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Abstract—In most software development, a Bug Tracking
System is used to improve software quality. Based on bug
reports managed by the bug tracking system, triagers who
assign a bug to fixers and fixers need to pinpoint buggy files
that should be fixed. However if triagers do not know the
details of the buggy file, it is difficult to select an appropriate
fixer. If fixers can identify the buggy files, they can fix the
bug in a short time. In this paper, we propose a method to
quickly locate the buggy file in a source code repository using
3 approaches, text mining, code mining, and change history
mining to rank files that may be causing bugs. (1) The text
mining approach ranks files based on the textual similarity
between a bug report and source code. (2) The code mining
approach ranks files based on prediction of the fault-prone
module using source code product metrics. (3) The change
history mining approach ranks files based on prediction of the
fault-prone module using change process metrics. Using Eclipse
platform project data, our proposed model gains around 20%
in TOP1 prediction, which means that 20% of the buggy files
are ranked first. Furthermore, bug reports that consist of a
short description and many specific words easily identify and
locate the buggy file.
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I. I NTRODUCTION

Most open source software projects provide a Bug Track-
ing System (BTS) to unify management of bugs reported
by developers and users in their projects. This system is
important to improve software quality. When developers
and users detect a bug, they report their situation (e.g. the
kind of PC/OS, function name that caused the bug, and bug
reproduction method) in a bug report to the BTS managed by
the project. OSS developers (triagers and fixers) then locate
the buggy files that should be fixed by reference to the bug
reports in the BTS.

Triagers should assign the bug to an appropriate fixer
based on the initial bug report. However, because triagers
are not always experts with a buggy file, it is difficult to
assign an appropriate fixer every time [6]. As the result the
fixer often needs to identify the location of buggy files from
their source code repository, even if she/he is not familiar

with the bug report. In large open source software projects
with from several dozen to several hundred bug reports filed
on a daily basis, developers often take a long time to identify
appropriate triagers and fixers to perform fixes.

In this paper, we propose a method to identify the location
of buggy files from a source code repository based on
an initial bug report. This study uses 3 approaches, text
mining, code mining, and change history mining. (1) The
text mining approach ranks files based on textual similarity
using Term Frequency-Inverse Document Frequency (TF-
IDF) between a bug report and source code. (2) The code
mining approach ranks files that may be causing bugs based
on the output of a bug prediction model [7] using source
code product metrics. (3) The change history approach ranks
buggy files that may be causing bugs based on the output of
the bug prediction model using the change process metrics.
Using Eclipse project data, we answer the following research
question.

RQ: How accurately can our proposed algorithm identify
the source code that should be fixed?

In our experiment, we describe the difference in accuracy
between approaches. However, the accuracy of our approach
will be affected by the documents of a bug report. In this
study, we describe the difference in accuracy produced by
the features of documents in bug reports.

This paper is organized as follows. Section II describes
related work and background of this study. Section III
describes the details of our proposed approach. Section
IV describes the design of our experiments. Section V
describes the way we answered the research question and
the answer. Section VI discusses our experimental results.
Finally, section VIII concludes this paper and presents our
future work.

II. RELATED WORKS

There are many studies of bug fixing processes with the
BTS in large software projects. Some of them have proposed
methods to automatically identify and locate buggy files



based on bug reports to improve the process from bug report
to the start of the bug fix[1][9]. Rao et al. [9] applied
five information retrieval models, the Vector Space Model
(VSM), Unigram Model (UM), Latent Semantic Analysis
Model (LSA), Latent Dirichlet Allocation Model (LDA), and
Cluster Based Document Model (CBDM), on 369 bugs from
ASPECTJ. Zhou et al. [12] revised the Vector Space Model
by using the length of a description in a bug report and
taking similar bug information into account. Their approach
identified 29.14% of the buggy files. The accuracy of these
approaches differed according to features of the bug report
document (e.g., the length of the description or specific word
to identify buggy code). In this study, we analyze the effect
of both of the number of words and the number of specific
words in a bug report description on the bug localization
studies. As part of achieving the goal of our study, we will
also help follow up these existing research studies.

