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Abstract Bug fixing accounts for a large amount of the software maintenance
resources. Generally, bugs are reported, fixed, verified and closed. However, in
some cases bugs have to be re-opened. Re-opened bugs increase maintenance costs,
degrade the overall user-perceived quality of the software and lead to unnecessary
rework by busy practitioners. In this paper, we study and predict re-opened bugs
through a case study on three large open source projects—namely Eclipse, Apache
and OpenOffice. We structure our study along four dimensions: (1) the work habits
dimension (e.g., the weekday on which the bug was initially closed), (2) the bug
report dimension (e.g., the component in which the bug was found) (3) the bug fix
dimension (e.g., the amount of time it took to perform the initial fix) and (4) the team
dimension (e.g., the experience of the bug fixer). We build decision trees using the
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aforementioned factors that aim to predict re-opened bugs. We perform top node
analysis to determine which factors are the most important indicators of whether or
not a bug will be re-opened. Our study shows that the comment text and last status of
the bug when it is initially closed are the most important factors related to whether or
not a bug will be re-opened. Using a combination of these dimensions, we can build
explainable prediction models that can achieve a precision between 52.1–78.6 % and
a recall in the range of 70.5–94.1 % when predicting whether a bug will be re-opened.
We find that the factors that best indicate which bugs might be re-opened vary based
on the project. The comment text is the most important factor for the Eclipse and
OpenOffice projects, while the last status is the most important one for Apache.
These factors should be closely examined in order to reduce maintenance cost due
to re-opened bugs.

Keywords Bug reports · Re-opened bugs · Open source software

1 Introduction

Large software systems are becoming increasingly important in the daily lives of
many people. A large portion of the cost of these software systems is attributed to
their maintenance. In fact, previous studies show that more than 90 % of the software
development cost is spent on maintenance and evolution activities (Erlikh 2000).

A plethora of previous research addresses issues related to software bugs. For
example, software defect prediction work uses various code, process, social struc-
ture, geographic distribution and organizational structure metrics to predict buggy
software locations (e.g., files or directories) (Zimmermann et al. 2007; Cataldo et al.
2009; D’Ambros et al. 2009; Graves et al. 2000; Moser et al. 2008; Bird et al. 2009b;
Nagappan et al. 2008). Other work focuses on predicting the time it takes to fix a
bug (Panjer 2007; Weiss et al. 2007; Kim and Whitehead 2006).

This existing work typically treats all bugs equally, meaning, the existing work did
not differentiate between re-opened and new bugs. Re-opened bugs are bugs that
were closed by developers, but re-opened at a later time. Bugs can be re-opened for
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a variety of reasons. For example, a previous fix may not have been able to fully fix
the reported bug. Or the developer responsible for fixing the bug was not able to
reproduce the bug and might close the bug, which is later re-opened after further
clarification.

Re-opened bugs take considerably longer to resolve. For example, in the Eclipse
Platform 3.0 project, the average time it takes to resolve (i.e., from the time the bug
is initially opened till it is fully closed) a re-opened bug is more than twice as much as
a non-reopened bug (371.4 days for re-opened bugs vs. 149.3 days for non-reopened
bugs). An increased bug resolution time consumes valuable time from the already-
busy developers. For example, developers need to re-analyze the context of the bug
and read previous discussions when a bug is re-opened. In addition, such re-opened
bugs degrade the overall user-perceived quality of the software and often lead to
additional and unnecessary rework by the already-busy practitioners.

This paper presents an exploratory study to determine factors that indicate
whether a bug will be re-opened. Knowing which factors are attributed to re-opened
bugs prepares practitioners to think twice before closing a bug. For example, if
it is determined that bugs logged with high severity are often re-opened, then
practitioners can pay special attention (e.g., by performing more thorough reviews)
to such bugs and their fixes.

We combine data extracted from the bug and source control repositories of the
Eclipse, Apache and OpenOffice open source projects to extract 24 factors that are
grouped into four different dimensions:

1. Work habits dimension: which is used to gauge whether the work habits of the
software practitioners initially closing the bug affect its likelihood of being re-
opened. The main reason for studying this dimension is to possibly provide some
insights about process changes (e.g., avoiding closing bugs during specific times)
that might lead to a reduction in bug re-openings.

2. Bug report dimension: which is used to examine whether information in the bug
report can be used to determine the likelihood of bug re-opening. The main
reason for examining this dimension is to see whether information contained in
the bug report can be used to hint a higher risk of a bug being re-opened in the
future. Practitioners can then be warned about such data in order to reduce bug
re-openings.

3. Bug fix dimension: which is used to examine whether the fix made to address
a bug can be used to determine the likelihood of a bug being re-opened. The
reason for studying this dimension is to examine whether certain factors related
to the bug fix increase the likelihood of it being re-opened later. Insights about
issues that might increase the likelihood of a bug being re-opened are helpful to
practitioners so they can know what to avoid when addressing bugs.

4. Team dimension: which is used to determine whether the personnel involved
with a bug can be used to determine the likelihood of a bug being re-opened.
The reason for using this dimension is to examine whether certain personnel
(e.g., more experienced personnel) should avoid or be discouraged to address
bugs, in order to reduce bug re-openings.

To perform our analysis, we build decision trees and perform a Top Node
analysis (Hassan and Zhang 2006; Sayyad and Lethbridge 2001) to identify the most
important factors in building these decision trees. Furthermore, we use the extracted
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factors to predict whether or not a closed bug will be re-opened in the future. In
particular, we aim to answer the following research questions:

Q1. Which of the extracted factors indicate, with high probability, that a bug will
be re-opened?
The factors that best indicate re-opened bugs vary based on the project. The
comment text is the most important factor for the Eclipse and OpenOffice
projects, while the last status is the most important one for Apache.

Q2. Can we accurately predict whether a bug will be re-opened using the extracted
factors?
We use 24 different factors to build accurate prediction models that predict
whether or not a bug will be re-opened. Our models can correctly predict
whether a bug will be re-opened with precision between 52.1–78.6 % and recall
between 70.5–94.1 %.

This paper extends an earlier conference paper (Shihab et al. 2010), in which we
study and predict re-opened bugs in the Eclipse project. In this paper, we extend
our previous work by conducting our study on two additional Open Source Systems
(OSS), the Apache HTTP server and OpenOffice. Doing so reduces the threat to
external validity and improves the generalizability of our findings since the three
systems come from different domains (i.e., Integrated Development Environment
(IDE) vs. Web Server vs. Productivity Suite) and are written in different program-
ming languages (i.e., C/C++ vs. Java). In addition, we compare our findings for
the three projects and provide insight about the way in which the important factors
impact the likelihood of a bug being re-opened.

The rest of the paper is organized as follows. Section 2 describes the life cycle of a
bug. Section 3 presents the methodology of our study. We detail our data processing
steps in Section 4. The case study results are presented in Section 5. We compare the
prediction results using different algorithms in Section 6. The threats to validity and
related work are presented in Sections 8 and 9, respectively. Section 10 concludes the
paper.

2 The Bug Life Cycle

Bug tracking systems, such as Bugzilla (http://www.bugzilla.org/), are commonly used
to manage and facilitate the bug resolution process. These bug tracking systems
record various characteristics about reported bugs, such as the time the bug was
reported, the component the bug was found in and any discussions related to the bug.
The information stored in bug tracking systems is leveraged by many researchers
to investigate different phenomena (e.g., to study the time it takes to resolve bugs
Mockus et al. 2002; Herraiz et al. 2008).

