
An Exploratory Study on the Impact of Usage of Screenshot
in Software Inspection Recording Activity

Tatsuya Sasaki
Graduate school of Information Science,
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, Japan 630-0192
tatsuya-s@is.naist.jp

Shuji Morisaki
Faculty of Informatics, Shizuoka University

3-5-1, Johoku, Naka, Hamamatsu,
Shizuoka, Japan 432-8011
ismoris@ipc.shizuoka.ac.jp

Kenichi Matsumoto
Graduate school of Information Science,
Nara Institute of Science and Technology

Email: matumoto@is.naist.jp

Abstract—This paper describes an exploratory study on the
use of screenshots for recording software inspection activities
such as defect reproduction and correction. Although detected
defects are usually recorded in writing, using screenshots
to record detected defects should decrease the percentage
of irreproducible defects and the time needed to reproduce
defects during the defect correction phase. An experiment
was conducted to clarify the efficiency of using screenshots
to record detected defects. One practitioner group and two
student groups participated in the experiment. The recorder
in each group used a prototype support tool for capturing
screenshots during the experiment. Each group conducted two
trials: one with a general spreadsheet application to support
recording, the other with the prototype tool that supports
recording inspection activities. After the inspection meeting,
the recorder was asked to reproduce the recorded defects. The
percentage of reproduce defects and time to reproduce defects
was measured. The results of the experiment show that use
of screenshots increases the percentage of reproduced defects
and decreases the time needed to reproduce the defects. The
results also indicate that use of the recording tool affected the
types of defects.

Keywords-Software inspection, Recording activity, Tool sup-
port

I. I NTRODUCTION

By detecting and fixing defects early[1], software inspec-
tion activities enable improved software quality and reduced
development costs. Many techniques for reading support [8]
[10] and estimation of the number of remaining defects [11]
[9] have been proposed. However, relatively little research
has focused on methods of recording software inspection
activities. Both researchers and practitioners have identified
the importance and need for support tools for software
inspection [4].

Most existing support tools are specific to particular
source code [6]. Some support geographically dispersed
inspection [5], while others support inspectors in identifying
false positives [2]. However, a general supporting tool for

software inspection including requirements, design docu-
ments, and source code needs investigation.

As the first step of investigation for such a general support
tool for software inspection, we focused on recording defect
detection activities. Recording such activities is important
because a wrong description or irreproducible record will
cause faulty defect correction. The research question of this
study was “Does the use of screenshots in recording software
inspection activities increase the efficiency of recorders and
inspectors?” In this paper, we describe an experiment using
a prototype tool to help capture and record screenshots.

This research supposes that detected defects are docu-
mented for correction in writing with figures if needed.
We also assume that target documents are inspected on
the computer screen, and that documented defects are also
recorded in files. This paper describes an investigation on the
use of screenshots to help with recording and reproducing
software inspection activities.

This paper is organized as follows. Section 2 describes
support for recording in software inspections. Section 3
provides an overview of the experiment, while Section 4
shows the results of the experiment. Section 5 discusses the
experimental results. Section 6 summarizes our findings.

II. SUPPORT FOR RECORDING OF

DEFECT

To clarify our assumptions about software inspections,
this section describes phases of inspection, the inspection
meeting, and information usually recorded about defects.
We also describe a prototype tool for recording defects.
This tool supports recording of defect locations by capturing
screenshots. The tool enables a user to capture a screenshots
by clicking on a document displayed on the computer screen.

������� ��� ���

	 �
�����
�
��� � ���

� ����������� � ���������
� � ���

� ������� �

 �"! ! ����# $"�

%&���'�'$"��� ���
� � ���"(��)�$������ � ���

*)�$����
� � ���

� �������
)"� ����)+��, ���
� �

 � -�� ���&)"��, ���
� �

. ��! �)"�
� � ���/����� �
���
� � �0���

� �
�"�
�")�$����

� ����� ���1� 2���)"��, �����3! � � �

 � ��)"� ���4)"��, ���
� �

576�8:9 ;<9 8 =>@?BA+C�D

Figure 1: Inspection phase

A. Phases

Figure 1 shows phases of inspection. The rounded rectan-
gles in Figure 1 represent the inspection phases defined in
Fagan’s article [1]. The squared rectangles in Figure 1 rep-
resent activities in each phase. We added dotted rectangles
to clarify support for recording activity. In the “Inspection
meeting” phase, when inspectors find a defect (“Finding
defect”), a recorder writes down the location and symptoms
of the defect (“Recording defects”).

