr is the committed source code’s absolute path, Ir is its
index, tr is its timestamp. We also parse the time zone into a

##Rev.No. Committed timestamp
666184 2008-06-11 01:31:59
577830 2007-09-21 02:40:34
106695 2004-11-27 17:23:59
53744 2004-10-05 05:01:25

Fig. 4. Committed log file example

common timezone as the patches. [cr] is the list of changed
line in a revision. Note that, the future analyzing steps does
not require a revision number because the timestamp can serve
us the same propose with more flexibility. We also composed
(Ir, Pr, tr, [cr]) into records and store them in a database.

C. Partial Acceptance Identification

Starting on this phase, we have two databases. They contain
patches (Ip, Pp, tp, Lp, [cp]) and diff files (Ir, Pr, tr, [cr]). If a
patch is accepted, we need to find how much in percentage
is it accepted comparing between fully accepted and partially
accepted. Further, we need to know in global view that how
long in term of line of changed code do the submitted patches
tend to be more accepted. We define a time scope ∆t to
evaluate the acceptance. We will conclude that a patchi is
accepted if and only if there are some lines of the submitted
code have been committed with its target file to the repository
within ∆t. Or we can say that a patchi is accepted iff:

(Ip = Ir ∨ Pp ∼match Pr)
∧ tp +∆t ≤ tr
∧ (∃l |l ∈ [cp]) ⊆ [cr]

Note that this is more flexible than the fully accepted condi-
tion, which is held iff:

(Ip = Ir ∨ Pp ∼match Pr)
∧ tp +∆t ≤ tr
∧ (∀l |l ∈ [cp]) ⊆ [cr]

Ideally, the condition Ip = Ir is sufficient to match
between the submitted patch with its corresponded target file.
However in practical, we observed and found many records
have a duplicate Index or the non-committer has neglected
the Index field; therefore, in order to match them, we have
to match between their absolute paths (Pr and Pp) instead.
Using a heuristic based on the longest string matching with
the absolute path; we can identify which target file that the
observing patch is belonged to. In case the matching’s result
return more than one candidate, we will ignore it because of
the ambiguity. Finally, the acceptance rate for an individual
patchi is obtained by

AcceptRate(patchi) =

∑
l | (l ∈ [cp] −→ l ∈ [cr])

Lp

V. EXPERIMENT

We apply our proposed methodology for studying the par-
tial acceptance with two well-known open source software
projects, Apache HTTP and Eclipse Platform.

110

1) Apache HTTP: Apache has been introduced as a
community-led development software foundation since 1999.
Nowadays, there are many fascinating sub-projects in the name
of Apache such as web server, search engine development
framework, and distributed computing framework. They are
currently deployed around the world. Our study will focused
on the very first Apache’s sub project named Apache HTTP.

2) Eclipse Platform: Eclipse is a well-known interface de-
velopment environment (IDE) project. It provided many IDEs
those are recently in-use in many programming languages
especially the most well known, Java Eclipse. Eclipse project
was created in the name of IBM in 2001, and later became
an open-source project. Today, Eclipse still uses the same
name for its basic IDE. Eclipse also has many additional IDE
features as sub projects using name extension from Eclipse
for any such as Eclipse Platform, which is our focused in this
study.

A. Experimental Setup

Study on two main routines with two OSS projects, at
first, we perform a case study in Apache HTTP project
between its patch discussing system called mailing list, and
its project repository named SVN. The second study routine
analyses Eclipse Platform project between its bug-tracking
system called Bugzilla and its repository called CVS. In the
experimental setup, we prepare data by transforming raw data
into records and then composing them into databases using
methods that we mentioned in the previous section. In both
study routines, we observe the changed line of code in each
patch in two aspects. The first aspect is analyzing them as
plain texts as they were submitted, but in the second we
collapsed all white spaces before perform the analyzing. The
assumption behind these two aspects is the committers are
able to manually apply the submitted patch for the source code
in the repository. It may produce some white spaces shifted
that would lead to an inaccuracy analysis. Table I shows the
quantity of each patches data source and each repository from
two datasets respectively.