The life cycle of a bug can be extracted from the information stored in the bug
tracking systems. We can track the different states that bugs have gone through
and reconstruct their life cycles based on these states. For example, when bugs are
initially logged, they are confirmed and labeled as new bugs. Then, they are triaged
and assigned to developers to be fixed. After a developer fixes the bug, the fix is
verified and the bug closed.

http://www.bugzilla.org/
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Fig. 1 Bug resolution process (Bugzilla a bug’s life cycle. https://bugs.eclipse.org/bugs)

A diagram representing the majority of the states bugs go through is shown in
Fig. 1. When developers, testers or users experience a bug, they log/submit a bug
report in the bug tracking system. The bug is then set to the Opened state. Next,
the bug is triaged to determine whether it is a real bug and whether it is worth
fixing. After the triage process, the bug is accepted and its state is updated to
New. It then gets assigned to a developer who will be responsible to fix it (i.e.,
its state is Assigned). If a bug is known to a developer beforehand,1 it is assigned
to that developer, who implements the fix, after which the bug directly goes from
the New state to the Resolved_FIXED state. More typically, bugs are assigned
to the most qualified developer (i.e., they go to the Assigned state), who then
implements a fix for the bug, after which its state transitions into Resolved_FIXED.
In certain cases, a bug is not fixed by the developers because it is identified as
being invalid (i.e., state Resolved_INVALID), a decision was made to not fix the bug
(i.e., state Resolved_WONTFIX), it is identified as a duplicate of another bug (i.e.,
state Resolved_DUPLICATE) or the bug is not reproducible by the developer (i.e.,
state Resolved_WORKSFORME). Once the bug is resolved, it is verified by another
developer or tester (state Verif ied_FIXED) and finally closed (state Closed).

However, in certain cases, bugs are re-opened after their closure. This can be
due to many reasons. For example, a bug might have been incorrectly fixed and
resurfaces. Another reason might be that the bug was closed as being a duplicate
and later re-opened because it was not actually a duplicate.

In general, re-opened bugs are not desired by software practitioners because
they degrade the overall user-perceived quality of the software and often lead to
additional and unnecessary rework by the already-busy practitioners. Therefore, in
this paper we set out to investigate which factors best predict re-opened bugs. Then,
we use these factors to build accurate prediction models to predict re-opened bugs.

3 Approach to Predict Re-opened Bugs

In this section, we describe the factors used to predict whether or not a bug will be re-
opened. Then, we present decision trees and motivate their use in our study. Finally,
we present the metrics used to evaluate the performance of the prediction models.

1For example, in some cases developers discover a bug and know how to fix it, however they create
a bug report and assign it to themselves for book-keeping purposes.

https://bugs.eclipse.org/bugs
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3.1 Dimensions Used to Predict if a Bug will be Re-opened

We use information stored in the bug tracking system, in combination with informa-
tion from the source control repository of a project to derive various factors that we
use to predict whether a bug will be re-opened.

Table 1 shows the extracted factors, the type of the factor (e.g., numeric or
nominal), an explanation of the factor and the rationale for using each factor. We
have a total of 24 factors that cover four different dimensions. We describe each
dimension and its factors in more detail next.

Work Habits Dimension Software developers are often overloaded with work. This
increased workload affects the way these developers perform. For example, Śliwerski
et al. (2005) showed that code changes are more likely to introduce bugs if they were
done on Fridays. Anbalagan and Vouk (2009) showed that the time it takes to fix a
bug is related to the day of the week when the bug was reported. Hassan and Zhang
(2006) used various work habit factors to predict the likelihood of a software build
failure.

These prior findings motivate us to include the work habit dimension in our study
on re-opened bugs. For example, developers might be inclined to close bugs quickly
on a specific day of the week to reduce their work queue and focus on other tasks.
These quick decisions may cause the bugs to be re-opened at a later date.

The work habit dimension consists of four different factors. The factors of the
work habit dimension are listed in Table 1. The time factor was defined as a nominal
variable that can be morning (7 AM to 12 Noon), afternoon (Noon to 5 PM),
evening (5 PM to 12 midnight) or night (midnight to 7 AM), indicating the hours
of the day that the bug was initially closed on in the timezone of the project.

Bug Report Dimension When a bug is reported, the reporter of the bug is required
to include information that describes the bug. This information is then used by the
developers to understand and locate the bug. Several studies use that information to
study the amount of time required to fix a bug (Mockus et al. 2002). For example,
Panjer (2007) showed that the severity of a bug has an effect on its lifetime. In
addition, a study by Hooimeijer and Weimer (2007) showed that the number of
comments attached to a bug report affects the time it takes to fix it.

We believe that attributes included in a bug report can be leveraged to determine
the likelihood of a bug being re-opened. For example, bugs with short or brief
descriptions may need to be re-opened later because a developer may not be able
to understand or reproduce them the first time around.

A total of 11 different factors make up the bug report dimension. They are listed
in Table 1.

Bug Fix Dimension Some bugs are harder to fix than others. In some cases, the
initial fix to the bug may be insufficient (i.e., it did not fully fix the bug) and,
therefore, the bug needs to be re-opened. We conjecture that more complicated bugs
are more likely to be re-opened. There are several ways to measure the complexity
of a bug fix. For example, if the bug fix requires many files to be changed, this might
be an indicator of a rather complex bug (Hassan 2009).
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The bug fix dimension uses factors to capture the complexity of the initial fix of a
bug. Table 1 lists the three factors that measure the time it took to fix the bug, the
status before the bug was re-opened and the number of files changed to fix the bug.

People Dimension In many cases, the people involved with the bug report or the
bug fix are the reason that it is re-opened. Reporters may not include important
information when reporting a bug, or they lack the experience (i.e., they have never
reported a bug before). On the other hand, developers (or fixers) may lack the
experience and/or technical expertise to fix or verify a bug, leading to the re-opening
of the bug.

The people dimension, listed in Table 1, is made up of four factors that cover bug
reporters, bug fixers and their experience.

The four dimensions and their factors listed in Table 1 are a sample of the factors
that can be used to study why bugs are reopened. We plan (and encourage other
researchers) to build on this set of dimensions to gain more insights into why bugs
are re-opened.

3.2 Building Decision Tree-Based Predictive Models

To determine if a bug will be re-opened, we use the factors from the four afore-
mentioned dimensions as input to a decision tree classifier. Then, the decision tree
classifier predicts whether or not the bug will be re-opened.

We chose to use a decision tree classifier for this study since it offers an explainable
model. This is very advantageous because we can use these models to understand
what attributes affect whether or not a bug will be re-opened. In contrast, most other
classifiers produce “black box” models that do not explain which attributes affect the
predicted outcome.

To perform our analysis, we divide our data set into two sets: a training set and a
test set. The training set is used to train the decision tree classifier. Then, we test the
accuracy of the decision tree classifier using our test set.

