
An Analysis of Cost-overrun Projects using Financial Data and Software Metrics

Hidetake Uwano

Department of Information Engineering

Nara National College of Technology

Nara, Japan

uwano@info.nara-k.ac.jp

Akito Monden

Nara Institute of Science and Technology

Graduate School of Information Science

Nara, Japan

akito-m@is.naist.jp

Yasutaka Kamei

Graduate School and Faculty of Information Science

and Electrical Engineering

Kyushu University

Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

Ken-ichi Matsumoto

Nara Institute of Science and Technology

Graduate School of Information Science

Nara, Japan

matumoto@is.naist.jp

Abstract—To clarify the characteristics of cost-overrun

software projects, this paper focuses on the cost to sales ratio of

software development, computed from financial information of

a midsize software company in the embedded systems domain,

and analyzes the correlation with outsourcing ratio as well as

code reuse ratio and relative effort ratio per development

phase. As a result, we found that the lower cost to sales ratio

projects had the higher relative effort ratio in external design

phase, which indicates that spending less effort in external

design can cause decrease of profit. We also found that high

outsourcing ratio projects had higher cost to sales ratio, and

that projects having moderate code reuse ratio had lower and

disperse cost to sales ratio, which suggests troubles in code

reuse can damage the profit of a project.

Keywords-Cost overrun project, Cost to sales ratio,

Development phase, Outsourcing, Reuse

I. INTRODUCTION

The excess production cost over scheduled cost is
commonly seen in software development [1]. Major reasons
for such project cost-overrun include insufficient
requirement analysis, lack of project management, poor
effort estimation, and frequent change requests.

To understand the characteristics of such “failure”
projects, case studies and assessments for failure project
analysis have been performed [2][3][4]. Also software risk
evaluation (SRE) techniques [5][6][7] and estimation method
for project failure [8] were proposed. These studies are
useful for reducing project failure for future software
development.

This paper focuses on the cost-to-sales ratio, which past
researches had not focused, to distinguish success and failure
of software projects. Although financial information of
software development projects is an important source to
understand the project results, few studies have been made so
far. The cost to sales ratio directly indicates project’s
profitability; hence, it is useful to analyze relationships

between the cost to sales ratio and software metrics such as
effort in each development phase, to clarify factors of
software success/failure in terms of project profit.

In our analysis, we computed the cost to sales ratio from
financial data collected in a midsize software development
company. This metric indicates how much profit was gained
in each project excluding general administrative cost such as
office rent cost. The project can be considered as “failure”
when the cost to sales ratio was greater than a threshold
(90% in this paper.)

To characterize each project, we focus on (1) relative
effort ratio in each development phases, (2) outsourcing ratio,
and (3) code reuse ratio. These metrics are suitable to our
analysis because they are directly connected with project
types and/or management strategies.

The rest of the paper is organized as follow: Section 2
and Section 3 describe a project data and metrics used in the
analysis. In Section 4, we discuss the result of the analysis.
Finally we conclude the paper in Section 5.

II. TARGET PROJECT

In this analysis, we used a dataset consist of 95 projects
held in the midsize software development company within
two years. The main business domain of the company is
embedded software development for wired/wireless
communication systems, image processing systems, and
public transportation systems.

In this company, most projects are contract-based
development; they develop software based on requirements
given by other organizations. Hence, most projects consist of
development phases after the requirement analysis, i.e.
external design, internal design, implementation, unit testing
and integration testing. To focus on the main development
activity of this company, in our analysis we excluded
projects that had spent more than 50 percent effort for
requirement analysis or maintenance.

Table 1 show statistics of a dataset we used in the
analysis, which include median, average, standard deviation,

and the number of data cases (projects). In this paper, the
production cost includes personnel cost, material cost,
outsourcing cost, and other costs consumed in a project,
while it excludes general administrative cost. Source lines of
code (SLOC) is counted as the following three variables:

Created lines

The number of lines newly created in the target project.

Reused lines
The number of lines created in other projects and used in

the target project without modification.

Modified lines
The number of lines created in other projects and

modified in the target project.

In Table 1, median of effort in the requirement analysis

phase is zero because most of projects started from the
external design phase. Also, median of modified lines is

zero; many projects had reused lines without modification in
the source code.

III. METRICS

This Section describes three metrics that can

characterize the cost-overrun projects, by analyzing their

relationship with cost to sales ratio of projects, which

defines the success/failure of projects. Table 2 shows a list

of the metrics and their statistical summary.

