
Customizing GQM Models for Software Project Monitoring

Akito Monden† Tomoko Matsumura†,†† Mike Barker†
Koji Torii† Victor R. Basili†††,††††

†Nara Institute of Science and Technology, 8916-5 Ikoma, Nara 630-0192 Japan.
††Presently, with Hitachi, Ltd.

†††University of Maryland, College Park, MD 20742, USA.
††††King Abdulaziz University, Jeddah, Saudi Arabia.

SUMMARY This paper customizes Goal/Question/Metric (GQM)
project monitoring models for various projects and organizations to
take advantage of the data from the software tool EPM and to allow the
tailoring of the interpretation models based upon the context and
success criteria for each project and organization. The basic idea is to
build less concrete models that do not include explicit baseline values
to interpret metrics values. Instead, we add hypothesis and
interpretation layers to the models to help people of different projects
make decisions in their own context. We applied the models to two
industrial projects, and found that our less concrete models could
successfully identify typical problems in software projects.
key words: Software Process Evaluation, Software Measurement,
Empirical Software Engineering, Process Improvement.

1. Introduction

People very often use software measurement standards
but they are not always easy to apply in a particular
environment where the data, needs, and context are
different. Without an organization’s explicit goals, and
the link between goals and measures and the
interpretation of those measures, the organization will
not get a chance to see the measures as satisfying their
goals.

The aim of this work is to develop a set of
Goal/Question/Metric (GQM) models [1][2] for the
purpose of project monitoring, i.e., assisting project
managers in controlling the software development
processes. The models should take advantage of the data
being supplied by a software project monitoring tool
called the Empirical Project Monitor (EPM)
[9][10][14][15]. The evaluation mechanisms will be
applied to projects in various organizations, each with
their own context and criteria for success. For this reason,
the standard GQM process must be customized to take
advantage of these two criteria: a given data set and
abstract evaluation modes that can be determined by
each organizations own needs and context.

The measurement tool EPM was developed by the
EASE (Empirical Approach to Software Engineering)
project of MEXT, Japan [10][11] and currently being
enhanced and maintained by the Information-technology
Promotion Agency, Japan [9]. To date, software
companies have used EPM as a probe to record empirical
data in software projects without disturbing their

development activities [16]. EPM automatically collects
time series data from commonly-used software
development management tools such as configuration
management software, issue tracking software and
mailing-list software.

This paper fully exploits the potential of the GQM
method [1][2] to explicitly associate the organizational
goals of the EPM user companies with available data
(metrics) so that the resultant GQM models become a
powerful means to drive an empirical process of
evaluation and improvement in companies. The GQM
method is a goal-oriented measurement framework that
explicitly associates goals with metrics (Figure 1). A goal
is refined into a set of questions that must be answered to
achieve the goal, and then into metrics to collect to
provide the necessary information for answering the
questions and thus evaluating goal achievement.

To build adequate GQM models, this paper attempts to
balance the following two requirements.

(Req.1) Narrow down the focus of the GQM model to
a particular measurement context where EPM is used.

(Req.2) At the same time, the GQM model must allow
variations of project contexts for different organizations.

To satisfy these requirements, our basic idea is to build
less concrete models that do not include explicit baseline
values to interpret metric values, while they include a
“hypothesis layer” and an “interpretation layer” to help
people of different projects and/or organizations make
decisions in their own context (Section 5.)

The rest of this paper describes our experience to
customize the GQM models with the following Steps 1
to 4.

[Step 1: Identify Goals] Conduct a survey of potential
EPM user companies to clarify their goals.

Fig 1. GQM paradigm

 Goal

Questions

Metrics

IEICE Transactions on Information and Systems, Vol.E95-D, No.9, pp.2169-2182, September 2012.

[Step 2: Build an Initial GQM model] Build an initial
GQM models to map the goals and metrics.

[Step 3: Refine the GQM models] Conduct a
preliminary analysis of empirical data collected in
pilot projects (including open source software
projects). This step refines the initial GQM models
based on actual data.

[Step 4: Apply to project] Analyze industrial project
data based on GQM models, and get feedback from
companies.

2. EPM: Empirical Project Monitor

2.1 Overview of EPM

Figure 2 shows an overview of EPM. The data collection
coordinator collects data from three types of
development support tools: versioning histories from a
configuration management system (e.g. CVS and
Subversion), mail archives from a mailing list manager
(e.g. Mailman, Majordomo and fml), and issue tracking
records from a bug/issue tracking system (e.g. GNATS
and Bugzilla). Because these data are accumulated
through everyday development activities in common
projects developers and managers do not need to do
additional work for data collection.

Appendix A shows typical data collected by EPM.
EPM converts these data into a XML file format (called
the standard empirical SE data format) so that data
analysis tools can deal with them in a systematic manner.
This XML format excludes privacy information, such as
the text of email messages, to avoid privacy violations.
Data from other measurement tools can be also
converted into this format by EPM plug-in modules
(data format translators).

The XML data are then imported to a PostgreSQL
database via the data importer. The XML data can also
be imported to other database or spreadsheet software,

e.g. Microsoft Access and Excel. This import can be
executed every day (or every week) so that project
managers can inspect the analysis results as a daily (or a
weekly) task.

Data analyzers and visualizers are linked with
database software (PostgreSQL). The current EPM
provides simple data analysis and visualization features
including a 2D graph visualizer and SRGM (Software
Reliability Growth Model) tool. All the data analysis and
visualization operations in EPM are performed through a
web-based launcher.

2.2 What EPM can support

EPM can be used to collect data whenever an issue is
reported or program source code is being
written/modified, e.g. requirement/design review, coding,
testing and maintenance phase.
Currently, EPM does not completely support project
management since it does not collect data about cost
management and workflow management.

2.3 Installation and administration

To use EPM in a software development project, a
company only needs to install EPM on a Linux PC for
data collection. The constraint in the development
process is that developers must use provided tools (e.g.
CVS, GNATS, Mailman, etc.) under a common
operation rule, e.g. developers must check-in their
(modified) source code into CVS once a day.

