
On Estimating Source Lines of Code from a Binary Program

Takahiro Sunada

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

takahiro-sun@is.naist.jp

Akito Monden

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

akito-m@is.naist.jp

Kenichi Matsumoto

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

matumoto@is.naist.jp

Abstract— Source Lines of Code (SLOC) is a most basic

program size measure in software project management and/or

quality assurance. This paper tries to estimate the source lines

of code (SLOC) of a program from its binary code. In the

proposed method, a binary program is disassembled, and

library sections and data sections are removed. Then opcode

frequency metrics are measured, and a multivariate regression

model is built to estimate the SLOC. From an experiment with

23 C programs, our main result is that SLOC estimation from

a binary program is possible, at least, in a limited environment.

Our estimation model showed high accuracy in goodness of fit

(R2=0.928, MAE=14.1 and MMRE=10.4%).

Keywords - program size measurement; binary code analysis;

reverse engineering

I. INTRODUCTION

Source Lines of Code (SLOC) is a most basic and
widely-used program size measure in software project
management and quality assurance [1]. SLOC-based
measures such as defect density (defects per SLOC), test
case density (test cases per SLOC) and productivity (SLOC
per person-hour) are commonly used in practice.

However, in recent software development, there are cases
where SLOC is not available. One of typical cases is testing
of a game program that runs on a consumer gaming console.
It is a common situation that software test companies are
forced to conduct testing of a pre-release version of a game
program only having its executable binary code, i.e. no
source code or other documents/deliverables available. This
means that the size of the product to be tested is unaware. In
such a case, quality assurance becomes extremely difficult
due to lack of SLOC-based metrics such as defect density
and test case density. This situation often happens to other
types of software when outsourcing of software test takes
place.

This paper tries to estimate SLOC of C programs from
binary executables by a reverse engineering technique.

II. PROPOSED METHOD

As shown in Fig. 1, the proposed method consists of four
steps.
[Step 1] Disassemble

A binary program is disassembled, and its assembly
code is obtained.

[Step 2] Section analysis
Assembly code is analyzed to identify static linked

libraries that are out of scope of SLOC estimation. Also,
data sections are identified and ignored since it does not
contain program code. Only code sections are analyzed
in the next step.

 [Step 3] Opcode analysis
In this step, types of opcode that have high correlation

with SLOC are selected, and their quantities (we call

Figure 1. Overview of the proposed method.

opcode frequency metrics) are measured.
[Step 4] Multivariate regression modeling

Using opcode frequency metrics as predictor variables,
SLOC is estimated by multivariate regression modeling.

III. EXPERIMENT

A. Overview

In this section, we experimentally identify types of
opcodes that have high correlation with SLOC, which needs
to be selected in Step 3. Also, we demonstrate how opcode
frequency metrics contribute to SLOC estimation in Step 4.

B. Materials

To identify a set of opcodes that can be used to estimate
SLOC, we used 23 C programs each built from one of 10
functional specifications. These specifications include tiny
games with command line interface such as Blackjack,
Hangman, Hit-and-blow, 8-puzzle and Arithmetic Word
Problems, etc. Programmers are master course students of
Nara Institute of Science and Technology (NAIST).

All the programs were compiled by GCC version 4.3.4
(without optimization) in Cygwin environment [2], and
obtained .exe files in PE format. Afterwards, all .exe files
were disassembled by Diswin [3].

Table 1 shows characteristics of 23 programs P1, ... P23.
Table 1 shows physical and logical SLOC, both commonly
used in practice. Since physical SLOC is greatly influenced
by the programming style, this paper uses logical SLOC,

which counts the number of statements rather than lines of
code. The logical SLOC of these programs ranges from 79 to
336.

The right most column of Table 1 shows the number of
opcodes in code section of assembly programs; and, the
relationship with logical SLOC is shown in Fig. 2. There are
moderate relationship between logical SLOC and the number
of opcodes. The coefficient of determination R

2
 was 0.765.

C. Opcode Analysis

The result of the opoode (frequency) analysis is shown in
Table 2. The bottom line of Table 2 shows R

2
 values

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Lo
gi

ca
l

SL
O

C

The number of opcodes in code section

Figure 2. Overview of the proposed method.

TABLE I. Characteristics of 23 programs.

P Spec
SLOC

(physical)

SLOC

(logical)

of opcodes

in code section

P1 Blackjack 211 145 625

P2 Bowling 168 115 551

P3 Bowling 242 160 642

P4 Coin game 144 86 432

P5 Factorization 284 189 714

P6 Factorization 255 125 769

P7 Factorization 229 166 696

P8 Arithmetic word 272 193 823

P9 Arithmetic word 331 211 862

P10 Arithmetic word 386 241 885

P11 Hangman 181 151 371

P12 Huffman 166 117 389

P13 Huffman 127 79 413

P14 Huffman 135 89 474

P15 Huffman 158 94 348

P16 Huffman 170 138 970

P17 Coin game 250 200 964

P18 Maze 139 84 310

P19 Maze 331 214 858

P20 Maze 402 336 2021

P21 8-puzzle 415 264 1045

P22 Bowling 196 119 666

P23 Dice game 138 107 326

between the number of each opcode and logical SLOC. In
the Table, 4 opcodes “mov”, “test”, “jz” and “jmp” had R

2

greater than 0.5. In particular, “mov” opcode showed the
highest R

2
 (0.88).