During the inspection meeting phase, the activities of
finding defects and recording defects are repeated as many
times as needed. After the “Inspection meeting,” detected
defects are corrected in the “Rework” phase. In the Rework
phase, authors try to remember and identify a defect detected
in the inspection meeting so that they can fix the defect
in the artifact (“Review the defect list”). If the author can
remember a detected defect and identify the defect in the
artifact (“Reproduce”), the author will try to fix the defect
(“Fixing defects”). These activities are also repeated as many
times as the number of defects in the defect list.

B. Inspection meeting

In the inspection meeting phase, one recorder and one or
more inspectors participate. Depending on the target artifact,
one or more authors may also participate. The inspectors
detect defects, which are recorded by the recorder. The
recorder also operates a computer connected to a shared
large-screen that can be viewed by all participants in the
inspection meeting. The inspection target is saved in a file
and can be viewed on the shared screen. A printed target
can be distributed to participants, but the target file must be
stored in the recorder’s computer for screenshots.

���������	�
��� �
�� � ����� ������ �
��� ����� �
���� �
��� ����� �
�
���� ����� ��� �� ! �
� "��

� � ������ #������
��� ����� �

$ ���	���

Figure 2: An example inspection meeting

��� ���
���
	 � � � �

��� � 	 � � �
� � ��

����� ��� �
� � ����� ��� ���
��� � ��� � �
!� �
" �
�#�$ � % &
� � "�' �

(*)�� � �
�� � � +!� � � �,� ��
�� ��#���� 	 � � -�� #
�
�$ � % &
� � "�' � �
�#.
�� #
� $ �
!� � � �
/��$
�

� � � $ � 	 �0�!$�� 1����)
� � �
�� � � +!� � � �

Figure 3: Example record of defect

A list of defects detected and recorded in the inspection
meeting is also displayed to a shared screen. Whenever an
inspector finds a defect, the recorder inputs defect informa-
tion to the defect list on the shared screen. If the inspector
thinks the recorded information should be different, s/he can
point that out.

Figure 2 shows an example scene from an inspection
meeting. In figure 2, two inspectors and one recorder were
participating. Inspector A explained a detected defect to
the recorder, who input effect information based on the
explanation. Inspector B was looking for other defects in
the printed target. The screen shows the inspection target
and defect list.

C. Defect information

Recorded defect information includes fields such as:

• Time of detection
• Location
• Symptom (defect description)

Location and symptoms are recorded in natural language.
Figure 3 shows an example description of a detected defect.
In this paper, we expect to provide a clearer description
of location and symptoms by adding screenshots to the
description.

D. Prototype tool

A prototype tool was developed for easily capturing
screenshots of inspection targets. Capturing screenshots
should reduce the recording effort in the inspection meeting
phase, and the effort to recall and reproduce defects in the
rework phase. The functions of the prototype tool are:

���������
	��
�������
������� ��	��
�����
������� ������� 	 �
� !#"����$��	%�&	%�
���
�
� 	%� �
� �#	'�%�(� 	����������
���)���*�,+��$�-��������	��
���
�*�
�����/.

0 1 2 3 1 4 1 1

5

6

7

8:9�; 9�<>=?; @?=A;
B
C D?E-9�FAG�<?H
; I�G�G,J?; G,K D-9AL
M N
M ; G,O

Figure 4: Screenshot of prototype

� ������� �	��

��� � ��� � ��� �������
� � ��� ��� �������������
� �

�
������� �� "! ����#$������� �����

 ����%�! �&�����"������� �'� ��� �
'�'! #

(� �
 �)! � ���*� �+� ���,� �� "! ����#
������� �����
,� �.-��)�'��� # � ����� � ���

�
/�0 1 ��� 0 2�34��5�6 2�5�6 2�7

8 9 �&� ��:��

� ���+� �'����� � -��)�'��� # � ����� � ��� �
/�0 1 ��� 0 2�34��5�6 2�5�6 8�/

; 9
�.����

�<� � ��� � ������#"� ���

= � >&� �.�'���4����� = �)! ���
-��)�'��� # � ����� � ��� ��? �'���.�
��� = �"! ���

�
/�0 1 ��� 0 2�34��5�6 2�3�6 ;<@

@ 9
�.����

�<� � ��� � ������#"� ���

�<��������� �4����! ��� �*�,�"! ���
-��)�'��� # � ����� � ��� �
/�0 1 ��� 0 2�34��5�6 �
2�6 5�@

Figure 5: Defects list of spreadsheet

• Capture function: the prototype tool captures a specified
area by clicking and adds the captured screenshot to the
defect information.

• Marker information: the prototype tool highlights a
specified area in the captured screenshot by clicking.

The recorder can capture an screenshot of the inspection
target and highlight a specific area which needs a remark,
if necessary. Figure 4 shows a screenshot of the prototype
tool. In figure 4, area A is a text box for defect location and
description. The captured screenshot is put in area B. the
diagonal area indicated by C was marked using the marker
function.

III. E XPERIMENT

A. Overview

The goal of the experiment was to identify improvements
in the efficiency of recording and reproduction due to the use
of screenshots in recording software inspection activities.

The experiment covered both the inspection meeting
phase and rework phase as described previously. During
the inspection meeting phase, to record detected defects,
a general spreadsheet application and the prototype tool
were used. The duration of recording was measured in the
inspection meeting phase. The duration needed to recall and
reproduce each defect in the defect list from the inspection
meeting phase was measured in the rework phase.

B. Settings

Table I shows the combinations of tools, subjects and
inspection targets. Three groups of subjects participated in
the experiment. Each group consists of three subjects, one
recorder and two inspectors. The members of two groups
are master students in information science. The members of
one group are practitioners engaged in commercial software
development. Due to the issue of cost, another practitioner
group experiment has not been conducted yet.

Two inspection targets were prepared. Both of the inspec-
tion targets were design documents for small GUI applica-
tions. One is an address book application (“Address book”
in Table I). The other is a time management application
(“Time keeper” in Table I). Each trial in the experiment
was conducted in a crossover way as defined in the article
[3]. The spreadsheet application had a format prepared for
recording defects. Figure 5 shows an example of the defects
list. Where necessary, just as with the prototype, the recorder
can capture screenshots of the defect descriptions.

IV. EXPERIMENTAL RESULT

A. Use of Screenshots in Recording Defects

Table II shows the results. The number of records in Table
II are total numbers from two trials (column 2). For student
group 1 and the practitioner group, the average time to
reproduce defects using records with screenshots is smaller
than when using records with text only. Student group 2 did
have an average time for reproducing defects using records
with screenshots that is larger than when using records with
text only.

However, when compared to the student group 1 and the
practitioner group, the difference in the average time for
reproducing defects is smaller (Student 2: 1.8 sec., Student
1: 11.4 sec., Practitioner: 7.4 sec.). Also, in student group
1, the difference in the number of records with screenshots
and the number of records without screenshots is larger than
those of student group 2 and the practitioner group. In the
experiment with practitioners, two recorded defects could
not be reproduced using the recorded information without
Screenshots.

B. Tool support for recording

Table III show the measurements comparing the prototype
tool with the spreadsheet application. In Table III, row
corresponds to a trial. The second from left column of the
tables represents trial IDs. The ID of each trial in Table
III corresponds with the IDs shown in Table I. There are
several important points to notice in these tables. First, in
both tables, S1-B has no screenshots recorded. Second, for
student group 1 (S1-A, S1-B) and the practitioner group (P1-
A, P1-B), the number of detected defects recorded with the
spreadsheet application is larger than with the prototype tool.
However, for these same groups, trials with the prototype
tool have higher percentages of records with screenshots

Table I: Settings of the experiment

Time keeper Address book
Master student Group 1 Prototype(S1-A) Spreadsheet(S1-B)