The C4.5 algorithm (Quinlan 1993) was used to build the decision tree. Using the
training data, the algorithm starts with an empty tree and adds decision nodes or
leafs at each level. The information gain using a particular attribute is calculated and
the attribute with the highest information gain is chosen. Further analysis is done to
determine the cut-off value at which to split the attribute. This process is repeated
at each level until the number of instances classified at the lowest level reaches a
specified minimum. Having a large minimum value means that the tree will be strict
in creating nodes at the different levels. On the contrary, making this minimum value
small (e.g., 1) will cause many nodes to be added to the tree. To mitigate noise in our
predictions and similar to previous studies (Ibrahim et al. 2010), our case study sets
this minimum node size to 10.

To illustrate, we provide an example tree produced by the fix dimension, shown in
Fig. 2. The decision tree indicates that when the time_days variable (i.e., the number
of days to fix the bug) is greater than 13.9 and the last status is Resolved Fixed,
then the bug will be re-opened. On the other hand, if the time_days variable is less
than or equal to 13.9 and the number of files in the fix is less than or equal to 4 but
greater than 2, then the bug will not be re-opened. Such explainable models can be
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Fig. 2 Sample decision tree

leveraged by practitioners to direct their attention to bugs that require closer review
before they are closed.

3.3 Evaluating the Accuracy of Our Models

To evaluate the predictive power of the derived models, we use the classification
results stored in a confusion matrix. Table 2 shows an example of a confusion matrix.

We follow the same approach used by Kim et al. (2008), using the four possible
outcomes for each bug. A bug can be classified as re-opened when it truly is
re-opened (true positive, TP); it can be classified as re-opened when actually it is
not re-opened (false positive, FP); it can be classified as not re-opened when it
is actually re-opened (false negative, FN); or it can be classified as not re-opened and
it truly is not re-opened (true negative, TN). Using the values stored in the confusion
matrix, we calculate the widely used Accuracy, Precision, Recall and F-measure for
each class (i.e., re-opened and not re-opened) to evaluate the performance of the
predictive models.

The accuracy measures the number of correctly classified bugs (both the re-
opened and the not re-opened) over the total number of bugs. It is defined as:

Accuracy = T P + T N
T P + F P + T N + F N

. (1)

Since there are generally less re-opened bugs than not re-opened bugs, the
accuracy measure may be misleading if a classifier performs well at predicting the
majority class (i.e., not re-opened bugs). Therefore, to provide more insights, we
measure the precision and recall for each class separately.

1. Re-opened precision: Measures the percentage of correctly classified re-opened
bugs over all of the bugs classified as re-opened. It is calculated as P(re) = T P

T P+F P .

Table 2 Confusion matrix Classified as True class

Re-open Not re-open

Re-open TP FP
Not re-open FN TN
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2. Re-opened recall: Measures the percentage of correctly classified re-opened bugs
over all of the actually re-opened bugs. It is calculated as R(re) = T P

T P+F N .
3. Not re-opened precision: Measures the percentage of correctly classified, not re-

opened bugs over all of the bugs classified as not re-opened. It is calculated as
P(nre) = T N

T N+F N .
4. Not re-opened recall: Measures the percentage of correctly classified not re-

opened bugs over all of the actually not re-opened bugs. It is calculated as
R(nre) = T N

T N+F P .
5. F-measure: Is a composite measure that measures the weighted harmonic mean

of precision and recall. For re-opened bugs it is measured as F-measure(re) =
2∗P(re)∗R(re)
P(re)+R(re) and for bugs that are not re-opened F-measure(nre) = 2∗P(nre)∗R(nre)

P(nre)+R(nre) .

A precision value of 100 % would indicate that every bug we classified as (not)
re-opened was actually (not) re-opened. A recall value of 100 % would indicate that
every actual (not) re-opened bug was classified as (not) re-opened.

To estimate the accuracy of the model, we employ 10-fold cross validation (Efron
1983). In 10-fold cross validation, the data set is partitioned into ten sets. Each of the
ten sets contains 1/10 of the total data. Each of the ten sets is used once for validation
(i.e., to test accuracy) and the remaining nine sets are used for training. We repeat
this 10-fold cross validation ten times (i.e., we build 100 decision trees in total) and
report the average.

4 Data Processing

To conduct our case study, we used three projects: Eclipse Platform 3.0, Apache
HTTP Server and OpenOffice. The main reason we chose to study these three
projects in our case study is because they are large and mature Open Source Software
(OSS) projects that have a large user base and a rich development history. The
projects also cover different domains (i.e., Integrated Development Environment
(IDE) vs. Web Server vs. Productivity Suite) and are written in different program-
ming languages (i.e., C/C++ vs. Java). We leveraged two data sources from each
project, i.e., the bug database and the source code control (CVS) logs.

To extract data from the bug databases, we wrote a script that crawls and extracts
bug report information from the project’s online Bugzilla databases. The reports are
then parsed and different factors are extracted and used in our study.

Most of the factors can be directly extracted from the bug report, however, in
some cases we needed to combine the data in the bug report with data from the
CVS logs. For example, one of our factors is the number of files that are changed to
implement the bug fix. In most cases, we can use the files included in the submitted
patch. However, sometimes the patch is not attached to the bug report. In this case,
we search the CVS logs to determine the change that fixed the bug.

We used the J-REX (Shang et al. 2009) tool, an evolutionary code extractor
for Java-based software systems, to perform the extraction of the CVS logs. The
J-REX tool obtains a snapshot of the Eclipse CVS repository and groups changes
into transactions using a sliding window approach (Śliwerski et al. 2005). The
extracted logs contain the date on which the change was made, the author of the
change, the comments by the author to describe the change and the files that were
part of the change. To map the bugs to the changes that fixed them, we used the
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Table 3 Bug report data
statistics

Eclipse Apache OpenOffice
HTTP

Total extracted bug reports 18,312 32,680 106,015
Resolved bug reports 3,903 28,738 86,993
Bug reports linked to code 1,530 14,359 40,173

changes or patches
Re-opened bug reports 246 927 10,572
Not re-opened bug reports 1,284 13,432 29,601

approach proposed by Fischer et al. (2003) and later used by Zimmermann et al.
(2007), which searches in the CVS commit comments for the bug IDs. To validate
that the change is actually related to the bug, we made sure that the date of the
change is on or prior to the close date of the bug. That said, there is no guarantee
that the commits are bug fixes as they may be performing other types of changes to
the code.

To use the bug reports in our study, we require that they be resolved and contain
all of the factors we consider in our study. Table 3 shows the number of bug reports
used from each project. To explain the data in Table 3, we use the Eclipse project as
an example. We extracted a total of 18,312 bug reports. Of these 18,312 reports, only
3,903 bug reports were resolved (i.e., they were closed at least once). Of the resolved
bug reports, 1,530 could be linked to source code changes and/or submitted patches.
We use those 1,530 bug reports in our study. Of the 1,530 bug reports studied, 246
were re-opened and 1,284 were not.

For each bug report, we extract 24 different factors that cover the four dimensions
described in Table 1. Most of the factors were directly derived from the bug or code
databases. However, two factors in the bug report dimension are text-based and
required special processing. Similar to prior work (Mizuno et al. 2007; Mizuno and
Hata 2010), we apply a Naive Bayesian classifier (Meyer and Whateley 2004) on the
description text and comment text factors to determine keywords that are associated
with re-opened and non-reopened bugs. We use a Naive Bayesian classifier since
it is commonly used to process text in spam filters due to its simplicity, its linear
computation time and accuracy (Michelakis et al. 2004). For this, we use a training
set that is made up of two-thirds randomly selected bug reports. The Bayesian
classifier is trained using two corpora that are derived from the training set. One
corpus contains the description and comment text of the re-opened bugs2 and the
other corpus contains the description and comment text of the bugs that were not re-
opened. The content of the description and comments are divided into tokens, where
each token represents a single word. Since the bug comments often contain different
types of text (e.g., code snippets), we did not stem the words or remove stop words.
Prior work showed that stemming and removing stop words has very little influence
on the final results of a Naive Bayesian model (Androutsopoulos et al. 2000).