A. Cost to Sales Ratio

Cost to sales ratio is a percentage of production cost in
sales of a target project; less than 100 percent denotes the
project gain a profit by itself. However, we also need to
consider general administrative cost such as office rent
and/or equipment’s upkeep is required to run the company.
Hence, cost to sales ratio of each project must be less than a
certain threshold smaller than 100.

To determine the threshold for this company, the authors
interviewed with two managers. As a result, we confirmed

TABLE I. STATISTICS OF A DATASET USED IN THE ANALYSIS

Missing

value (%)
Median Average

Standard

deviation

Sales (1,000 JPY) 0 15,574 34,398 46,042

Production cost (1,000 JPY) 0 13,620 30,298 39,986

Requirement analysis 0 0 199 390

External design 0 845 1,828 2,650

Internal design 0 359 1,177 2,023

Implementation 0 530 832 1,158

Unit testing 0 252 567 817

Integration testing 0 366 823 1,421

Effort(Man-Hour)

Other* 0 283 864 1,332

Created lines 21.1 14,354 61,110 181,828

Reused lines 21.1 88,400 278,153 520,187
Source Lines of Code

(SLOC)
Modified lines 21.1 0 4,096 8,883

*Operations, education, maintenance, etc.

TABLE II. STATISTICS OF DERIVED METRICS

Metrics
Number of

data
Median Average

Standard

deviation

Requirement analysis 0.00 5.10 7.86

External design 32.81 32.45 10.80

Internal design 17.70 17.49 9.08

Implementation 15.64 17.40 8.59

Unit test 10.68 11.16 4.76

Relative

effort

ratio

Integration testing

68

14.46 16.40 7.71

Outsourcing ratio 95 52.54 43.33 27.11

Code reuse ratio 75 75.29 65.48 33.28

the average general administrative cost is about 10 percents
of sales, which means the threshold of cost to sales ratio in
this company is 90. In this paper, a project that has 90 and
more cost to sales ratio is labeled as a “failure” project, and a
project less than 90 is labeled as a “success” project. We also
confirmed the classification of success/failure project by cost
to sales ratio meet the manager’s intuition of project
success/failure.

Fig. 1 shows a distribution of cost to sales ratio in the
dataset. About 70 percent of projects are classified as
“Success” project, and 87 percent of projects are in the range
from 70 to 100 cost to sales ratio.

B. Relative Effort Ratio

Relative effort ratio is a percentage of effort (man-hours)
spent in each development phase to the total man-hours spent
on a whole project. For each phase, it can be considered that
a project having much smaller or greater relative effort than
other projects has a high risk of failure. For example, a
project that had spent smaller effort in the requirement
analysis and/or design phase can cause excess coding and/or
testing effort because of need of rework in requirement
analysis and/or design in later phases.

In this analysis, we selected 68 projects as an analysis
target, which performed all five development phases
(external design, internal design, implementation, unit test
and integration test) to remove the effect of unusual projects.

C. Outsourcing Ratio

A lot of software development organization outsources a
part of development phase for flexible human resource
management and/or reduce the development cost.
Preparation of sufficient manpower to each development
project is one of the most important issues for
managing/administrative person. A proper use of outsourcing
in software development increases flexibility and efficiency
of management, however, it also increases a risk of project
failure.

In this paper, outsourcing ratio in each project is
calculated as proportion of outsourcing cost to production
cost of a project. 95 projects data were used for this analysis.

D. Code Reuse Ratio

Code reuse ratio depicts how many lines of source code
were reused from past software. Reuse of source code or
design document from past similar software is essential to
efficient and speedy development. Reused source code has a
better quality than new source code in general because it was
already tested when the source code was created. Therefore,
higher code reuse ratio will decrease the risk of excess test
effort for unpredictable defects correction. On the other hand,
understanding of the past project for correct reuse of source
code is time-consuming and difficult task especially when
the project has poor documentation. Code reuse without
correct understanding will increase the cost of defect
correction and testing.

Many recent software products were developed as
maintenance or enhancement projects, hence, to understand
the effect of code reuse to the project result is essential. In
this paper, code reuse ratio is calculated as proportion of
reused lines to total lines of code (sum of created lines,
reused lines, and modified lines.) In the analysis, we used 75
projects that had no missing value in code reuse ratio.

IV. RESULTS AND DISCUSSION

A. Relative Effort Ratio

Table 3 shows relative effort ratio in each development
phase. The table shows that success projects tend to have
higher relative effort ratio in external design phase and lower
relative effort ratio in requirement analysis phase. There is
no tendency at internal design, implementation, unit testing,
and integration testing phases. Fig. 2 shows a box-plot of
relative effort ratio in external design phase. Each box and
whiskers describe a range of relative effort ratio in external
design phase. The figure shows failure projects have larger
box (i.e. disperse relative effort ratio) than success projects.
The result of Mann-Whitney U Test shows significant
difference (p=0.015) between success and failure projects.