TABLE I
THE CHARACTERISTIC OF OUR DATASETS

(a) Repositories
Apache HTTP Eclipse Platform

Repository SVN CVS
Observing period 1996/01/01 - 2002/12/31 2001/10/01 - 2007/12/31

#File 4,634 49,681
#Changed line 1,686,133 11,519,296

(b) Patches Data Source
Apache HTTP Eclipse Platform

BTS Mailing list Bugzilla
Observing period 1998/01/01 - 2002/12/31 2001/10/1 - 2007/12/31

#Patch 6,370 42855
#Target file 2,241 28270

#Changed line 171,354 13,086,169

Raw data from Eclipse Platform are about ten times larger
than another from Apache HTTP project in both total numbers
of file and total numbers of changed line. We will call the

Apache HTTP data as a small dataset and Eclipse Platform
data as a large dataset. The ratio between target files stored in
repository, and the target file that patches intend to fix is quite
equal, which is about 1:2.

For answering the first question about the percentage, the
acceptance percentage needs to be divided into several classes
for the evaluation. We decide to classify them into five classes.
The first is 100% accepted which we denote as fully accepted.
Then, the others are partial accepted. They are (0%, 25%),
[25%, 50%), [50%, 75%), and [75%, 100%) accepted. Next,
in order to achieve length of the submitted patches, we also
divide the submitted patches into groups by their length. We
also classify them into five ranges as following, 1-4 line(s),
5-9 lines, 20-49 lines, 50-199 lines, and 200 lines and more.
We denote 1-4 line(s) as a small patch [15]. We also denote
the class of 200 changed lines and more as a large patch. For
the rest of the range, we select the gap between each range
growing in exponential.

B. Experimental results

For the following experiments, we set the time scope (∆t)
parameter as 7, 30, and 365 days. From an assumption that
a patch could in the sight of the committers and later has
an influence to them to decide if it should be accepted only
within some time limit. We assume the time scope of 7, 30,
and 365 days; hence, they are meaningful thresholds (a week,
a month, and a year). In the partial acceptance identification
phase, at the first step, we deploy our method on the small
dataset, Apache HTTP. Firstly, we test how significant between
collapsing and non-collapsing white spaces for each line of
changed code. They are expressed in Figure 5 setting ∆t =
365 days.

Fig. 5. Comparing between non-collapsed and collapsed white spaces on
Apache HTTP dataset. Setting ∆t = 356 days

The Y-Axis indicates the total number of submitted patches,
and the X-Axis indicates the range of submitted patch that we
classified in five classes. Areas filled with different patterns
in the each column show the percentage of the acceptance of
each class. For example, the left-most bar on the left graph
indicates the acceptance of the small patches. There are about
2,750 submitted patches in this range. The area filled with
white (The bottom most) shows that 2,000 patches are rejected.

111

Fig. 7. Acceptance percentage from Apache HTTP dataset

Fig. 6. Comparing between setting ∆t = 7 days and 30 days on Apache
HTTP dataset. Both are collapsed white spaces

Alternately, the population in the top most area (filled with the
checkerboard pattern) in this bar is about 300 patches. This
area indicates the 100% accepted. For this case, it’s mean
2,650 small patches are submitted and about 300 of them are
completely accepted.

The collapsed white spaces delivers slightly better results
(i.e. more acceptance rate); however, they are quite insignif-
icant. Besides, both of non-collapsed and collapsed aspect
delivers the same trend, in the further results we will illus-
trate only from the collapsed whitespace. Figure 6 shows
the comparing between ∆t = 7 days and 30 days only in
collapsed white spaces. These preliminary results show that
the acceptance rate deceases by the decreasing size of ∆t.
The different size of ∆t will then be discussed after the
experiments.