3. Goal Identification

3.1 EPM User Company Survey

We have been organizing an empirical software
engineering workshop every six months in Tokyo.
Attendees of the workshop are mainly project managers
from industry including potential EPM user companies.
We took this opportunity to capture industry needs
(goals) as a part of top-down analysis in GQM modeling.
Since EPM is supposed to be used for project monitoring,
we focused on symptoms of troubles (e.g. project delay,
insufficient quality or cost overrun) that can be
monitored and detected early by empirical data of EPM.
Specifically, we asked the attendees about the project
delay and its reasons (source problems), symptoms and
desirable solutions via a questionnaire sheet.

There were 20 responses from 12 companies. 18 of
them answered that they had experienced a serious delay
of a software project. Figure 3 shows answers to a
question “In which phase of a project did you find the
delay? Please answer with typical cases you have
experienced.” As shown in the Figure, delays are mainly

Fig 2. Overview of EPM

PostgreSQL

Data Analyzers and Visualizers

Data Importer

Query Result

Data Collection Coordinator

Standard empirical SE data
(XML format)

Launcher
(Web)

Configuration
management

tool

Mailing list
tool

Issue tracking
tool

Format
Translator

Format
Translator

Format
Translator

3

observed in the “program design” phase and “integration
test” phase. From further investigation, it turned out
these delays are mainly caused by earlier phases, e.g.
delays in the program design phase were due to poor
requirement analysis, poor system design, frequent
changes of requirements or inaccurate project estimation.
Similarly, reasons behind the delay of integration testing
include poor unit testing, system design and requirement
analysis.

Interestingly, 17 out of 20 people answered that there
were explicit symptoms of project delay. Table 1 shows
what they observed as symptoms. Some of them can be
easily detected by EPM. Some of them can be easily
detected by EPM. For example, “too much increase of
reported bugs” and “too slow bug (issue) elimination”
are detectable from issue tracking data.

Figure 4 shows unsolved problems that respondents
are facing in their software projects. Unfortunately, the
current EPM does not cover the problem “obscure
milestones.” However, other problems can be detected
and/or solved by EPM. For example,
“unstable/incomplete requirement or design” can be
detected in a review or a coding phase by CVS and
GNATS data. In addition, the problem of dishonest
reports can be solved by EPM since it automatically
records development activities including bad news.

3.2 Related Studies on Goal Identification

The GQM Approach has been around since the early
1980s. Basili and Caldiera [4] discuss the major concepts
of their approach to quality improvement, including the

quality improvement paradigm (QIP), goal-question-
metric approach (GQM), and the experience factory (EF)
for collecting, organizing, and reusing knowledge and
experience. They point out that manufacturing quality
improvement is based on repetitions of the same process,
while software models are based on "the ability to learn
from other software development projects" (p. 56). "The
goal/question/metric (GQM) approach provides a
method to identify and control key business processes in
a measurable way" (p. 58). The goal is described as
specifying the purpose, object, issue, and viewpoint of
the measurement. From this, several questions are
developed around the major components of the issue.
Then these questions are refined to determine which
metrics will allow them to be answered.

Mendonca, Basili, Bhandari, and Dawson [12]
describe how attribute focusing, a knowledge discovery
approach, and GQM, a measurement planning approach,
combine to help "understand and structure ongoing
measurement" and "discover new interesting information
in the legacy data" (p. 484). They provide the template:
Analyze "object of study" in order to "purpose" with
respect to "focus" from the point of view of "point of
view" in the context of "environment" (p. 485). This
article also provides an example of how to use GQM
with existing metrics, which can help identify
unnecessary data collection and additional data
collection which is not currently being accomplished.

Briand, Morasca and Basili [6] extend the basic GQM
approach to include a measure definition process,
providing "a practical guideline to design and reuse
technically sound and useful measures." (p. 1107). This
paper defines the template for GQM as the object of
study, purpose, quality focus, viewpoint, and
environment (p. 1112). They add detail to developing
metrics through the steps of formalizing, identifying
abstractions, instantiation and refinement of properties,
definition, and validation of measures.

Fig 4. Unsolved problems in projects

Fig 3. Phases where project delay were found

Table 1. Symptoms of project delay

Symptoms
of

answers

Too much increase of reported bugs 4

Increase of design changes / insufficient design 3

It became more and more difficult to finish tasks in a

scheduled time.

3

Lack of review 2

Increase of cost (effort) but no deliverables 2

Confused instructions 2

Progress report says “completed” but there is no

evidence.

1

Estimated size grows every time we conduct project

size estimation.

1

Too few pages of design document 1

Too slow bug (issue) elimination 1

3.3 Business Goal

Before defining GQM (measurement) goals, we defined
a “business goal” to clarify our (EASE project’s)
strategic target. Since the mission of EASE is to promote
an empirical approach (in a narrow sense, EPM) for
companies to solve (or at least detect) their problems, our
business goal would be to clarify how the EPM data can
support the project reports described in Section 3, e.g.
are the requirements unstable, is the design poor or
incomplete, is the product quality poor?

3.4 Measurement Goal

To define measurement goals, we used a goal template
[6][12] as a specification of the problem we want to
solve. The template is described as follows:

Analyze “object of study” in order to “purpose”
with respect to “focus” from the “point of view” in
the context of “environment.”

In our case, “object of study” is data collected by the
EPM. “Purpose” is evaluation, understanding or
characterization of an ongoing (or a past) project. “Focus”
is an EPM user company’s problem, i.e. requirement
instability, poor design, or poor product quality. “Point of
view” is a project manager. “Environment” is a particular
project in a company.

4. Building Initial GQM Models

Figure 5 shows one of the initial models we built. Below
describes how we built them.

4.1 Questions and Metrics

After defining measurement goals (Section 3.4),
“questions” are then defined as refinements of the goals.
Questions should be focused on metric selection so as to
interconnect goals with metrics. In our case, available
metrics are pre-determined (as shown in Appendix A)

since we use EPM to collect metrics. Therefore, we
defined questions based on both measurement goals and
EPM metrics.

There are several undefined metrics (FCL, LCC, etc.)
in the questions, and there are several possible
definitions for them. Below describes our initial
definition for FCL (file change level).

The value of FCL is calculated at each check-in point

of source files in the configuration management system
(CVS). As a project progresses, the number of total files
will increase (note that this is not a cumulative number).
At the same time, developers may modify existing files.
If this modification frequently occurs, the value of FCL
will increase.