The occurrence of each token is calculated and each token is assigned a probability
of being attributed to a re-opened or not re-opened bug. These probabilities are
based on the training corpus. Token probabilities are assigned based on how far
their spam probability is from a neutral 0.5. If a token has never been seen before, it is

2For re-opened bugs, we used all the comments posted before the bugs were re-opened.
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assigned a probability of 0.4. The reason for assigning a low probability to new tokens
is that they are considered innocent. The assumption here is that tokens associated
with spam (or in our case re-opened bugs) will be familiar.

The probabilities of the highest 15 tokens are combined into one (Graham 2002),
which we use as a score value that indicates whether or not a bug will be re-
opened. The choice of 15 tokens is motivated by prior work (e.g., Ibrahim et al.
2010). Generally, the number of tokens provides a tradeoff between accuracy and
complexity (i.e., having too little tokens may not capture enough information and
having too many tokens may make the models too complex). A score value close to
1 indicates that the bug is likely to be re-opened and vice versa. The score values of
the description and comment text are then used in the decision tree instead of the
raw text.

Dealing with Imbalance in Data One issue that many real-world applications (e.g.,
in vision recognition (Sánchez et al. 2001), bioinformatics (Barandela et al. 2003),
credit card fraud detection (Chan and Stolfo 1998) and bug prediction (Sayyad and
Lethbridge 2001)) suffer from is data imbalance. What this means is that one class
(i.e., majority) usually appears a lot more than another class (i.e., minority). This
causes the decision tree to learn factors that affect the majority class without trying to
learn about factors that affect the minority class. For example, in Eclipse the majority
class is non-reopened bugs which has 1,284 bugs and the minority class is re-opened
bugs, which contains 246 bugs. If the decision tree simply predicts that none of the
bugs will be re-opened, then it will be correct 83.9 % of the time (i.e., 1284

1530 ). We
discuss this observation in more detail in Section 6.

To deal with this issue of data imbalance, we must increase the weight of the
minority class. A few different approaches have been proposed in the literature:

1. Re-weighting the minority class: Assigns a higher weight to each bug report of
the minority class. For example, in our data, we would give a weight of 5.2 (i.e.,
1284
246 ) to each re-opened instance.

2. Re-sampling the data: Over- and under- sampling can be performed to alleviate
the imbalance issue. Over-sampling increases the minority class instances to
become at the same level as the majority class. Under-sampling decreases the
majority class instances to reach the same level as the minority class. Estabrooks
and Japkowicz (2001) recommend performing both under- and over-sampling,
since under-sampling may lead to useful data being discarded and over-sampling
may lead to over-fitted models.

We built models using both re-weighting and re-sampling using the AdaBoost
algorithm (Freund and Schapire 1995) available in the WEKA machine learning
framework (Witten and Frank 2005). We performed both over- and under-sampling
on the training data and predicted using an imbalanced test data set (since real-life
data is imbalanced). We did the same using the re-weighting approach. Using re-
sampling achieves better prediction results, therefore we decided to only use this in
all our experiments. A similar finding was made in previous work (Ibrahim et al.
2010).

It is important to note here that we re-sampled the training data set only. The test
data set was not re-sampled or re-weighted in any way and maintained the same ratio
of re-opened to non-re-opened bugs as in the original data set.



Empir Software Eng (2013) 18:1005–1042 1019

5 Case Study Results

In this section, we present the results of our case study on the Eclipse Platform
3.0, Apache HTTP server and OpenOffice projects. We aim to answer the two
research questions posed earlier. To answer the first question we perform a Top
Node analysis (Hassan and Zhang 2006; Sayyad and Lethbridge 2001) using each
of the dimensions in isolation (to determine the best factors within each dimension)
and using all of the dimensions combined (to determine the best factors across all
dimensions). Then, we use these dimensions to build decision trees that accurately
predict whether or not a bug will be re-opened.

Q1. Which of the extracted factors indicate, with high probability, that a bug will be
re-opened?

We perform Top Node analysis to identify factors that are good indicators of
whether or not a bug will be re-opened. In Top Node analysis, we examine the top
factors in the decision trees created during our 10 × 10-fold cross validation. The
most important factor is always the root node of the decision tree. As we move
down the decision tree, the factors become less and less important. For example,
in Fig. 2, the most important factor in the tree is time_days. As we move down to
level 1 of the decision tree, we can see that last_state and num_fix_files are the next
important factors and so on. In addition to the level of the tree that a factor appears
in, the occurrence of a factor at the different levels is also important. The higher the
occurrence, the stronger the confidence about the importance of that factor.

5.1 Team Dimension

Table 4 presents the results of the Top Node analysis for the team dimension. For the
Eclipse project, the reporter name and the fixer name are the most important factors
in the team dimension. Out of the 100 decision trees created (i.e., 10 × 10-fold cross
validation), the reporter name is the most important in 51 trees and the fixer name
was the most important in the remaining 49 trees. In Apache the reporter name is
the most important factor in all 100 decision trees created for the team dimension.
On the other hand, in OpenOffice the fixer name is the most important factor in all
100 decision trees.

Hence, our finding shows that the reporter name and the fixer name are the
most important factors in the team dimension. This indicates that some reporters
and developers are more likely to have their bugs re-opened than others. The fixer
experience is also important, ranking highly in level 1 of the decision trees of the
Eclipse and OpenOffice projects.

It is important to note that in level 1 of the tree presented in Table 4, the
frequencies of the attributes sum up to more than 200 (which would be the case
when the attributes used were binary). This is because the Fixer name and reporter
name variables are of type string and are converted to multiple nominal variables.
Therefore, the frequencies of the attributes at level 1 of the tree sum up to more than
200.

This effect also made it hard to understand the concrete effect of the most impor-
tant factors in each project. For example, a decision tree would say “if developer A
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Table 4 Top node analysis of the team dimension

Level Eclipse Apache OpenOffice

# Attribute # Attribute # Attribute

0 51 Reporter name 100 Reporter name 100 Fixer name
49 Fixer name

1 315 Fixer experience 1098 Fixer name 1490 Fixer experience
277 Reporter name 1013 Fixer experience 480 Reporter name
248 Reporter experience 862 Reporter experience 176 Reporter experience
202 Fixer name

is the fixer and the developer experience is > 10 bugs, then the bug is re-opened”.
Another branch of the tree might say “if developer B is the fixer and the developer
experience is > 10 bugs, then the bug is not re-opened”. In such a case, it is difficult
to determine the effect of the developer experience factor.