TABLE III. RELATIVE EFFORT RATIO IN EACH PHASE

Project

result
Median p-value

Failure 3.37 Requirement analysis

(%) Success 0.00
0.103

Failure 28.18
External design (%)

Success 34.31
0.015

Failure 19.86
Internal design (%)

Success 17.22
0.396

Failure 16.66
Implementation (%)

Success 15.41
0.264

Failure 10.29
Unit testing (%)

Success 10.68
0.545

Failure 13.67 Integration testing

(%) Success 15.21
0.501

Cost to sales ratio

F
re
q
u
e
n
c
y

Figure 1. Frequency distribution of cost to sales ratio.

The result suggests failure projects spend insufficient
man-hour in external design phase, and caused more reworks
and defect corrections. Oh the other hand, success projects
could avoid reworks and defect corrections by the proper
external design with sufficient effort.

B. Outsourcing Ratio

Median value of outsourcing ratio in success projects and
failure projects were 47.2 percent and 54.3 percent
respectively. Fig. 3 shows that outsourcing ratio in both
groups were greatly dispersed, and there is no significant
difference (p=0.501.)

We also investigated the correlation between cost to sales
ratio and outsourcing ratio for more detailed understandings.
We divided projects into three groups:

1) Largely

Project having 50 percent or more outsourcing ratio.

2) Partly
Project having greater than 0 percent and below 50

percent outsourcing ratio.

3) None
Project of zero (0 percent) outsourcing ratio.

Fig. 4 describes a box-plot of cost to sales ratio in each

group. The figure shows higher outsourcing projects tend to
have higher cost to sales ratio. Median values of outsourcing
ratio and cost to sales ratio in each group are shown in Table
4. The result of Mann-Whitney U Test showed significant
differences (p=0.034) between “Largely” outsourcing
projects and “None” outsourcing projects. This result can be
interpreted as follow: largely outsourcing projects need
additional efforts for meetings with contractor and/or
acceptance test to deliverables. In addition to this, defect
correction of deliverables created by the contractor tends to
take longer time than that of in-house documents. Hence in
total the project will delay and consumes unscheduled
resources.

C. Code Reuse Ratio

Code reuse ratio in success/failure projects are shown in
Fig. 5. Median values of “success” and “failure” projects
were 66.7 percent and 87.0 percent respectively. However, in
both group, large variance of code reuse ratio and projects
that had very high code reuse ratio were observed. As a
result, there is no significant differences (p=0.139) between
them.

More detailed analysis of code reuse ratio is described in
Fig. 6. We hypothesize that a difference of code reuse ratio
represents different types of project. Here, projects were
divided into three groups:

TABLE IV. COST TO SALES RATIO IN DIFFERENT OUTSOURCING

RATIO PROJECTS

 # project
Outsourcing

ratio

Cost to

sales ratio

Largely 49 64.3% 87.6%

Partly 29 31.2% 85.2%

None 17 0.0% 80.1%

R
e
la
ti
v
e
 e
ff
o
rt
 r
a
ti
o
 i
n

e
x
te
rn
a
l
d
e
s
ig
n
 p
h
a
s
e

Success Failure

60.0

40.0

20.0

0.0

Figure 2. Relative effort ratio in external design phase of

success/failure project.

O
u
ts
o
u
rc
in
g
 r
a
ti
o

60.0

40.0

20.0

0.0

100.0

80.0

Success Failure

Figure 3. Outsourcing ratio of success/failure project.

C
o
s
t
to
 s
a
le
s
 r
a
ti
o

Outsourcing ratio

60.0

120.0

140.0

100.0

80.0

None LargelyPartly

 Figure 4. Box plot of cost to sales ratio in different outsourcing

ratio projects.

1) New

Project having zero (0 percent) code reuse ratio.

2) Enhancement
Project having greater than 0 percent and below 99

percent code reuse ratio.

3) Maintenance
Project having 99 percent or more code reuse ratio.

Fig. 6 shows low cost to sales ratio in “maintenance”

projects and “new” projects. On the other hand,
“enhancement” projects had higher (and also disperse) cost
to sales ratio than others. Basically, sales price of software is
determined from production cost estimated at the beginning
of the project. Therefore, this result suggests estimation of
production cost in enhancement projects is inaccurate. Table
5 shows median of code reuse ratio and cost to sales ratio in
each group. Statistical test revealed a significant difference
between “enhancement” and “maintenance” (p=0.033.)