These questions essentially embrace one or more
hypotheses that interconnect goals with metrics, e.g.
“frequent changes are due to unstable requirements, poor
design or low quality target.” It can be considered that
increase of FCL over time indicates unstable
requirements, poor design or low quality target.

4.2 Quantitative Models

Based on questions and underlying hypotheses, we built
quantitative models that explicitly interconnect goals
with metrics as shown in Figure 5. These models consist
of formulas with metrics and baseline values, e.g. “If
FCL > 0.5 and (LCC/file size > 5%) and (60% of
GNATS reports have class = CR) then the requirements
are unstable.” However, currently there is no basis for
these baseline values. The values need to be verified and
evolved continuously.

Fig 5. One of the Initial GQM models

Business Goal: Does the EPM data support the project reports, e.g. are the requirements unstable, is the design poor or incomplete,
is the product quality poor?

GQM Goal: Analyze CVS and GNATS data for file change patterns for the purpose of evaluation with respect to requirements

instability, poor design, or poor product quality from the point of view of the project manager in the context of the
particular project in the company

Questions: What is the level of file change over time (FCM)? What is the number of lines of code changed (LCC)? What GNATS class

is being made (bug, B, or change request, CR)? How many people are changing a particular file (CVS Owner - ONR)?

Proposed Model:
If FCL > 0.5 and (LCC/file size > 5%) and (60% of GNATS reports have class = CR) then the requirements are unstable
If ((FCL > 0.5) and ((LCC/file size > 5%) or (# ONR for > 25% of files is >=2)) then there is a poor design
If (FCL > 0.5 and (GNATS class = B)/KLOC > 10 then we have a low quality product.

Assumption: All the numbers in the formula need to be verified and evolve with data over time (they are currently the best guesses).

FCL =
of file modifications

of total files

5

5. Refinement of GQM Models

5.1 Requirements

We have encountered several problems when we applied
initial GQM models to pilot projects. Below describes
requirements for refining initial models.

Requirement R1: Narrowing goal focus
Goals were too broad in initial models. In each initial

model, we picked up multiple problems that can be
detected via EPM, e.g. “unstable requirements”,
“incomplete design” and “poor product quality.” To
clarify the goal focus of a model, we decided to define a
high level goal then decompose it into subgoals so that
each subgoal addresses only one problem. Also, we
found that some symptoms (in Table 1) are likely to be
related with a specific root cause that needs to be
identified as a subgoal. For example, “too slow bug
(issue) elimination” and “it became more and more
difficult to finish tasks in a scheduled time” are related to
the problem of human resource allocation.

. These subgoals are considered “software goals” in
GQM+ strategies [5][18], which are extensions to GQM
paradigm to fill the gap between business goals and
measurement goals.

Requirement R2: Building less concrete models

Since we are not focusing on a single project for our
GQM models, we found that it is very difficult to
develop a concrete model that has appropriate the
baseline values for multiple projects. It is because there
are too many (hidden) individual variables that may
affect the baseline values (e.g. developer’s skill level,
customer involvement, process model being used, etc.)
For example, Figure 6 and 7 shows examples of time
series values of FCL (File Change Level) measured from
two open source projects (Azureus and DoomLegacy).
As we see in the Figures, the value 0.5 in the initial
model’s formula “if FCL > 0.5 ….. then the requirements
are unstable” seems to be inappropriate for these two
projects. Moreover, the baseline itself may not exist for
DoomLegacy project as FCL keeps increasing all the
time (Figure 7).

Moreover, in the context of project monitoring, we
found that focusing on the (sudden) increase or decrease
of metric values is more important than focusing on the
value itself since any “change” could be a symptom of a
problem.

Instead of trying to develop concrete models having
baseline values, we decided to develop less concrete
interpretation models that do not have baseline values. In
these models we focus on the change metrics values. For
example, an interpretation model would be “if FCL is
high relative to the number of files then you might be
concerned about requirement instability.”

Requirement R3: Explicit hypothesis description
Since we employ less concrete interpretation models,

which target multiple projects and/or organizations in
Requirement R2, we need to clarify the underlying
hypotheses that interconnect goals, questions and metrics
to help people in different organizations make decisions
in their own context based on the observed metrics
values. If a project manager of a certain organization
thinks that one of the hypotheses does not match the
project context, then that part of the GQM model should
not be used.

Although questions essentially embrace one (or more)
underlying hypotheses that interconnect goals with
questions, they must be clear in the model. For example,
suppose we have a goal “evaluation of requirement
stability,” then an underlying hypothesis can be, “if
requirements are unstable, then frequent changes of
source code can be seen (i.e. unstable requirements
imply that there will be frequent changes of source
code).” After clarifying such hypotheses, we will be able
to define a clean-cut question “what is the code change
frequency?”

In our refined models, we decided to explicitly
describe hypotheses that interconnect goals with
questions so that the resultant models become much
easier to understand. We propose hypotheses should be a
combination of “cause (e.g. unstable requirements)”

Fig 7. FCL of DoomLegacy

Fig 6. FCL of Azureus

0

1

2

3

4

5

6

7

8

9

10

0

3
6

7
2

1
0
8

1
4
4

1
8
0

2
1
6

2
5
2

2
8
8

3
2
4

3
6
0

3
9
6

4
3
2

4
6
8

5
0
4

5
4
0

5
7
6

6
1
2

6
4
8

6
8
4

7
2
0

7
5
6

7
9
2

8
2
8

8
6
4

Checkin No.

F
C

L
 (

in
it
ia

l
de

fi
n
it
io

n
)

0

1

2

3

4

5

6

7

8

0

1
73

3
46

5
19

6
92

8
65

1
03

8

1
21

1

1
38

4

1
55

7

1
73

0

1
90

3

2
07

6

2
24

9

2
42

2

2
59

5

2
76

8

2
94

1

3
11

4

3
28

7

3
46

0

3
63

3

3
80

6

3
97

9

4
15

2

4
32

5

Checkin No.