Group 2 Spreadsheet(S1-A) Prototype(S2-B)
Practitioner Group 1 Spreadsheet(P1-A) Prototype(P1-B)

Table II: A comparison between defect records with Screenshots and without screenshots

Record with
Number of
defect
records

Number of
irreproducible
defect

Average of
reproducing
time (s)

Average of
recording
time(s)

Master student1
Screenshot and text 5 0 12.2 49.0
Text 45 0 23.6 40.4
Total 50 0

Master student2
Screenshot and text 14 0 11.7 42.2
Text 13 0 9.9 48.4
Total 27 0

Practitioner
Screenshot and text 25 0 21.4 91.2
Text 24 2 28.8 67.1
Total 49 2

Table III: A comparison between Prototype and Spreadsheet

ID
Recording
method

Number of
defects

Number of
records with
screen shot

Average of
reproducing
time (s)

Average of
recording
time (s)

Master student1
S1-A Prototype 24 5 16.0 57.6
S1-B Spreadsheet 26 0 28.4 25.5

Total 50 5

Master student2
S2-A Spreadsheet 13 8 9.8 81.5
S2-B Prototype 14 6 11.8 78.6

Total 27 14

Practitioner
P1-A Spreadsheet 30 6 30.6 59.2
P1-B Prototype 19 19 16.4 37.3

Total 49 25

Prototype

S1−A

Spreadsheet

S1−B

0
50

10
0

15
0

20
0

25
0

30
0

Master student1

Prototype
S2−B

Spreadsheet
S2−A

Master student2

Prototype
P1−B

Spreadsheet
P1−A

Practitioner

Figure 6: Distribution of durations recording time

than trials with the spreadsheet application. Also, for these

Prototype
S1−A

Spreadsheet
S1−B

0
20

40
60

80
10

0
12

0

Master student1

Prototype
S2−B

Spreadsheet
S2−A

Master student2

Prototype
P1−B

Spreadsheet
P1−A

Practitioner

Figure 7: Distribution of durations reproducing time

two groups, the average time to reproduce defects with

S1-B

S1-A

S2-A

S2-B

P1-A

P1-B

Figure 8: Classification of missing ambiguous and incorrect

records from the prototype tool was smaller than that needed
with records from the spreadsheet application.

Figure 6 and 7 show the distributions of recording time
durations and reproducing time durations. The vertical axes
represent time in second.

C. Defect classification

We categorized the detected defects in two ways. One is
missing/ambiguous and incorrect [8]. Defects classified as
“missing/ambiguous” lacked a description or had an unclear
description. Defects classified as “incorrect” had a wrong or
inconsistent description. The other categorization is internal
or GUI (external). Defects classified as “internal” are defects
in the internal design including the architecture, functional
interface definitions, and data structure. Defects classified as
“GUI” are defects in the external design including lack of
records for layout of GUI components, messages, and labels
for the user.

Figures 8 and 9 show the classification results of the
experiment. Figure 8 shows the ratio of defects classified
as “missing/ambiguous” and “incorrect.” For all the groups
in this experiment, with the prototype tool, the ratio of
defects classified as “missing/ambiguous” is larger than with
the spreadsheet application. Figure 9 shows the ratio of
defects classified as “internal” or “GUI.” For student groups
1 and 2, the ratio of defects classified as “internal” with
the spreadsheet application is larger than with the prototype
tool. With the practitioner group, however, this is reversed.

V. D ISCUSSION

A. Defects failed to be reproduced

The practitioner group had two records of defects that
could not be reproduced after the inspection meeting. We

S1-B

S1-A

S2-A

S2-B

P1-A

P1-B

Figure 9: Classification of internal and external(GUI)

asked the recorder why he could not remember the recorded
defects. The reasons were ambiguous locations and ambigu-
ous descriptions. The recorder said that with a captured
screenshot he might have been able to recall and reproduce
the defects.

B. Improved efficiency due to the use of screenshots

Table II, along with Figures 6 and 7, indicate:

1) The use of screenshots in recording defects reduces
the time to reproduce defects. (All trials)

2) The use of screenshots in recording defects prevents
failure to reproduce defects. (practitioner trials)

Table III suggests that the prototype tool may reduce the
time needed to reproduce defects based on comparing the
average times for reproducing defects from each recording
method. This result may be due to pictorial superiority [7]
reducing the time needed to reproduce defects.