From our small dataset, the non-committers obviously prefer
to submit small patches to the large patches. Almost a half of
the submitted patches are a small patch. We also found that
majority of submitted patches in any class is rejected. It is
agreed with several existing works [4], [13], [15]. However, we
found an interesting issue from the results that larger submitted

patches seem to be more accepted. In order to proof that, we
put a rough estimation on the graphs, and Figure 7 illustrates
the patch acceptance in percentage, which is more expressly
stated in the rate.

The Y-Axis indicates the percentage of the submitted patch.
The X-Axis also indicates the range of submitted patch that
we classified in five classes same as the previous type of chart.
This type of chart displays the result in percentage which is
better for concluding the accepted rate. For example, the left-
most column on the left most graph, which is explained with
Figure 5, that 300 patches of 2,750 submitted patches are fully
accepted. It also means 11% of the submitted patches in this
class are fully accepted. Alternately, 2,000 of 2,750 patches
that are rejected are about 72% of the population shown in
white area.

Figure 7 concludes that longer patches are more accepted.
It is contradictory to the proposed of Weiβgerber et.al in
small patches get in! [15], since their tests concern only the
fully accepted. Likewise, the @100% areas in Figure 7 that
represent the fully accepted from every ∆t are also decreased
by the larger size of the patch.

Next, we perform further analysis with our large dataset,
Eclipse Platform. We use the same varieties of ∆t time scope
as 7, 30, and 365 days. Their corresponding results with
collapsing whitespace are reported in following the Figure 8.

For instance, we observe that Eclipse Platform has less
acceptance rate than Apache HTTP. We are pretty sure that
is caused by Eclipse Platform has about ten times more on
candidates comparing to Apache HTTP. At the patch submitted
histogram, it’s different from Apache HTTP that quite larger
patches are more submitted. However, accepted rate’s trend in
percentage is as same as Apache HTTP’s.

VI. DISCUSSION

First of all, we would like to express that our proposed
method behind a sounder hypothesis delivers a contradictory
result to the recent research [15]. As we explained in the

112

Fig. 8. Experimental results from Eclipse dataset

previous section that the patch acceptance results analyzing
from a rough grain analysis wont’t be reflected well enough.
The following of this section will discuss on what we have
found in this work and express the confidence of our proposed.

A. What do we gain from the varies of time scope?

Comparing with both Bird et.al and our motivated research,
Weiβgerber et.al [4], [15], the results derived from our
method are more superior. Since their proposed compared only
between a patch and one repository file only in single revision.
It is different from us that we compare between a patch and
repository files through the timeline until it is fully accepted
or it reaches the time limit. This yields more reflective to
the actual activities since a patch can be accepted gradually.
Another interesting topic is the longer time scope leads us to
more acceptance rate besides it still respects with the patch
acceptance trend (i.e. ∆t = 365 days in each experiment
delivers up to two times of accepted rate comparing to ∆t
= 7 days). Since we certainly aware of the duplicate counting
by ensured that we count each changed line of code just
once, we believe the more acceptance rate that we gained is
sounded. In addition, the different gap on larger patches is

more significant. It also concludes that a patch could be more
gradually accepted. The sounded reason that the different time
scope affects more on larger patches is a large patch would
have higher possibility to contain more components. Conclude
that the more components it has, the more dependencies it
needs to clarify. That’s why comparing it with only one
revision sounds not a good idea.

B. Situations to accept the patch in partial

There are two main situations that can explain the partial ac-
cepted. The first is the committer accepted the submitted patch
without making any edited. The second one is the committers
use the submitted patch as an outline. Then, they code the
new patches by themselves and committed. The first situation
can be fully detected using our methods. Alternatively, only
the approximation approach can handle the second situation.
For example, Bird et.al [4] tried to justify that patch submitted
paradigm but only the simple cases can be handled (i.e. they
can detect if some parts of a variable have been changed.)
However, if the whole source code has been refined, their
approach would not work. In our work, we did not develop
a method to handle those situations. The result that compares

113

between the collapsed and non-collapsed whitespace, which
concluded as their differences are quite insignificant, can
explain that it tends to be just few occurrences on the second
patch submitting paradigm. The difference between collapsed
and non-collapsed whitespace should have been much higher,
if the committers usually accept patches using their method
mentioned on the second situation.