How to make a good bug report: The most helpful
information for developers is different with the information
provided by reporters. According to Bettenburg et al. [2],
their analysis, a test cases and a code examples are the
most helpful information for developers. When bug reporters
submit these, developers can easily start fixing bugs. How-
ever, reporters actually provide only the product name and
version. This study will give some feedback to how to
easily understand a bug report description by the analysis
of accuracy produced in each the features of documents in
bug reports.
How to assign an appropriate fixer: To assign a bug fix to
appropriate fixers, triagers need experience with the reported
buggy module. However, because triagers do not always
have this experience, triagers sometimes assign bug fixes to
inappropriate fixers. Anvik et al. [1] proposed a method to
automatically identify fixers who have changed the buggy
source code and have ever fixed similar bugs. This study
should help to improve the accuracy of their method, because
our method identifies the location of the buggy source code.

III. A PPROACH

A. Overview

Our proposed method aims to automatically locate the
buggy file. Figure 1 shows an overview of our method. Our
method consists of 3 approaches, text mining, code mining,
and change history mining.

1) Text mining approach: This approach measures the
textual similarities between a bug report and source
code to rank the buggy code.

2) Code mining approach: This approach measures the
output value of a prediction model to identify the
buggy files by ranking the buggy code extracted by
a text mining approach. The model was built using
product metrics.
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Figure 1. Overview of the proposed approach.
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Figure 2. Overview of the text mining approach.

3) Change history approach: This approach measures
the output value of the prediction model to identify
the buggy files by ranking the buggy code extracted
by a text mining approach. This model was built using
change history process metrics such as the number of
revisions of a file and the number of times a file was
involved in a bug fix transaction. The code mining and
change history approaches both use a similar process,
but the metrics used and the models constructed from
those metrics are different.

Our proposed method uses the following to add the scores
measured by each approach.

f(x) =
1

1 + e−x
(1)

f(x) means the score to rank source code files.x means the
scores measured by each approach. The higher thef(x),
the more the source code should be fixed. The following
subsections explain each approach.

B. Text mining approach

The text mining approach is composed of 3 modules
(Heuristic Pruning, Keyword Extraction, Similarity Mea-
surement). Figure 2 shows an overview of this approach.



Heuristic Pruning Module aims to prune some irrelevant
files away. In this scenario, irrelevant files are files that have
a low chance to be a cause of a given bug. This module
reduces the number of suspicious files to be checked. Con-
sequently, this reduces the time consumed by text mining,
and boosts the accuracy.

Most related source code files contain a common com-
ponent string in their file path. According to our ob-
servation, 91.5% of the bug reports in version 3.0 had
changed source code in the component that the reporter
noted in the bug report. In this study, we filtered the
source code based on the component name that was written
in a bug report. For example, a reporter submitted bug
report #251469 of Eclipse Project that happened at the
SWT component. From this bug report, a developer made
several changes to 11 files. All of their file paths con-
tained the stringSWT for example, org.eclipse.swt/Eclipse
SWT/cocoa/org/eclipse/swt/widgets/Composite.java.

Keyword Extraction Module aims to extract significant
keywords from the bug report and source code to identify
associated source code that used the same significant key-
words as the bug report.

Generally, a bug report contains the bug information in
specific text fields (e.g. title, description, and comment).
We gather keywords from the documents without using the
comment field, because when triagers get a bug report, the
developers have not submitted any comments yet.

Some a class name and a file name in source code
were made of some words (e.g., numberWords, uploadList).
Therefore, we applied the TreebankWordTokenizer provided
by the NLTK python library [3] to segment sentences into
words. TreebankWordTokenizer is a word tokenizer that
tokenizes sentences using the conventions used by the Penn
Treebank. Next, we get a list of terms in the bug report.
In the case of source code, we collect keywords from com-
ments, class name, method name, and filename. However,
most identifiers follow the CamelCase identifier naming
convention (e.g. JFaceUtil, DebugUIViewsMessages, getLo-
cation). Hence, additional tokenization of identifier names
is necessary to avoid a vocabulary mismatch between the
source code and bug report. This tokenization produces a
list of terms in the source code.