C. Defects categorization

In all groups, the defect categorization results indicate that
use of the prototype tool increases the number of defects
classified as missing/ambiguous. In two of the groups, the
defect categorization results indicate that use of the proto-
type tool may increase the number of defects classified as
GUI. These results may indicate that the goal of the software
inspection should determine the use of support tools for
recording software inspection activities. For example, when
performing requirements and design inspections to identify
missing/ambiguous defects, the use of a support tool such
as the prototype tool may be desirable.

D. Limitations

Due to the effort and cost necessary to conduct the
experiment, the experiment was conducted with only one
group of practitioners. Further investigation and experiments
with practitioner groups is required.

VI. CONCLUSION

This paper reports on an investigation of the efficiency of
using screenshots in recording software inspection activities
and reproducing defect reports after the inspection meeting.
One practitioner group and two student groups participated
in an experiment. Every group conducted two trials: one
trial with a general spreadsheet application, and the other
trial with a prototype tool providing support to capture
screenshots to record defects.

The results of the experiment showed that the use of the
screenshots in recording defects increased the accuracy of
reproducing the defects. The results from two groups showed
that the use of screenshots decreased the time needed to
reproduce defects from the defect record. However, the re-
sults also indicated a negative relationship between the time
needed to record defects and the time needed to reproduce
defects, so that increasing the percentage of screenshots
captured with records also increases the time required to
record defects.

Results of the experiment also indicated that support for
capturing screenshots may affect the classification of defects
in such categories as missing/ambiguous and incorrect. Al-
though further investigations are needed, we believe that the
use of screenshots increases the efficiency of recording activ-
ities in software inspection and that the use of screenshots
also increases the accuracy of defect classification. Future
work in this area should include measurement of the duration
of recording to clarify the required costs and benefits of the
use of screenshots.

VII. A CKNOWLEDGMENT

The work is being conducted as a part of the Development
of Next Generation IT Infrastructure Program. This work
was supported by Grant-in-Aid for Scienticfic Research (B)
23300009 and Young Scientists (B) 21700033 by Ministry of
Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

[1] M. Fagan Design and code inspections to reduce errors in
program development.IBM System Journal, 15(3):182–211,
1976.

[2] P. Grunbacher, M. Halling, S. Biffl An empirical study
on groupware support for software inspection meetings. In
Proceedings of the Eighteenth IEEE International Conference
on Automated Software Engineering, 2003.

[3] J. Dolado, M. Harman, M. Otero, L. Hu An empirical
investigation of the influence of a type of side effects on
program comprehension.IEEE Transactions on Software
Engineering, 29:665–670, 2003. crossover design.

[4] O. Laitenberger, J. DeBaud An encompassing life cycle
centric survey of software inspection.Journal of Systems
and Software, 50:5–31, 2000.

[5] F. Lanubile, T. Mallardo, and F. Calefato Tool support for
geographically dispersed inspection teams.Software Process:
Improvement and Practice, 8:217–231, 2003.

[6] F. Macdonald, J. Miller, A. Brooks, M. Roper, M. Wood
Automating the software inspection process.Automated
Software Engineering, 3:193–218, 1996.

[7] D. Nelson, V. Reed, R. John Pictorial superiority effect.
Journal of Experimental Psychology: Human Learning and
Memory, 2:523–528, 1976.

[8] A. Porter, L. Votta, V. Basili Comparing detection methods for
software requirements inspections: A replicated experiment.
IEEE Transactions on Software Engineering, 21:563–575,
1995.

[9] P. Runeson, C. Wohlin An experimental evaluation of an
experience-based capture-recapturemethod in software code
inspections. Empirical Software Engineering, 3:381–406,
1998.

[10] T. Thelin, P. Runeson, B. Regnell Usage-based reading-an
experiment to guide reviewers with use cases.Information
and Software Technology, 43:925–938, 2001.

[11] S. Wiel, L. Votta Assessing software designs using capture-
recapture methods.IEEE Trans. on Software Engineering,
19(11):1045–1054, 1993.