Therefore, in addition to examining the decision trees, we generated logistic
regression models and used the coefficients of the factors to quantify the effect of
the factor on a bug being re-opened (Mockus 2010). In particular, we report the odds
ratios of the analyzed factors. Odds ratios are the exponent of the logistic regression
coefficients and indicate the increase to the likelihood of a bug being re-opened that 1
unit increase of the factor value causes. Odds ratios greater than 1 indicate a positive
relationship between the independent (i.e., factors) and dependent variables (i.e., an
increase in the factor value will cause an increase in the likelihood of a bug being re-
opened). For example, an odds ratio of 1.06 means that for each unit increase in the
value of the factor, the likelihood of a bug being re-opened increases by 6 %. Odds
ratios less than 1 indicate a negative relationship, or in other words, an increase in
the independent variable will cause a decrease in the likelihood of the dependent
variable. For example, an odds ratio of 0.99 means that for a one unit increase in the
value of a factor, the likelihood of a bug being re-opened decreases by 1 %.

Different fixer and reporter names were associated with different effects on a
bug being re-opened. For the sake of privacy, we do not mention the effect of
specific fixer and reporter names, and only discuss the effect of the fixer and reporter
experience on a bug being re-opened.

In Eclipse, we found a negative, but weak, effect between the reporter experience
(odds ratio 0.99) and developer experience (odds ratio 0.99) and the likelihood of a
bug being re-opened. This means that more experienced reporters and developers
are less likely to have their bugs re-opened. In Apache we also found a negative
and weak effect on reporter experience (odds ratio 0.99) and the likelihood of a bug
being re-opened. In OpenOffice, we found a negative and weak effect between the
developer experience (odds ratio 0.99) and the likelihood of a bug being re-opened.

5.2 Work Habit Dimension

Table 5 shows the results of the Top Node analysis for the work habit dimension.
In Eclipse and Apache, the day of the year and the day of the month the bug was
closed in, were the most important factors. In the 100 decision trees created, the
day of the year was the most important factor 76 and 97 times for Eclipse and
Apache, respectively. For Apache, another important factors (i.e., in level 1) is the
weekday that the bugs were closed in. For OpenOffice, the week day factor is the
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Table 5 Top node analysis of the work habit dimension

Level Eclipse Apache OpenOffice

# Attribute # Attribute # Attribute

0 76 Day of year 97 Day of year 90 Week day
20 Month day 3 Month day 10 Time

2 Time
1 Week day
1 Month day

1 39 Day of year 73 Week day 412 Day of year
31 Month day 68 Month day 134 Time
22 Month 30 Day of year 73 Month
20 Time 7 Time 28 Month day
15 Week day 3 Month 23 Week day

6 Day of year

most important factor in 90 of the decision trees built for the OpenOffice project.
The time factor was the most important in 10 of the 100 decision trees. Similar to
the Eclipse and Apache projects, the day of the year was also important for the
OpenOffice project (i.e, in level 1).

Examining the effect of the important factors for Eclipse showed that bugs closed
later on in the year (i.e., day of the year) are more likely to be re-opened (odds ratio
1.05). We also find that bugs reported later in the month are less likely to be re-
opened (odds ratio 0.95). In Apache, bugs closed later in the year have a negative,
but weak, effect on bug re-opening (odds ratio 0.99). In OpenOffice, we found a
negative relationship to bug re-opening for bugs closed on all days of the week (odds
ratios in the range of 0.79–0.99), except for Wednesday where there was a positive
relationship (odds ratio 1.03). For time, we find a weak and positive relationship
between bugs closed in the morning (odds ratio 1.07) or at night (odds ratio 1.04)
with bug re-opening.

5.3 Bug Fix Dimension

Table 6 presents the Top Node analysis results for the bug fix dimension. For Eclipse,
the time days factor, which counts the number of days it took from the time the bug
was opened until its initial closure (i.e., the time it took to initially resolve the bug),
is the most important factor in the fix dimension in 90 of the 100 decision trees. The
number of files touched to fix the bug and the last status the bug was in when it was

Table 6 Top node analysis of the bug fix dimension

Level Eclipse Apache OpenOffice

# Attribute # Attribute # Attribute

0 90 Time days 100 Last status 100 Last status
5 No. fix files
5 Last status

1 93 No. fix files 261 Time days 293 Time days
57 Last status 210 No. fix files 62 No. fix files
38 Time days
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closed were the most important factor in 5 of the 100 trees. In the case of Apache
and OpenOffice, the last status the bug was in when it was closed (i.e., before it was
reopened) was the most important factor in all 100 decision trees. Also important are
the number of days it took to close the bug (i.e., time days fact) and the number of
files in the fix, as shown by their importance in levels 1 of the decision trees.

As for the effect of the factors, in Eclipse we found that there is practically no
effect between the number of days it takes to close a bug (odds ratio 1.0) and
the likelihood of a bug being re-opened. To put things in perspective, we found
that an increase of 365 days, increases the chance of the likelihood of a bug being
re-opened by 0.4 %. In addition, we found that bugs in the “resolved_duplicate”,
“resolved_worksforme” and “resolved_invalid” states before their final closure had
the strongest chance of being re-opened. This means that when a bug is in any of
those three aforementioned states before being closed, it should be closely verified
since it is likely that it will be re-opened.

For Apache, bugs in the “resolved_duplicate”, “resolved_wontfix”,
“resolved_invalid”, “verified_invalid” and “resolved_worksforme” states
were the most likely to be re-opened. In OpenOffice, we found that
bugs in the “resolved_duplicate”, “verified_wontfix”, “verified_invalid” and
“verified_worksforme” states prior to being closed were the most likely to be
re-opened.

5.4 Bug Report Dimension

The Top Node analysis results of the bug report dimension are shown in Table 7. For
the Eclipse project, the comment text content included in the bug report factor is the
most important in this dimension, showing up as the most important in 94 of the 100
decision trees.

We examine the words that appear the most in the description and comments of
the bugs. These are the words the Naive Bayesian classifier associates with re-opened
and not re-opened bugs. Words such as “control”, “background”, “debugging”,
“breakpoint”, “blocked” and “platforms” are associated with re-opened bugs. Words
such as “verified”, “duplicate”, “screenshot”, “important”, “testing” and “warning”
are associated with bugs that are not re-opened.

To shed some light on our findings, we manually examined ten of the re-opened
bugs for each of the studied systems. We found that three of these re-opened bugs

Table 7 Top node analysis of the bug report dimension

Level Eclipse Apache OpenOffice

# Attribute # Attribute # Attribute

0 94 Comment text 100 Description text 100 Comment text
6 Description text

1 181 Description text 105 Comment text 101 Description text
16 Comment text 89 No. of comments 84 No. of comments

1 Severity changed 1 Description size 9 No. in CC list
5 Comment text
1 Comment size
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involved threading issues. The discussions of these re-opened bugs talked about
running processes in the “background” and having “blocked” threads. In addition,
we found that bugs that involve the debug component were frequently re-opened,
because they are difficult to fix. For example, we found comments such as “Verif ied
except for one part that seems to be missing: I think you forgot to add the...” and “This
seems more dif f icult that[than] is[it] should be. I wonder if we can add...”.

For Apache, the description text is the most important factor in the bug report
dimension. This finding is contrary to our observation in the Eclipse project, in which
the comment text is shown to be the most important factor. However, the comment
text is also of importance in the Apache project, appearing in level 1 of the decision
trees.

The words that the Naive Bayesian classifier associates with re-opened bugs
included words such as “cookie”, “session”, “block” and “hssfeventfactory” are
associated with re-opened bugs. Words such as “attachment”, “message”, “ant”,
“cell” and “code” are associated with bugs that are not re-opened.