F
C

L
 (
in

it
ia

l
d
ef

in
it
o
n
)

and “effect (e.g. frequent change of source code).”
Our explicit hypothesis is a cross between the

assumptions concept in GQM+Strategies [5] and the
variation factor in the GQM abstraction sheet [3][8]. The
GQM+Strategies assumptions are estimated unknowns
affecting the interpretation of the data. The abstraction
sheet was used in the initial stage of model building to
resolve conflicts and inconsistencies among participants
of a GQM building team. The variation factors are
environmental factors that have an impact on the quality
focus (question) of a particular goal [8]. In the
abstraction sheet, an assumed relationship between
variation factors and the quality focus is described as a
hypotheses (for example, “an increase in variation factor
VF1 will reduce quality focus QF1”.) By looking at the
hypotheses, a participant can recognize the gap among
involved people.

Requirement R4: Using base metrics instead of
derived metrics

FCL (file change level) defined in Section 4.3.2 is a
“derived” metric calculated from two base metrics “the
number of file modifications” and “the number of total
files.” We found that, when we focus on the change of
values, such derived metrics are not easy to interpret. For
example, in Figure 6 and 7, it is difficult to figure out
whether file modifications are considered too frequent or
not in these projects from FCL values only since FCL is
dependent on the current number of files. In addition,
FCL is too much sensitive in the beginning and becomes
less responsive later on because its denominator (# of
files) is small in the beginning and increases as the
project progresses. This problem also occurs in other

density metrics, e.g. bug density, although these are
useful to evaluate the entire project. Therefore, we
decided to use base metrics instead of using derived
metrics.

Nevertheless, for file-based or day-based metrics, we
still need to use derived (averaged) metrics, e.g. the
average number of file owners per file and the average
days a bug remains open, to represent project status.

Requirement R5: Using week-wise metrics
In Figure 6 and 7, x-axes are check-in numbers in

CVS repositories; however, from the perspective of
project management, these x-axes should be elapsed days
or dates of a project. While daily updates of metrics
values are not always available, we decided to use week-
wise metrics to capture any anomaly between weeks. For
example, the number of bugs found could be measured
within each week so that comparison between weeks
becomes feasible.

But still, for some basic metrics, e.g. SLOC, we
should record cumulatively every day throughout a
project to visualize the progress of a project.

5.2 Refined GQM Models

Based on requirement R1, we defined our high level
goal as follows.

Analyze EPM data in order to capture any symptoms
of project delay from the point of the project manager in
the context of a particular project in a company.

Next we identified four root causes (requirement
instability, design incompleteness, bad resource
allocation and bad coding quality) that might result in the

Fig 8. Refined GQM model 1 for evaluating requirements stability

What is the file
change frequency?

Goal

Question

Hypothesis

What is the size of file
changes?

What is the range of
file changes?

What is the growth
of design changes?

If requirements are unstable
then frequent changes (deletions) of
program code can be seen.

If requirements are unstable
then large-scale changes (deletions)
of program code can be seen.

Metric
FCtotal: # of file
updates (within a week)

FCdel: # of file updates
including line deletion
(within a week)

FLadd: Added lines
(within a week)

FLdel: Deleted lines
(within a week)

Fdel: # of files including
deleted lines

(current)

Ftotal: # of files
(current)

Dchg: # of design
changes (within a week)

KSLOC: Kilo lines of code
(current)

If requirements are unstable
then wide-range changes (deletions)
of program code can be seen.

If requirements are unstable
then the number of design changes
increases.

H1

H2

H3

H4

Q1 Q2 Q3 Q4

Interpretation

if (FCtotal is not extra large) and (FCdel is larger than before and stays large for a while) then requirement might be unstable.
if (FLadd is not extra large) and (FLdel is larger than before and stays large for a while) then requirement might be unstable.
If (Ftotal is not very small) and (Fdel is larger than before and stays large for a while) then requirement might be unstable.
if (KSLOC is not very small) and (Dchg is larger than before and stays large for a while) then requirement might be unstable.

Analyze CVS and GNATS data for the purpose of evaluation with respect to requirements stability from the
point of the project manager in the context of a particular project in a company.

7

project delay. We defined four subgoals each focusing on
one of these causes.

Then, for each subgoal, we built a new GQM model
that refines the initial GQM models based on
requirement R2 to R5.

Model 1: Evaluation of requirements stability
Figure 8 shows the first GQM model. The goal focus

is “evaluation of requirements stability” in this model.
Note that “unstable requirements” does not always mean
“project is in trouble” because user requirements are
essentially unstable in many projects (e.g. prototype
based development). An important thing here is to be
aware of the requirements instability in the ongoing
software project based on empirical data.

In this model, we introduced a new layer “Hypothesis,”
which interconnects “Goal” and “Question” layer
(Requirement R2). Also, “Proposed Model” layer was
replaced with “Interpretation” layer, which describes a
less concrete model without baseline values.

In the Hypothesis layer, we defined 4 hypotheses each
associated with one question. We expect these
hypotheses will help EPM user companies to understand
the underlying concept of model construction, and to
recognize the necessity of collecting metrics. To clarify
the assumed cause-effect relations, all the hypotheses
were written in the form of “if cause, then effect.”
Hypotheses H1, H2 and H3 are related to configuration
management data (CVS), assuming that frequent changes,
large scale changes and wide range changes of program
code can be seen if requirements are unstable.
Hypothesis H4 is related to issue tracking data (GNATS),
assuming that frequent changes of designs can be seen if

requirements are unstable.
In the “Metric” layer, we refined the metrics

definitions based on new questions. To evaluate the
“change” of program code with respect to requirement
instability, we considered that “deletion” of existing code
is the change. This is because programmers inevitably
delete lines when a change of requirements occurs in
already written source lines (note that CVS considers a
“change” as a delete and add). On the other hand,
“addition” of lines is not a good indicator for
requirement changes since addition occurs all the time in
daily programming even though requirements are not
changed.

For each question, one of more base metrics were
defined based on Requirement R4. For example, for the
question “what is the file change frequency?” two
metrics FCtotal, (the number of file updates) and FCdel,
(the number of file updates including line deletion) were
defined. These metrics are supposed to be calculated
every week (Requirement R5) and shown as a time series
graph to a project manager.