Each list of terms needs to be cleaned and pre-processed
to reduce noisy data. We tried to remove function words
that have little lexical meaning using a function words list
provided by [5]. In addition, we tried stemming, which is an
algorithm for changing derived words back to their base (e.g.
“simulated”, “simulation”, and “simulates” all derive from
“simulate”). This research adopted the Porter Stemmer [8],
which is the de-facto standard for English stemming, via the
NLTK python library [4].

Finally, the TF-IDF score in each document is calculated

as follows.

tf(t, d) =
ftd

#terms
, idf(t) = log(

#docs

nt
) (2)

ftd means the number of occurrences of a termt in docu-
ment d. nt means the number of documents that contain
the term t. #terms mmeans the total number of terms
in documentd, and #docs means the total number of
documents in the corpus.

Similarity Measurement aims to calculate the textual
similarity between the source code and a bug report. This
paper proposes a novel similarity measurement algorithm,
called Bug to Code algorithm. In addition, we perform the
experiment using the traditional Cosine Similarity too.

Cosine Similarity: In this method, a document is repre-
sented as a vector using its TF-IDF score. This approach
measures the similarity score of documents by determining
the cosine of angle between them. Precisely, the similarity
between two documents is defined by equation 3.

CosineSim(b, s) =

∑|V |
j=1 wb,j × ws,j√∑|V |

j=1 w
2
b,j ×

∑|V |
j=1 w

2
s,j

(3)

b means the TF-IDF vector of targeted bug report,s means
the TF-IDF vector of a source code,|V | means the vo-
cabulary size, andwx,j means the TF-IDF weights ofjth

vocabulary in documentx.
Bug to Codeis a novel approach for determining textual

similarity. The central idea of this algorithm is to look for
some top keywords based on TF-IDF score from a bug report
in the source code. The vocabulary setV is constructed from
the top keywords of a bug report. First, all the vocabulary in
V are ranked using the significant keywords in a bug report
(b). Their TF-IDF scores are calculated and the highestβ
terms are selected. Next, each of the topβ terms are re-
calculated in a java file. The summation of the re-calulated
TF-IDF scores reveals how many degrees of relationship
exist between the bug report and the java file.

Algorithm 1 Calculate BugToCode score ofb, ands
Ensure: BugToCodeScore(b,s)

for term t ∈ V do
scoret ← tf × idf(t, b)

end for
Tβ ← argmaxβ,t(scoret)
bugToCodeScore← 0
for term t ∈ Tβ do

bugToCodeScore+ = tf × idf(t, s)
end for

whereargmaxβ,t(scoret) returns terms that are ranked
as theβ highestscoret.



Table I
L ISTS OF CODE METRICS

Metrics Metrics name Description

code

SLOC Source Lines of Codes

MLOC LOC executable

PAR Number of parameter

NOF Number of attributes

NOM Number of methods

NSF Number of static attributes

NSM Number of static methods

NBD Nested block depth

VG Cyclomatic complxity

DIT Depth of inheritance tree

LCOM Lack of cohesion of methods

WMC Number of weighted methods per class

CodeChurn Sum of (added lines of code - deleted lines of code)

LOCAddes Sum over all revisions of the lines of code added to a file

LOCDeleted Sum over all revisions of the lines of code deleted from a file

change Revision Number of revisions of a file

history Age Age of a file in weeks

BugFixes number of times a file was involved in a bug-fix transaction

Refactorings number of times a file has been refactored

LastModDate number of days a file has been latest modified

C. Code mining approach

This approach aims to rank the target source code based
on the output of the bug prediction model built using
code metrics. The bug prediction model predicts fault-prone
modules. This model is to identify source code that may be
causing bugs. This study applied 12 code metrics as shown
in table I.

Then, we combined the scores calculated by the bug
prediction model with scores measured by text mining as
in equation 4.

Score(b, s) = 0.8 · TM(b, s) + 0.2 · LR(CodeMetrics, s)
(4)

TM(b, s) means the text mining result of the bug report
b and the source codes, LR(CodeMetrics, s) means
Logistic Regression’s prediction result of the source code
based on code metrics.TM(b, s) coefficient (0.8) and
LR(CodeMetrics, s) coefficient are weighting coefficients
for this approach which contribute to the predictive result.
To understand which coefficients have higher accuracy, we
changed the coefficient to 1.0 by 0.1 steps.