C. Elaboration on the size of accepted patch

Our results concluded the contradictory that the lager
patches have more acceptance rate. In this subsection, we
would like to discuss on the length of changed line of code.
We’ve given some explanations in the previous section that
we distribute them with the exponential gap growing from
four lines until 200 changed lines of code. They are also
having their meanings. The short patches, which are below
five lines, would be just a little changed, collecting some
errors. It is the most particular size submitted to Apache
HTTP. Resulting from the highest probability for the fully
accepted, Weiβgerber et.al concluded this type of patches has
the most acceptance rate [15] . The length between [5,20)
changed lines of code is the average length of interface or
method modification. [20,50) and [50,200) lines seem to be
the component modification, and error correction with has
greatly large dependencies respectively. For the largest size
of patches, we believe it will be for fixing such a severe error,
error correcting on such a huge component, or suggesting a
totally new component. From our results, the fully accepted
area decreases by the larger size of submitted patches. The
fully accepted of the larger patch is rare since the submitted
patch must be one that is perfectly function with all the
dependencies. Since more than one hundred line of code must
be accepted in order to conclude the 50% accepted in any
large patch, it make us believed our test methods particularly
prone to noises. So we have a high confidence to believe that
our experimental results are valid.

D. Acceptance confidence when submitting a patch

Answering our second research question about the proper
length for the submitted patch, the experimental results figures
let us know briefly that the longer patch has higher confidence
to be accepted. At first, we figured out that it is depended on
projects to conclude the minimum length of submitted patches
that have more than 50% acceptance confidence. (i.e. Half
of submitted patches in this length are rejected) Submitting
a patch to Apache HTTP will achieve that confidence since
a very small length of five changed lines of code. On the
other hand, submitting a patch to Eclipse Platform needs more
than twenty changed lines of code in order to achieve that
confidence. It is obvious to conclude committers in Eclipse
platform has less openness comparing with Apache HTTP. If
this analyzed figure become a common indicator for a cross
project evaluation, it will encourage non-committers to have
more contribute to Apache HTTP, as well as incite the Eclipse
Platform’s committer to accept more patches. However, our

result guarantees that the larger patch non-committer submitted
the higher confidence that the patch will be accepted.

VII. CONCLUSION

In this research, we introduced an algorithm for analyzing
the patches’ partial acceptance. It is more suitable to conclude
the patch acceptance characteristic than the recently proposed
[15] that concluded the small patches are more accepted
by judging a patch is accepted only on when the whole
patch is accepted. However, a large patch may contain many
components that could be accepted gradually in actual.

Evaluating with our algorithm, we construct a method, and
perform two study cases with two well-known OSS project.
They are Apache HTTP and Eclipse Platform, which we treat
as a small dataset and large dataset respectively. We have two
types of patches’ data sources to extract parches; mailing list
and Bugzilla. Extracting patches from mailing list we have
improvised Weiβgerber’s techniques [15] and extended them
with our heuristics. Alternatively, for the Bugzilla, since an
explicitly proposed technique is nonexistence, we have to
develop our heuristic-augmented website crawler for extracting
patches from Bugzilla. We will ascertain the application of the
extracted patch in the project repositories line by line, which
we believed it’s a proper grain. We also assume the time scope
when a patch is valid through the sight of a committer.