Finally, in the Interpretation layer, we defined how to
interpret these metrics without using baseline values. For
example, if FLdel (deleted lines) is relatively larger than
before and they do not decrease for a while, we might be
concerned about requirement instability. Nevertheless, if
FLadd (added lines) is much larger than FLdel, we may not
need to care about FLdel. Therefore, we defined one of
the interpretations as “if (FLadd is not extra high) and
(FLdel is larger than before and stays large for a while)
then requirement might be unstable.”

Model 2: Evaluation of design completeness

Fig 9. Refined GQM model 2 for evaluating design completeness

Analyze CVS and GNATS data for the purpose of evaluation with respect to design completeness from the
point of the project manager in the context of a particular project in a company.

……

Goal

Question

Hypothesis

How many files are
changed by multiple people?

What is the growth
of design bugs?

If designs are incomplete then
frequent changes, large-scale changes, wide-
range changes of program code can be seen.

If modules have high
couplings then many people
touch the same file.

Metric

Fmul : # of files changed by
multiple people (within a week)

Dbug : # of design
bugs (within a week)

KSLOC: Kilo lines of code
(current)

Ave-FOwners: Average
of owners per 1 file

If design quality is low then the
number of design bugs increases.

H1’ H5

H6

Q1 Q5b Q6

H2’ H3’

……
Q2

……
Q3

How many people
are changing each file?

Q5a

FCtotal

FCdel

FLadd

FLdel

Ftotal

Fdel

Interpretation

if (FCtotal is not extra large) and (FCdel is larger than before and stays large for a while) then designs might be incomplete.
if (FLadd is not extra large) and (FLdel is larger than before and stays large for a while) then designs might be incomplete.
If (Ftotal is not very small) and (Fdel is larger than before and stays large for a while) then designs might be incomplete.

if (Ave-FOwners is much larger than 1.0) then modules might have high couplings.
if (Fmul is larger than before and stays large for a while) then modules might have high couplings.
if (KSLOC is not very small) and (Dbug is larger than before and stays large for a while) then design quality might be low.

Figure 9 shows a GQM model for evaluating design
completeness. Hypotheses H1’, H2’ and H3’, and
questions Q1, Q2 and Q3 were borrowed from Model 1,
by replacing “requirement” with “design”. We assume
that requirements stability and design stability both
correlate with the stability of (already written) program
code.

Hypothesis H5 ― many people touch the same file if
modules have high couplings ― is a new viewpoint of
this model. It is based on an idea that more than two
people need to change one module if the module is
dependent on many other modules owned by different

people. If many such modules exist, it indicates that the
module designs are poor.

For hypothesis H5, there are two questions Q5a and Q5b.
Question Q5a focuses on (the number of) people who
changed each file, while question Q5b focuses on (the
number of) files changed by multiple people. For these
questions, two metrics Ave-FOwnner and Fmul were
defined in the model. These metrics are easily measured
from CVS data since CVS records the event owner who
checked-in a particular file.

The last hypothesis H6 focuses on design quality. It is
directly measured as the number of (reported) design
bugs Dbug from GNATS data.

Model 3: Evaluation of resource allocation
Figure 10 shows a GQM model for evaluating human

resource allocation. Hypothesis H5’ and its related
questions Q5a and Q5b were borrowed from Model 2. In
Model 2, we hypothesized that multiple owners touching
one module can be observed if the module designs are
poor. In Model 3, we assume it can also be observed if
human allocation is confusing (or uncontrolled).

Hypotheses H7 and H8 are related to the issue tracking
data (GNATS). We assume both the number of
unresolved issues and the (average) duration of
unresolved issues increases if human resources are
lacking.

Model 4: Evaluation of coding quality
From the EPM user company survey, there exist

projects whose coding qualities are poor and testing
becomes endless. Figure 11 shows a GQM model for
evaluating coding quality. In this model we describe a
simple hypothesis “coding bugs keep on increasing if

Fig 10. Refined GQM model 3 for evaluating resource allocation

Fig 11. Refined GQM model 4 for evaluating coding quality

Analyze CVS and GNATS data for the purpose of evaluation with respect to human resource allocation from
the point of the project manager in the context of a particular project in a company.

Goal

Question

Hypothesis

If resource allocation is
poorly organized then many
people touch the same file.

Metric

Iss: # of reported high-
priority issues (cumulative)

Ave-IssDuration: Average # of
days a high-priority issue
remains open

If resource is lacking then the
duration of issues (# of days a issue
remains of open) increases.

H5’ H8

Ave-FOwners

Fmul

……
Q5a

……
Q5b

If resource is lacking then the
number of unresolved issues do not
decrease.

H7

What is the relation between # of
reported issues and # of unresolved issues

Q7 What are the duration of
high-priority issues.

Q8

Iss-Unres: # of unresolved
high-priority issues (cumulative)

Interpretation

if (Ave-FOwners is much larger than 1.0) then human resource allocation might be poorly organized.
if (Fmul is larger than before and stays large for a while) then human resource allocation might be poorly organized.
if (Iss is not extra large) and ((Iss-Unres is larger than before and keeps increasing for a while) or (Ave-issDuration is larger
than before and stays large for a while)) then resource might be lacking.

Analyze CVS and GNATS data for the purpose of
evaluation with respect to coding quality from the
point of the project manager in the context of a
particular project in a company.

Goal

Question

Hypothesis

Metric

If coding quality is poor then
coding bugs keep on increasing in unit
testing and integration testing.

H9

What is the growth of coding bugs
Q9

Cbug: # of coding
bugs (cumulative)

KSLOC:
lines of code

Interpretation

if (increase of KSLOC is moderate) and (Cbug is larger than
before) and (Cbug do not decrease at the end of a testing
phase) then coding quality might be low.

9

coding quality is poor.”
The model highlights both the number of coding bugs

Cbug and KSLOC of source files. Note that measuring
Cbug alone is not sufficient because in some projects, unit
testing for a particular module (a set of files) starts even
if other modules are still under construction. In such
cases, we need to be aware of not only the growth of Cbug
but also KSLOC.

Other models
Besides the four models described above, traditional

GQM models related to design review quality and testing
quality are also available [2][17] using EPM data. While
our four models focus on the changes of time-series data
to detect the symptoms of troubles in daily activities,
these quality models focus on a phase-wise evaluation
(e.g. design review phase).