In “new” and “maintenance” projects, additional work to
combine new code with existing code (i.e. understanding the
existing code or testing) is relatively small, i.e. risk of
unexpected additional work is low. Hence, projects finish
within scheduled cost to sales ratio - less than 90 percent. In
“enhancement” project, developer must understand wide
range of the existing code to combine with new codes. It is
difficult to accurately predict effort, therefore variance of
cost to sales ratio is disperse in “enhancement” project.

For more understanding of “enhancement” projects, we
divided the group into three subgroups by the cost to sales
ratio. Table 6 shows median of cost to sales ratio in the three
subgroups. The table describes projects that reused more
than 90 percent and below 99 percent had worst cost to sales
ratio. This subgroup had significant differences with “new”
and “maintenance” projects. The result suggests
enhancement project that had high code reuse ratio (more
than 90 percent and below 99 percent) was the most risky in
this company.

V. SUMMARY

This paper focused on the cost-to-sales ratio to
distinguish success and failure of software projects in terms
of project profit. Statistical analysis with financial data and
software metrics suggested that financially “success”
projects had higher effort rate in external design phase than
“failure” projects. Also the result showed a tendency that
high outsourcing ratio projects had higher cost to sales ratio
than low outsourcing ratio projects, and middle code reuse
ratio projects had higher and disperse cost to sales ratio than
others.

Our analysis is based on a dataset from a midsize
software company; hence supplementary analysis with other
datasets is crucial to generalize the result. However, the
result must be a valuable for software development
organizations in similar business domain.

We used software metrics measured at the end of projects.
In our future work, we plan to analyze the gap between
planned metrics values and the resultant values to clarify the
root causes of project success/failure.

REFERENCES

[1] E. H. Conrow and P. S. Shishido, ”Implementing Risk
Management on Software Intensive Projects,“ IEEE Software,
Vol.14, No.3, pp.83-89, 1997.

[2] B. W. Boehm, “Industrial Software Metrics Top 10 List,”
IEEE Software, Vol.4, No.5, pp.84-85, 1987.

TABLE V. COST TO SALES RATIO OF DIFFERENT CODE REUSE

RATIO PROJECTS

 # project
Code reuse

ratio

Cost to

sales ratio

Maintenance 7 99.8% 80.1%

Enhancement 58 77.2% 88.5%

New 10 0.0% 85.7%

 C
o
d
e
 r
e
u
s
e
 r
a
ti
o

0.0

60.0

80.0

40.0

20.0

100.0

Success Failure

Figure 5. Code reuse ratio of success/failure project.

Code reuse ratio

New MaintenanceEnhancement

C
o
s
t
to
 s
a
le
s
 r
a
ti
o

60.0

120.0

140.0

100.0

80.0

Figure 6. Box plot of cost to sales ratio in different code reuse ratio
projects.

[3] C. Wohlin and A. A. Andrews, “Prioritizing and Assessing
Software Project Success Factors and Project Characteristics
using Subjective Data,” Empirical Software Engineering,
Vol.8, pp.285-303, 2003.

[4] A. Avritzer and E. J. Weyuker, “Metrics to Assess the
Likelihood of Project Success Based on Architecture
Reviews,” Empirical Software Engineering, Vol.4, pp.199-
215, 1999.

[5] D. J. Procaccino, J. M. Verner, S. P. Overmyer, and M. E.
Darter, ”Case study: factors for early prediction of software
development success,“ Information and Software Technology,
Vol.44, No.1, pp.53-62, 2002.

[6] R. C. Williams, G. J. Pandelios, and S. G. Behrens, ”Software
risk evaluation (SRE) Method Description (Version
2.0),“ Software Engineering Institute Technical Report,
CMU/SEI99TR029, 1999.

[7] J. M. Verner, W. M. Evanco, and N. Cerpa, ”State of the
practice: An exploratory analysis of schedule estimation and
software project success prediction,“ Information and
Software Technology, Vol.49, No.2, pp.181-193, 2007.

[8] Y. Takagi, O. Mizuno, and T. Kikuno, ”An empirical
approach to characterizing risky software projects based on
logistic regression analysis,“ Empirical Software Engineering,
Vol.10, No.4, pp.495-515, 2005.

TABLE VI. MEDIAN OF COST TO SALES RATIO IN “ENHANCEMENT” PROJECT

 # project
Code reuse

ratio

Cost to

sales ratio
More than 90% and below 99% 17 97.0% 91.0%

More than 80% and below 90% 11 87.0% 89.3%

Below 80% 30 57.3% 84.9%