We procure many interesting results from our partial patches
acceptance analysis. Both of our dataset delivered us that the
rate of patch acceptance increases by the length of patches
size. We also found that the confidence in achieving a high
confidence in submitted a patch and it will be accept is
depended on the project. The results from the vary of our
defined patch analyzing time scope have assured that a patch
could be gradually accepted, since larger patches composed
with more components have more affected from the longer
time scope.

VIII. FUTURE WORK

Our proposed can identify a submitted patch that had some
minor refinement by the committer before it was committed.
Incidentally, if the committer intended to refine and alter all
parts of the submitted patch. Recently, there is still nonexis-
tence approach to include this situation into the analysis. It
is very interesting if we can achieve those explanations. They
will lead us to the basis of patch acceptance characteristic, so
that the acceptance rate results derived from the changed lines
of code will be perfectly sounded and reflected.

Beyond our proposed in this research, which analyzed the
patch acceptance in line of code. In the next research, we will
explore more aspect and analyze the other features of code.
For example, we will discover how influence of the number
of class, code coverage, and cyclomatic complexity will affect
the acceptance rate. Those information will be a broader
perspective in analyzing patch submitted and acceptance, since
the committer may be concern on those attributes in order to
accept a patch.

114

ACKNOWLEDGMENT

The first and second authors are grateful to the internship
program cooperated and supported between Kasetsart Univer-
sity, Thailand, and Nara Institute of Science and Technology,
Japan. It bestows a grant as well as an opportunity for
undergraduate student to achieve a wealth experience in abroad
graduated school research.

This work was conducted as part of StagE Project (the
Development of Next Generation IT Infrastructure), Grant-in-
Aid for Scientific Research (B), 23300009, 2011, and Grant-in-
Aid for Young Scientists (B), 22700033, 2011 by the Ministry
of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

[1] J. Asundi and R. Jayant, “Patch review processes in open source software
development communities: A comparative case study,” in Proceedings
of the 40th Annual Hawaii International Conference on System Sciences
(HICSS ’07), 2007.

[2] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source code
from e-mails,” in Proceedings of the 2010 IEEE 18th International
Conference on Program Comprehension (ICPC ’10), 2010.

[3] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in Proceedings of the 2008
international working conference on Mining software repositories (MSR
’08), 2008.

[4] C. Bird, A. Gourley, and P. Devanbu, “Detecting patch submission and
acceptance in oss projects,” in Proceedings of the Fourth International
Workshop on Mining Software Repositories (MSR ’07), May 2007.

[5] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K. Lukins, “Recovering
traceability links between source code and fixed bugs via patch analysis,”
in Proceeding of the 6th international workshop on Traceability in
emerging forms of software engineering (TEFSE ’11), 2011.

[6] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” Computer Supported Cooperative Work
(CSCW)d, 2005.

[7] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code review
by predicting reviewers and acceptance of patches,” Research on Soft-
ware Analysis for Error-free Computing Center Tech-Memo (ROSAEC
MEMO 2009-006), 2009.

[8] Jericho html parser. [Online]. Available: http://jericho.htmlparser.net
[9] Y. C. Jie Tang, Hang Li and Z. Tang, “Email data cleaning,” in

Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining (KDD ’05), 2005.

[10] B. King and I. Provalov, “Cengage learning at trec 2010 session track,”
in The Nineteenth Text REtrieval Conference Proceedings (TREC 2010),
2010.

[11] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceeding of the 33rd
international conference on Software engineering (ICSE ’11), 2011.

[12] B. Sethanandha, “Improving open source software patch contribution
process: methods and tools,” in Proceeding of the 33rd international
conference on Software engineering (ICSE ’11), 2011.

[13] B. Sethanandha, B. Massey, and W. Jones, “Managing open source
contributions for software project sustainability,” in Proceedings of
Technology Management for Global Economic Growth (PICMET ’10),
July 2010.

[14] A. M. St. Laurent, Understanding Open Source and Free Software
Licensing. O’Reilly Media, 2004.

[15] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 international working conference on Mining
software repositories (MSR ’08), 2008.

115