6. Applying GQM Models to Industrial Projects

6.1 Project descriptions

This paper targets a multi-vendor development of an
information system, carried out by members of the

COSE1 with the support of Japan's Ministry of Economy,
Trade and Industry (METI). Six COSE companies
participated in the development: one company was
engaged with project management, and the other five
with development. Development was carried out using a
waterfall process. A user company defined requirements,
and development companies each developed subsystems
under the supervision of a project-management company.
After each company conducted an intra-company unit
test and integration test, an inter-company integration
test was performed, followed by an inter-company
system test.

The size of the developed system was approximately
330K steps (SLOC), and almost all of the source code
was written in C/C++ language. The number of
subsystems was 38 and the number of files including
shell script, batch, etc. was approximately 1400. The
project duration was ten months.

Researchers from the EASE[11] and the SEC2 created
a data-collection scheme using the EPM and analyzed

1 COSE : COnsortium for Software Engineering
2 SEC: Software Engineering Center, Information-technology
Promotion Agency, http://sec.ipa.go.jp/

Fig 12. Metrics related to GQM Model 1 and 2 (Project A)

Fig 13. Metrics related to GQM Model 2, 3 and 4 (Project A)

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
5
4

1
6
8

1
8
2

FC total

FC del

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
5
4

1
6
8

1
8
2

KSLOC

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
5
4

1
6
8

1
8
2

FL add

FL del

Cross-company
intg. test & system test

Intgr.
test

Coding /
Unit test

Elapsed days

0.8

0.9

1

1.1

1.2

1.3

1.4

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
5
4

1
6
8

1
8
2

Ave-FOwners

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
5
4

1
6
8

1
8
2

F mul

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
54

1
6
8

1
8
2

D chg
D bug

C bug

Cross-company
intg. test & system test

Intgr.
test

Coding /
Unit test

Elapsed days

the obtained data based on GQM models. From the
beginning of the project, meetings were held with each
company to give feedback on analysis results and to
conduct interviews with developers and a project
manager. Data were collected from coding through
system testing.

Problem symptoms were identified every week by the
GQM analysis team (of the EASE project) based on the
refined GQM models, and reported to project managers
in the feedback meeting. The managers judged whether
the reported symptoms are actually problems or not, and
conducted remedial actions or process improvement as
needed.

This paper describes data analysis of two development
processes (namely, project A and B.) One limitation in
applying EPM was that, in project B, EPM was used
after the coding phase. That is, each file was checked-in
to CVS individually only when it became ready for the
unit test. Hence, growth of KSLOC in project B does not
directly reflect the progress in file size. On the other
hand, project A used EPM from the beginning of the
coding phase. Note that there was no clear date line
between coding and unit test in both projects.

For these projects, we had feedback meetings to show
the result of GQM analyses and to get feedback from
companies. These meetings helped us to relate what
happened in projects and what was observed in collected
data.

6.2 Analysis of Project A

6.2.1 GQM Model 1

Figure 12 shows some of the requirement stability
metrics (which are also design completeness metrics) of
project A. Design changes were not observed in this
project. As we see the changes of four metrics values
FCtotal, FCdel, FLadd and FLdel, this project did not match
the expressions in the interpretation layer of GQM
Model 1. Therefore, there was no symptoms for

requirement instability (and design incompleteness)
observed in this project. Although both FCdel and FLdel
grew large just before the (intra-company) integration
test (around 42nd day), FCtotal, and FLadd also went very
large; and all four metrics went very small in the
integration test and cross-company tests. This indicates
that unit tests were quite actively executed and
successfully finished.

One remarkable observation in this project was that
deletions of code lines frequently occurred throughout
the project as FCdel and FLdel covered about one-third of
FCtotal and FLadd respectively. An interview with the
engineers indicates that a static code-analysis tool was
regularly used and changes to source code were made
based on the tool in this company.

6.2.2 GQM Model 2 and 4

Figure 13 shows design completeness metrics and
coding quality metrics of project A. As shown in the
Figure, a few design bugs were reported. On the other
hand, just before the integration test, Ave-FOwners
became around 1.2 and Fmul became large (although it

Fig 14. Metrics related to GQM Model 3 (Project A)

Fig 15. Metrics related to GQM Model 1 and 2 (Project B)

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

1
5
4

1
6
8

1
8
2

Iss
Ave-Iss-Duration

Iss-Unres

Cross-company
intg. test & system test

Intgr.
test

Coding /
Unit test

Elapsed days

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

FC total

FC del

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

FL add

FL del

0

14 28 42 56 70 84 98

11
2

12
6

14
0

KSLOC

Unit test
Intgr.
test

Cross-company
intg. test & system test

Elapsed days

11

soon went small). These could be the suspected symptom
of design incompleteness from model-based
interpretation; however, an interview with the engineers
indicated that there was a change of an engineer at this
time. In addition, Fmul also became large in around 84th
day; and, it turned out that a certain engineer made code
clean up (mostly revising comments in source code) at
this time. Therefore, no serious design problem was
present in this project.

As for coding quality (GQM Model 4), unit test and
integration test phases found several coding bugs.
However, bugs were soon reduced to zero in the end of
the integration test (Figure 13) and FLdel was small in
this phase (Figure 12); thus, there was no serious coding
problem.

6.2.3 GQM Model 3

Figure 14 shows resource metrics of project A.
Notably, Iss and Iss-Unres had the same value until
around the 56th day. This means, in general, all the
reported issues (bugs) were not resolved (fixed) at all for
more than a month. However, an interview with the
engineers indicated that issues were mostly resolved
soon but not recorded in EPM until around the 56th day.

Another anomaly was that Ave-IssDuration kept
increasing after the integration test because one issue
remained open until the end of the project. This was also
due to the recording problem (i.e. resolved but not
recorded).

As a result, the resource allocation problem itself was
not properly monitored, but recording problems were
clearly observed in this project.