Manual examination of ten of the re-opened bugs shows that four of the re-opened
bugs in Apache are related to compatibility issues. For example, in one of the bugs
examined, the bug was re-opened because the initial fix cloned a piece of code but
did not modify the cloned code to handle all cases in its context. We found comments
that said “...The f ix for this bug does not account for all error cases. I am attaching a
document for which the code fails...”. A later comment said “...I see what’s missing. We
borrowed the code from RecordFactory.CreateRecords but forgot to handle unknown
records that happen to be continued...”.

In another example, the bug was being deleted because it was difficult to fix, and
even after a fix was done, it did not fix the bug entirely. One of the comments that
reflects the difficulty of the bug says “...This bug is complex to f ix, and for this reason
will probably not be f ixed in the 4.0.x branch, but more likely for 4.1. This will be
mentioned in the release notes...”. After the bug was initially fixed, a later comment
attached by the developer who re-opened the bug says “While the new session is now
being created and provided to the included resource, no cookie is being added to the
response to allow the session to be retrieved when direct requests to the included context
are recieved...”

Similar to the Eclipse project, in OpenOffice the comment text is the most
important factor in the bug report dimension. The description text and the number of
comments are also shown to be important, appearing in level 1 of the decision trees.

The Naive Bayesian classifier associates words such as “ordinal”, “database”,
“dpcc”, “hsqldb” and “sndfile” with re-opened bugs, whereas words such as “at-
tached”, “menu”, “button”, “wizard” and “toolbar” were associated with bugs that
are not re-opened.

A manual examination of ten of the re-opened bugs shows that seven of the
re-opened bugs in OpenOffice are related to database access issues. In one of the
examined bugs, the issue was related to a limitation of the HSQL database engine
being used, where the reporter says “Fields (names, data types) in HSQL-based
tables cannot be modif ied after the table has been saved..”. The bug is closed since
this seemed to be a limitation of the HSQL database engine, as reported in this
comment “that would be nice, however I think it’s (currently) a limitation of the used
hsqldb database engine”. Later on, support was added and the bug was re-opened and
fixed.
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5.5 All Dimensions

Thus far, we looked at the dimensions in isolation and used Top Node analysis to
determine the most important factors in each dimension. Now, we combine all of the
dimensions together and perform the Top Node analysis using all of the factors. The
Top Node analysis of all dimensions is shown in Table 8.

In Eclipse, the comment text is determined to be the most important factor
amongst all of the factors considered in this study. In addition, the description text
content is the next most important factor. For Apache, the last status of the bug when
it is closed is the most important factor, followed by the description and comment
text. Similar to the Eclipse project, in OpenOffice the comment text is shown to be
the most important factor. The next most important factor is the last status factor,
which appears in level 1 of the decision trees.

�

�

�

�

The comment text is the most important factor for the Eclipse and
OpenOf f ice projects, while the last status is the most important one
for Apache.

Q2. Can we accurately predict whether a bug will be re-opened using the extracted
factors?

Following our study on which factors are good indicators of re-opened bugs, we
use these factors to predict whether a bug will be re-opened. First, we build models
that use only one dimension to predict whether or not a bug will be re-opened. Then,
all of the dimensions are combined and used to predict whether or not a bug will be
re-opened.

Table 9 shows the prediction results produced using decision trees. The results
are the averages of the 10 times 10-fold cross validation. Since we are reporting
the average of 100 runs, we also report the variance to give an indication of how
much the results vary across runs. The variance of the measures is shown in brackets

Table 8 Top node analysis across all dimensions

Level Eclipse Apache OpenOffice

# Attribute # Attribute # Attribute

0 96 Comment text 100 Last status 100 Comment text
4 Description text

1 180 Description text 280 Description text 200 Last status
11 Comment text 132 Comment text

3 Severity changed 2 Time
1 Time 19 Month

1 Description size
10 Month day
8 No. of fix files

37 No. of comments
1 Severity
3 Fixer experience
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besides each average value. Ideally, we would like to obtain high precision, recall and
F-measure values, especially for the re-opened bugs.

Eclipse Out of the four dimensions considered, the bug report dimension was the
best performing. It achieves a re-opened precision of 51.3 %, a re-opened recall of
72.5 % and 59.5 % re-opened F-measure. The bug report dimension was also the best
performer for not-reopened bugs; achieving a not re-opened precision of 94.3 %,
not re-opened recall of 86.2 % and 89.9 % not re-opened F-measure. The overall
accuracy achieved by the bug report dimension is 83.9 %. The rest of the dimensions
did not perform nearly as well as the bug report dimension.

To put our prediction results for re-opened bugs in perspective, we compare
the performance of our prediction models to that of a random predictor. Since
the re-opened class is a minority class that only occurs 16.1 % of the time, a
random predictor will be accurate 16.1 % of the time. Our prediction model achieves
51.3 % precision, which is approximately a three-fold improvement over a random
prediction. In addition, our model achieves a high recall of 72.5 %.

Apache The bug fix dimension is the best performing dimension. It achieves a re-
opened precision of 40.1 %, a re-opened recall of 89.8 % and F-measure of 55.4 %.
The bug fix dimension also achieves the best not re-opened precision of 99.2 %, recall
of 90.7 % and F-measure of 94.7 %. The overall accuracy of the bug fix dimension
is 90.6 %.

Combining all of the dimensions improves the re-opened precision to 52.3 %, the
re-opened recall to 94.1 % and the re-opened F-measure to 67.2 %. Furthermore,
combining all of the dimensions improves the not re-opened precision to 99.6 %,
recall to 94.1 % and F-measure to 96.7 %. The overall accuracy is improved
to 94.0 %.

In the case of Apache, re-opened bugs appear in only 6.5 % of the total data
set. This means that our re-opened precision improves over the random precision by
more than eight times. At the same time, we are able to achieve a very high recall
of 94.1 %.

OpenOffice Similar to the Eclipse project, the bug report dimension is the best per-
forming dimension for the OpenOffice project. The re-opened precision is 63.4 %,
the re-opened recall is 87.3 % and the re-opened F-measure is 71.3 %. The not re-
opened precision is 93.0 %, recall of 83.2 % and not re-opened F-measure of 87.6 %.
The overall accuracy of the bug report dimension is 82.7 %.

Using all of the dimensions in combination improves the re-opened precision to
78.6 % (a three-fold improvement over a random predictor), the re-opened recall
to 89.3 % and the re-opened F-measure to 83.6 %. The not re-opened precision
improves to 95.9 %, the not re-opened recall improves to 91.3 % and the not re-
opened F-measure improves to 93.6 %. The overall accuracy improves to 90.8 %.

5.6 Final Remarks

As shown in Table 9, the precision varies across projects. For example, for Eclipse the
precision is 52.1 %, whereas for OpenOffice it is 78.6 %. One factor that influences
the precision value of prediction models is the ratio of re-opened to not re-opened
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bug reports (Menzies et al. 2007). This ratio is generally used a baseline precision
value (Lee et al. 2011; Shihab et al. 2011). Table 3 shows that the baseline precision
for Eclipse is 246

1530 = 16.1 %, whereas the baseline precision for OpenOffice is 10572
40173 =

26.3 %. Therefore, we expect our prediction models to perform better in the case
of OpenOffice compared to Eclipse. Another factor that influences the variation in
prediction results is the fact that we are using the same factors for all projects. In
certain cases, some factors may perform better for some projects than others.