D. Estimation of SLOC

Using 4 opcodes frequency metrics as predictor variables,
we carried out multivariate (linear) regression analysis to
estimate logical SLOC. Stepwise variable selection was used
to build a regression model. The following equation is the
resultant model.

SLOC = 0.1868*MOV + 2.7231*JMP - 106.7546 (1)

where MOV and JMP are opcode frequencies of mov and
jmp instructions respectively.

In this model, opcodes “test” and “jz” were not selected

as predictor variables.
Fig. 3 shows the result of estimation. X-axis is the

estimated SLOC by the model, and Y-axis is the actual
logical SLOC. Table 3 shows the goodness of fit of this
model in terms of R

2
, Mean Absolute Error (MAE) and

Mean Magnitude of Relative Error (MMRE). Since the R
2

value greatly improved from 0.765, we consider that the

model is much more useful in estimating SLOC than just
counting the total number of opcodes.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Lo
gi

ca
l S

LO
C

EStimated SLOC

Figure 3. Result of estimation.

TABLE III. Goodness of fit of SLOC estimation model.

R
2
 MAE MMRE

0.928 14.1 10.4%

TABLE II. Result of opcode frequency analysis.

P mov push sub test call and jz jmp lea leave jnz pop cmp jng

P1 482 29 40 41 76 6 30 62 65 16 11 14 36 16

P2 471 29 23 30 48 3 28 55 56 12 25 17 37 6

P3 455 32 26 29 62 3 26 74 57 15 34 18 39 4

P4 408 36 40 30 49 3 23 46 51 15 5 20 14 6

P5 484 41 61 30 71 3 28 71 54 20 10 22 48 16

P6 642 47 42 29 55 3 28 52 83 14 11 32 25 10

P7 597 34 45 37 71 3 28 59 39 19 22 16 23 3

P8 557 40 53 35 70 6 35 73 56 16 16 20 43 9

P9 535 36 44 28 59 6 25 86 59 20 54 17 75 10

P10 580 41 64 37 89 6 35 82 51 20 14 19 59 26

P11 384 30 24 31 78 5 24 58 35 16 16 13 20 4

P12 396 36 27 33 63 3 29 48 51 16 10 18 15 3

P13 337 26 48 27 36 4 24 43 89 12 5 14 16 7

P14 400 31 24 31 51 3 23 50 52 13 7 17 18 11

P15 358 34 36 27 44 3 26 45 47 20 5 13 20 3

P16 548 31 67 30 59 3 23 54 240 12 9 15 22 11

P17 732 38 42 44 45 4 33 59 72 17 14 22 32 16

P18 290 32 29 29 43 5 29 45 48 18 5 15 19 7

P19 583 42 35 36 90 9 41 73 51 18 14 25 48 17

P20 962 32 39 68 48 5 75 96 158 16 37 16 76 16

P21 743 54 42 36 78 4 47 75 58 23 12 31 50 13

P22 481 30 35 30 83 7 35 65 59 13 29 15 62 7

P23 326 29 23 27 56 5 29 55 36 15 15 14 31 10

R
2
 with

SLOC
0.88 0.09 0.14 0.70 0.02 0.04 0.71 0.59 0.31 0.03 0.21 0.08 0.48 0.28

IV. CONCLUSION AND FUTURE WORK

In this paper we tried to estimate the logical SLOC of C
programs from their binary executables by opcode frequency
metrics and regression modeling. Our main result is that
SLOC estimation from a binary program is possible, at least,
in a limited environment. Our estimation model showed high
accuracy in goodness of fit (R2=0.928, MAE=14.1 and
MMRE=10.4%).

However, this is just an initial stage of our research, and
we have a lot of things to do in the future work as follows:
 Investigation of the effect of optimization in

compiling. Since the optimized binary program may
have different characteristics, we need to clarify
how optimization affects the SLOC estimation.

 Experiment with different compilers. In this paper
we used only GCC in Cygwin environment.
However, we may have different SLOC estimation
model for different compilers.

 Building a guideline of removing library code from
a binary program. Detecting and removal of library
code is not an easy task. We will need to investigate

more programs and seek for some guideline to do
this.

 Experiment with larger programs. In this paper we
used small student programs. We will need to
conduct an experiment with larger programs.

ACKNOWLEDGMENT

A part of this work was conducted in the StagE Project,
the Development of Next Generation IT Infrastructure,
supported by Ministry of Education, Culture, Sports, Science
and Technology. Also, a part of this work was conducted
under Japan Society for the Promotion of Science, Grant-in-
Aid for Scientific Research (C) (22500028).

REFERENCES

[1] J. H. Baumert, “Software Measures and the Capability Maturity
Model,” Technical Report of Software Engineering Institute,
Carnegie Mellon University, no. CMU/SEI-92-TR-25, 1992.

[2] Cygwin project, http://www.cygwin.com/

[3] Diswin, http://www.vector.co.jp/soft/win31/prog/se011061.html