6.3 Analysis of Project B

6.3.1 GQM Model 1

Figure 15 shows requirement stability metrics (which
are also design completeness metrics) of project B.
Design changes were also not observed in this project.
Notably, FCdel became larger in the integration test and
cross-company tests than in the unit test, which could be
the suspected symptom of requirement instability and/or
design incompleteness from model-based interpretation.
The large FCdel indicates that broad range modifications
were made to software after the integration. In this
project, requirements were stable, but design
incompleteness was revealed after integration (see next
Section 6.3.2) and this made the increase of FCdel.

6.3.2 GQM Model 2 and 4

Figure 16 shows design completeness metrics and
coding quality metrics of project B. Obviously, a lot of
design bugs and coding bugs were reported in the
integration test, which suggested both design
incompleteness and low coding quality. It turned out
from an interview that design bugs were due to
insufficient design review; and, many of coding bugs
were due to incomplete bug fix in the unit test and the
integration test. A symptom of design incompleteness
was also seen in the previous phase (unit test), i.e. design
bugs were found throughout the unit test, while in project
A, design bugs were found only in the beginning of the
unit test.

Another anomaly was seen around the 120th day
where one design bug was reported. This was related to a
performance problem of a software system.

Increase of Ave-FOwners and Fmul was also observed
in this project around the 35th and 70th days. These were
due to a change of engineers just as in project A. It can
be said that Fmul is a good indicator to capture the change
of engineers.

6.3.3 GQM Model 3

Figure 17 shows resource metrics of project B.
Notably, Iss-Unres did not decrease in the cross-
company tests; and, this made Ave-Iss-Duration keep
growing. These strongly suggest the presence of resource
allocation problems from the model-based interpretation.
From an interview, we found that unresolved issues were
related to the performance problem, which was not easy
to fix. Also, it turned out that the delay of bug fix was
partly because an engineer was changed around the 70th
day as shown in Figure 16. Therefore, we could conclude
that the resource allocation problem was properly
captured by GQM model 3.

6.4 Discussion

Our main finding is that our less concrete models
could successfully identify typical problems in multiple
projects, that is, the models are potentially reusable in
many companies that use EPM environment.

Although not all the changes of metrics values were
directly related to GQM goals, we did find several
symptoms of project problems as follows:
(1) In project B, design incompleteness was observed

from Dbug and FCdel of GQM model 2.
(2) In project B, resource allocation problem was

observed from Ave-Iss-Duration, Iss-Unres and Fmul
of GQM model 3.

(3) In project B, low coding quality was observed from
Cbug of GQM model 4.

(4) In project A, resource allocation problem was
suspected from Ave-Iss-Duration and Iss-Unres, but
it turned out that this was due to the improper use of
EPM (GNATS).

In the feedback meetings, some of project managers
told us that they were already aware of issues identified
by our GQM-based analysis. However, they also told us
it was very useful to quantitatively confirm what they
have observed by the models. Managers also suggested
that we conduct a module-based analysis because
problems are often bound to a particular module. The
module-based analysis will be an important future
refinement.

The hypotheses were useful to explain engineers how
goals are related to questions and metrics. We could
clearly explain the “cause-effect” relations we assumed.

During GQM-based analyses, we found some
mismatches between GNATS data and CVS data. For
example, there was a closed bug in GNATS data but
there was no history of fixing the bug in CVS comments.

Automated detection of such mismatches would be
useful to engineers.

We conducted interviews with managers in succeeding
projects next year using our less concrete GQM models
for different goal focuses. From the interviews, we found
that 17 out of 28 reported problem symptoms were
actually considered problems; and, the companies were
not aware of 7 problems. Therefore, we confirmed that
the idea of less concrete models were actually useful to
control the projects. On the other hand, 11 problem
symptoms were reported but they were not problems
indeed. Since we use less concrete interpretation model,
it is natural that some interpretation does not fit the
project context, and managers could successfully judge
whether a symptom fits their context or not. Therefore,
we consider that mangers can make decision based on
less concrete models.

7. Conclusion

The goal of this paper is to customize GQM models
for a particular environment where a software project
monitoring tool EPM is used, which means measurement
context is clear while variations among projects are still
allowed. Our basic idea is to build less concrete models
that do not include explicit baseline values to interpret
metrics values, while they include a “hypothesis layer”
and an “interpretation layer” to help people of different
projects make decisions in their own context.

We built initial GQM models applicable to EPM user
companies. Then we refined the models into 4 new
models based on 5 requirements, 1) narrowing goal focus,
2) explicit hypothesis description, 3) building less
concrete models, 4) using base metrics instead of derived
metrics 5) using week-wise metrics, which are derived
from an analysis based on initial GQM models.

We applied the models to two industrial projects (A
and B). Our main finding is that our less concrete models
could successfully identify typical problems in multiple
projects, that is, the models are potentially reusable in
many companies that use EPM environment.

These case studies of GQM model-based analyses

Fig 16. Metrics related to GQM Model 2, 3 and 4 (Project B)

Fig 17. Metrics related to GQM Model 3 (Project B)

0.8

0.9

1

1.1

1.2

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

Ave-FOwners

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

F mul

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

D chg
D bug

C bug

Unit test
Intgr.
test

Cross-company
intg. test & system test

Elapsed days

0

1
4

2
8

4
2

5
6

7
0

8
4

9
8

1
1
2

1
2
6

1
4
0

Iss

Iss-Unres

Ave-Iss-Duration

Unit test
Intgr.
test

Cross-company
intg. test & system test

13

suggest that models are useful to quantitatively confirm
what the project managers have observed. We could
identify problems such as (1) design incompleteness in
project B, (2) resource allocation problem in project B,
(3) low coding quality in project B, and (4) improper use
of EPM in project A.

These case studies and the development of the GQM
models using EPM-collected data indicate the usefulness
of an empirically-based process for modeling, observing,
and providing real-time feedback to industrial projects.
This allows project managers to support their intuitive
observations about problems with factual data, reducing
the risks associated with these problems. Since EPM
collects data from commonly used software development
tools, this approach does not add additional data
collection efforts even though it provides significantly
better understanding of the projects. This means project
managers and others can more easily and accurately
manage their projects.

Acknowledgments

The part of this work was conducted in the EASE project,
the Comprehensive Development of e-Society
Foundation Software program of the Ministry of
Education, Culture, Sports, Science and Technology.
Also, part of this work was conducted under Japan
Society for the Promotion of Science, Grant-in-Aid for
Scientific Research (C) (22500028).