Overall, our results show that fairly accurate prediction models can be created
using a combination of the four dimensions. However, although combining all of the
dimensions provides a considerable improvement over using the best single dimen-
sion for the Apache and OpenOffice projects, it only provides a slight improvement
for the Eclipse project. Having a predictor that can perform well without the need to
collect and calculate many complex factors makes it more attractive for practitioners
to adopt the prediction approach in practice.

�

�

�

	

We can build explainable prediction models that can achieve a
precision of 52.1–78.6 % and a recall of 70.5–94.1 % recall when
predicting whether a bug will be re-opened and a precision between
93.9–99.6 % and recall of 86.8–94.1 % when predicting if a bug will
not be re-opened.

6 Comparison with Other Prediction Algorithms

So far, we used decision trees to predict whether a bug will be re-opened. However,
decision trees are not the only algorithm that can be used. Naive Bayes classification
and Logistic regression are two very popular algorithms that have been used in many
prediction studies (e.g., Panjer 2007). In this section, we compare the prediction
results of various prediction algorithms that can be used to predict whether or not a
bug will be re-opened. In addition, we used the prediction from the Zero-R algorithm
as a baseline for the prediction accuracy. The Zero-R algorithm simply predicts the
majority class, which is not re-opened in our case.

The prediction results using the different algorithms are shown in Table 10. Since
different algorithms may provide a tradeoff between precision and recall, we use
the F-measure to compare the different prediction algorithms. As expected, the
Zero-R algorithm achieves the worst performance, since it does not detect any
of the re-opened bugs (it basically predicts the majority class). The Naive Bayes
algorithm performs better in some cases. For example, for the Eclipse project the
Naive Bayes algorithm achieves a re-opened recall of 73.9 % and not re-opened
precision of 94.5 %. The Logistic Regression model performs slightly worse achieving
re-opened F-measure of 53.8 % (precision: 45.3 %, recall: 67.2 %) and not re-opened
F-measure of 88.1 % (precision: 93.1 %, recall: 84.1 %). Decision trees perform
slightly worse (in some cases) than Naive Bayes for Eclipse, Apache and OpenOffice.
More importantly however is that decision trees provide explainable models. Prac-
titioners often prefer explainable models since it helps them understand why the
predictions are the way they are.
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7 Discussion: Commit vs. Bug Work Habits

Our work habits factors are based on the time that the bug was initially closed. The
reason for using the time the bug was initially closed was due to the fact that we
wanted to investigate whether developers were more inclined to close bugs during
specific times (e.g., to reduce their work queue). However, another side that may
contribute to bug re-opening is the work habits factors of the commit or change
performed to fix the bug. For example, commits made at specific times may be
associated with a higher chance of a bug being re-opened later on.

To examine the effect of the commit work habits dimension, we extract the same
factors for the work habits dimension, but now for each commit instead of for each
bug report. The factors are shown in Table 11. Since not all bugs could be linked
to a commit and we need all of the factors to perform our analysis, our dataset
reduced in size. For Eclipse, we were able to link 1,144 bugs where 187 were re-
opened and 957 were not. For OpenOffice, we were able to link 19,393 bugs where
7181 were re-opened and 12,212 were not. For Apache were only able to link 278 bug
reports. After examination of the linked data, we decided to perform the analysis for
Eclipse and OpenOffice, but not for Apache (i.e., due to the low number of linked
bug reports).

First, we redo the top node analysis of the work habits factors, this time including
both bug closing and commit work habits. The results are shown in Table 12. To be
clear, we explicitly label each factor with its association to bugs or commits, shown in
brackets. We observe that for both projects, the work habits factors from the initial
bug closure are the most important factors. In particular, the day of the year and the
month were the most important. Commit work habits factors are placed in level 1 of
the decision trees, showing that they are also important, but clearly less important
than the initial bug closure.

Table 12 Top node analysis of
the commit and bug work
habit dimension

Level Eclipse OpenOffice

# Attribute # Attribute

0 66 (Bug) Day of year 100 (Bug) Day of year
21 (Bug) Month

5 (Bug) Time
3 (Commit) Month
2 (Bug) Week day
2 (Commit) Time
1 (Commit) Month day

1 16 (Bug) Week day 106 (Commit) Day of year
5 (Commit) Month day 94 (Commit) Month

11 (Bug) Month
25 (Commit) Month
36 (Bug) Day of year

9 (Commit) Weekday
12 (Bug) Time
20 (Bug) Month day
37 (Commit) Day of year
14 (Commit) Time
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To examine whether including the commit work habit factors improves prediction
accuracy, we present the prediction results in Table 13. For each project, the first row
presents the prediction results when the bug work habits are only considered. The
second row presents the prediction results when the commit and bug work habits
factors are combined. We see that for both, Eclipse and OpenOffice, the prediction
results improve. For Eclipse, we see an improvement of 3.8 % in re-opened precision
and 4.5 % in re-opened recall, whereas, for OpenOffice we see an improvement in
prediction results of 19.6 % in re-opened precision and 15.4 % improvement in re-
opened recall.

8 Threats to Validity

In this section, we discuss the possible threats to validity of our study.
Threats to Construct Validity consider the relationship between theory and

observation, in case the measured variables do not measure the actual factors. Some
of the re-opened bugs considered in our study were re-opened more than once. In
such cases, we predict for the first time the bug was re-opened. In future studies, we
plan to investigate bugs that are re-opened several times.

One of the attributes used in the People dimension is the fixer name. We extracted
the names of the fixers from the committed CVS changes. In certain cases, the fixer
and the committer of the changes are two different people. In the future, we plan to
use heuristics that may improve the accuracy of the fixer name factor.

For the work habits dimension, we use the dates in the Bugzilla bug tracking
system. These times refer to the server time and may not be the same as the local
user time. Furthermore, we do not take timezone information into account since
such information is not available. These threats show that in some cases, our work
habits may not directly measure the commit habits of developers.

Threats to Internal validity refers to whether the experimental conditions makes a
difference or not, and whether there is sufficient evidence to support the claim being
made.

The percentage of bug reports that met the prerequisites to be included in our
study is small (e.g., for Eclipse we were able to extract a total of 18,312 bug reports,
of which 1,530 met our prerequisites). At first glance, this seems to be a low number
bug reports used to extracted bug reports ratio. However, such a relatively low ratio
is a common phenomenon in studies using bug reports (Weiss et al. 2007; Panjer
2007). In addition, we would like to note that the percentage of open-to-reopened
bugs in the data set used and the original data set are quite close. For example, in
the Eclipse project, 16.1 % of the bug reports were re-opened, whereas 10.2 % of the
bug reports were re-opened in the original data set.

We use 24 different factors that cover four dimensions to predict re-opened bugs.
Although this set of factors is large, it is only a subset of factors that may be used
to predict re-opened bugs. Other factors such as social networks factors for example
can be used to further improve the prediction results.

Bird et al. (2009a) showed that bias due to imperfect linking between historical
databases is common and may impact the performance of prediction techniques.

Threats to External Validity consider the generalization of our findings. In this
study, we used three large, well established Open Source projects to conduct our case
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study. Although these are large open source projects, our results may not generalize
(and as we have seen do not generalize) to all open source or commercial software
projects.