References

[1] Basili, V. R. and Weiss, D. M., “A methodology for collecting

valid software engineering data,” IEEE Trans. on Software

Engineering, Vol.SE-10, No.6, pp.728-838, 1984.

[2] Basili, V. R., “Software modeling and measurement: the

Goal/Question/Metric paradigm,” Computer Science Technical

Report Series, CS-TR-2956 (UMIACS-TR-92-96), University of

Maryland, College Park, MD, Sep.

1992.http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/84.

73.pdf

[3] Basili, V., Caldiera, G., and Rombach, D., “Goal question metric

paradigm,” In J. Marciniak, editor, Encyclopedia of Software

Engineering, Volume 1, pp.528–532. John Wiley & Sons, Inc.,

New York, 1994.

[4] Basili, V. R., and Caldiera, G., “Improve software quality by

reusing knowledge and experience,” Sloan Management Review,

Vol.37, No.1, pp.55-64, 1995.

[5] Basili, V. R., Lindvall, M., Regardie, M., Seaman, C., Heidrich,

J., Münch, J., Rombach, D., and Trendowicz, A., Linking

software development and business strategy through

measurement, IEEE Computer, Vol.43, No. 4, pp.57-65, 2010.

[6] Briand, L. C., Morasca, S., and Basili, V. R., “An operational

process for goal-driven definition of measures,” IEEE Trans. on

Software Engineering, Vol.28, No.12, pp.1106-1125, 2002.

[7] Cusumano, M., MacCormack, A., Kemerer, C. F., and Crandall,

B., “Software development worldwide: the state of the practice,”

IEEE Software, Vol.20, No.3, pp.28-34, 2003.

[8] Dybå, T., Stålhane T., and Palmstrøm R., “Experience of goal-

oriented measurement using ami and GQM,” In Proc. 8th

European Software Control and Metrics Conference

(ESCOM’97), 1997.

[9] EPM Enhanced Version, Information-technology Promotion

Agency, http://sec.ipa.go.jp/tool/epm.html

[10] EPM Online Manual, http://empirical.jp/EPM/EPM.html

[11] The EASE Project, http://www.empirical.jp

[12] Mendonca, M. G., Basili, V. R., Bhandari, I. S., and Dawson, J.,

“An approach to improving existing measurement frameworks,”

IBM Systems Journal, Vol.37, No.4, pp.484-501, 1998.

[13] Mitani, Y., Barker, M., Torii, K., and Tsuruho, S., “An

experimental framework for Japanese academic-industry

collaboration in empirical software engineering research,” Proc.

Int’l Symposium on Empirical Software Engineering

(ISESE2004), Vol.2, Aug. 2004.

[14] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue, M.

Barker, and K. Torii, “Empirical Project Monitor: a system for

managing software development projects in real time,” Proc.

Int’l Symposium on Empirical Software Engineering

(ISESE2004), Vol.2, pp.37-38, Aug. 2004.

[15] Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K.,

and Torii, K., “Empirical Project Monitor: A tool for mining

multiple project data,” Proc. Int’l Workshop on Mining Software

Repositories (MSR2004), pp.42-46, May. 2004.

[16] Oka, Y., Tamura, K., Sekiguchi, J., Suzuki, K., Murayama, T.,

Tsunoda, F., Tamori, T., “Advantages and disadvantages of

“mieruka” confirmed by the EPM evaluation working group of

Japan Information Technology Services Industry Association,”

SEC journal, Vol.5, No. 6, pp.355-361, Dec. 2009.

[17] Solingen, R. and Berghout, E., “The Goal/Question/Metric

method – A practical guide for quality improvement of software

development,” McGraw-Hill, 1999.

[18] Trendowicz, A., Heidrich, J. and Shintani, K., “Aligning

software projects with business objectives,” Proc. Joint

Conference of 21st Int’l Workshop on Software Measurement

and 6th Int’l Conference on Software Process and Product

Measurement (IWSM/MENSURA2011), pp.142-150, Nov. 2011.

Appendix A: Metrics collected by EPM

Process Product
PROJECT ID
PROJECT
NAME
LACATION
EVENT TYPE CVS PRODUCT MAIL how to fix an issue)
EVENT
SOURCE

person who operated CVS person who created a XML file
line number or file name in

MailBox
bug report file name in GNATS

EVENT
OWNER

person who operated CVS person who created a XML file sender's e-mail address bug reporter

EVENT TIME time when CVS was operated time when a XML file was created time when an email was sent time when a bug report was posted

severity (e.g critical, serious, non-critical)
prioritry (e.g. high, medium,low)

person in charge of the bug
bug reporter's name

bug reporter’s address
reporter's type (e.g User, Developer,

mail address list for notification
time when a bug issue raised

time when a bug report last modified
time when a bug report was closed

subject of bug report
bug report number

synopsis (summary of a bug)
bug description (in detail)
how to reproduce an issue

how to fix an issue
confidental (e.g. yes or no)
report modification history

release information
related data

project name (e.g. EASE_Project)

host name:input file name or directory name (e.g. se.naist.jp:/tmp/cvsroot)

host name:project name (e.g. se.naist.jp:EASE_Project)

Configuration Management Data (CVS) Mailing List Management Data
(Mailman)

Bug Tracking Management Data (GNATS)

sticky (additional information)

remote working directory

module name

number of added lines

number of deleted lines

change log message

cvs tag

event type (e.g. checkout,
export, add, modify, remove,
tag, release, update, delete,

EVNET
TARGET

file name or directory name

version

project name mail subject excluding “Re:”

version

lines of code (in the file)

file name

time when the file was modified cc receiver's name

cc receiver's e-mail address

message ID (in mail header)

sender's e-mail address

bug type (e.g software-bug, documentation-
bug, support, change-request, mistaken,

duplicate)

EVENT
DETAIL

category (e.g. pending，bug，
documentation，feature，patch)

bug state (e.g open, analyzed, suspended,
feedback,closed)references (in mail header)

original subject

lines of message excluding mail
header

sender's name

receiver's name

receiver's e-mail address