We use decision trees to perform our prediction and compared our results to three
other popular prediction algorithms. Decision trees performed well, for all three
projects, compared to the three algorithms we compared with, however, using other
prediction algorithms may produce different results. One major advantage to using
decision trees is that they provide explainable models that practitioners can use to
understand the prediction results.

In our manual examination of the re-opened bugs, we only examined a very small
sample of ten bug reports. The purpose of this analysis was to shed some light on the
type of information that we were able to get from the re-opened bug reports. Our
findings do not generalize to all re-opened bugs.

9 Related Work

We divide the related work into two parts: the work related to the dimension used
and work related to bug report quality and triage.

9.1 Work Related to Dimensions Used

The work closest to this paper is the work by Zimmermann et al. (2012) which
characterizes and predicts re-opened bugs in Windows. The authors perform a
qualitative and quantitative study and find that some of the reasons for bug reopens
are the fact that bugs were difficult to reproduce, developers misunderstood the
root cause, bug reports had insufficient information and the fact that priority of the
bug may have been initially underestimated. Through their quantitative analysis, the
authors find that bugs reported by customers or found during system testing are more
likely to be re-opened. Also, bugs that are initially assigned to someone on a different
team or geographic location are more likely to be re-opened. In many ways this paper
complements our study since we both focus on bug reopens. However, our study is
done on OSS projects, whereas Zimmermann et al. use commercial systems. Also,
their study surveys Microsoft developers and provides more insight about the reasons
for bug re-opens at Microsoft.

Work Habit Dimension Anbalagan and Vouk (2009) performed a case study on the
Ubuntu Linux distribution and showed that the day of the week on which a bug was
reported impacts the amount of time it will take to fix the bug. Śliwerski et al. (2005)
measured the frequency of bug introducing changes on different days of the week.
Through a case study on the Eclipse and Mozilla projects, they showed that most
bug introducing changes occur on Fridays. Hassan and Zhang (2006) used the time
of the day, the day of the week and the month day to predict the certification results
of a software build and Ibrahim et al. (2010) used the time of the day, the week day
and the month day that a message was posted to predict whether a developer will
contribute to that message. Eyolfson et al. (2008) examine the effect of time of day
and developer experience on commit bugginess in two open source projects. The
authors find that approximately 25 % of commits are buggy, that commits checked
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in between 00:00 and 4:00 AM are more likely to be buggy, developers who commit
on a daily basis write less-buggy commits and bugginess for commits per day of the
week vary for different projects. No prediction was performed.

The work habit dimension extracts similar information to those used in the
aforementioned related work. However, our work is different in that we use the
information to investigate whether these work habit factors affect the chance of a
bug being re-opened.

Bug Report Dimension Mockus et al. (2002) and Herraiz et al. (2008) used infor-
mation contained in bug reports to predict the time it takes to resolve bugs. For
example, in Mockus et al. (2002), the authors showed that in the Apache and Mozilla
projects, 50 % of the bugs with priority P1 and P3 were resolved within 30 days and
half of the P2 bugs were resolved within 80 days. On the other hand, 50 % of the bugs
with priority P4 and P5 took much longer to resolve (i.e., their resolution time was in
excess of 100 days). They also showed that bugs logged against certain components
were resolved faster than others.

Similar to the previous work, we use the information included in bug reports,
however, we do not use this information to study the resolution time of a bug. Rather,
we use this information to predict whether or not a bug will be re-opened.

Bug Fix Dimension Hooimeijer and Weimer (2007) built a model that measures
bug report quality and predicts whether a developer would choose to fix the bug
report. They used the total number of attachments that are associated with bug
reports as one of the features in the model. Similarly, Bettenburg et al. (2008a) used
attachment information to build a tool that recommends to reporters how to improve
their bug report. Hewett and Kijsanayothin (2009) used the status of a bug (e.g.,
Worksforme) as one of the features to model the bug resolution time.

Similar to the previous studies, we use information about the initial bug fix as
input into our model, which predicts whether or not a bug will be re-opened.

People Dimension Schröter et al. (2006) analyzed the relationship between human
factors and software reliability. Using the Eclipse bug dataset, they examined
whether specific developers were more likely to introduce bugs than others. They
observed a substantial difference in bug densities in source code developed by
different developers. Anvik et al. (2006) and Jeong et al. (2009) were interested in
determining which developers were most suitable to resolve a bug.

We use the names and the experience of the bug reporters and fixers to predict
whether or not a bug will be re-opened. Although our paper is similar to other
previous work in terms of the factors used, to the best of our knowledge, this paper
is the first to empirically analyze whether or not a bug will be re-opened.

9.2 Work on Bug Report Quality and Triage

Antoniol et al. (2008) use decision trees, naive bayes and logistic regression to
correctly classify issues in bug tracking systems as bugs or enhancements. Bettenburg
et al. (2008a) investigate what makes a good bug report. They find that there
is a mismatch between information that developers need (i.e., stack traces, steps
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to reproduce and test cases) and what users supply. Aranda and Venolia (2009)
report a field study of coordination activities related to bug fixing. They find that
data stored in repositories can be incomplete since they do not take into account
social, organizational and technical knowledge. Bettenburg et al. (2008b) examine
the usefulness of duplicate bug reports and find that duplicate bug reports contain
valuable information that can be combined with other bug reports. Guo et al. (2010)
chaterize factors that affect whether a bug is fixed in Windows Vista and Windows 7.
They find that bugs reported by people with better reputation, and on the same team
or within the same geographic proximity are more likely to get fixed.

Another line of work aims to assist in the bug triaging process. This work focused
on predicting who should be assigned to fix a particular bug (Anvik et al. 2006), the
analysis of bug report reassignments (Jeong et al. 2009) and predicting the severity
of bug reports (Lamkanfi et al. 2010). In contrast to prior work, in this work we focus
on re-opened bugs.

This paper is an extension of an earlier conference version of the paper (Shihab
et al. 2010) in which we conduct our study on two additional Open Source systems,
Apache and OpenOffice. We also contrast the findings from the three projects, in
terms of which factors best predict re-opened bugs and their prediction accuracy, and
report our findings. We provide insight about the way in which the most important
factors impact the likelihood of a bug being re-opened and examine work habits of
the commit.

10 Conclusion

Re-opened bugs increase maintenance costs, degrade the overall user-perceived
quality of the software and lead to unnecessary rework by busy practitioners. There-
fore, practitioners are interested in identifying factors that influence the likelihood of
a bug being re-opened to better deal with, and minimize the occurrence of re-opened
bugs. In this paper, we used information extracted from the bug and source code
repositories of the Eclipse, Apache and OpenOffice open source projects to derive 24
different factors, which make up four different dimensions, to predict whether or not
a bug will be re-opened. We performed Top Node analysis to determine which factors
are the best indicators of a bug being re-opened. The Top Node analysis showed that
the factors that best indicate re-opened bugs depends on the project. The comment
text is the most important factor for the Eclipse and OpenOffice projects, while the
last status is the most important one for Apache. In addition, we provide insight
about the way in which the important factors impact the likelihood of a bug being re-
opened. Then, with the derived factors, we can build explainable prediction models
that can achieve 52.1–78.6 % precision and 70.5–94.1 % recall when predicting
whether a bug will be re-opened. The findings of this work contribute towards better
understanding of what factors impact bug re-openings so they can be examined more
carefully. Doing so will reduce the number of re-opened bugs and the maintenance
costs associated with them.
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