D. Change history mining approach

According to Kamei et al. [7], the process metrics outper-
formed product metrics. Then, this study performed change
history mining to determine the chance that a source code
could be buggy. As mentioned in the previous section,
we adoptedLogistic Regressionto combine several process
metrics. The targeted metrics are shown in table I.

The output probability of Logistic Regression was added
to the combined of two previous approach’s score. We
studied two methods to combine the results together, shown

in equations 5 and 6.

FinalScore(b, s) = α · TM(b, s)

+ (1− α) · LR(ProcMetrics, s) (5)

LR(ProcMetrics, s) means the predicted results of the
source codes, and the Logistic Regression includes only
the process metrics values.

FinalScore(b, s) = α · TM(b, s)

+ (1− α) · LR(Proc&CodeMetrics, s) (6)

LR(Proc&CodeMetrics, s) is the predicted results of the
source code, and the Logistic Regression includes both
process metrics and code metrics values. Then, this study
weights to a variable of a significant approach. As far as we
can observe, the most suitableα is 0.2. All source code was
ranked byFinalScore(b, s). The higherFinalScore(b, s)
indicates that the file is more relevant.

IV. EXPERIMENT SETTING

This study performed the experiments on Eclipse Platform
3.0 and 3.1, which is a well-known open source software de-
velopment environment. The Eclipse Platform uses Bugzilla
as a bug tracking systems and CVS as a version control
system. 2,950 bug reports in XML format were acquired
from MSR Mining Challenge 2008. We focused on bug
reports from ID #1 until ID #205497. Consequently, we
checked out 475 code snapshots from 21st June 2004 until
29 th June 2006, a total of 48,764 source code files. All
2,950 bug reports were separated into two equal data sets
for training and testing. We split the data along the time
axis. All bug reports from 21st June 2004 to 28th June
2005 were training data, the others were testing data.

To collect links between bug reports in the bug tracking
system and committed changes in the source code repository,
we obtained data using the familiar SZZ algorithm [10]. We
investigated the result of linking with SZZ. About 57% of
the bug reports linked with only one java file. The detailed
information about the number of linked buggy file per testing
bug report.

V. RESEARCHQUESTION

RQ: How accurately can our proposed algorithm identify
source code that should be fixed?

Motivation. Basically, triagers assign a bug to a developer
who has changed the source code. However, triagers do not
always assign a bug to the right developer, so the assigned
developer has to identify which source code should be fixed
based on an initial bug report. In this study, we propose a
method to automatically identify the source code that caused
bugs from the huge amount of the source code.

Approach. This research studied three approaches. One
determines the textual similarity between a bug report and
source code as mentioned in section III-B. Another one



Table II
ACCURACY OF OUR PROPOSED APPROACH

Algorithm TOP1 TOP5 TOP10 MRR

bug2code 20.09 37.65 45.25 0.29

bug2code with codeonly 20.14 37.71 45.20 0.29

bug2code with processonly 19.94 37.91 45.35 0.29

bug2code with code and process20.20 37.96 45.25 0.29

predicts fault-prone modules based on code metrics. The
third one also predicts fault-prone modules, but based on
change history metrics. To measure the scores achieved by
these 3 approaches, first, the corresponding parameters (β)
of Bug2Code were optimized based on the training dataset.
Next, we run our two algorithms on the training dataset as
well as compared the output with linkage of a bug report
and a source code file, as described in Section IV. Next,
we combined the code mining approach and change history
approach with equations 4, 5, and 6. These three weight
merging approaches were used to evaluate the accuracy on
the testing dataset. In this experiment, we evaluated the
accuracy of approaches via these metrics as follows :
Top N Rank: The percentage of bug report that the
algorithm ranks at least one of actual buggy files that
related given bug report. The higher value reveals the better
accuracy. This metric can be explicitly outlined in terms of
following equation:

TopNRank =
| {b ∈ B|λN (b) ∩Rb ̸= ϕ} |

|B|
× 100 (7)

B means a set of bug reports,λN (b) means the top N
output of the algorithm givenb, andRb the set of files that
developer changed to resolve the bug reportb.
Mean Reciprocal Rank (MRR):A statistic for evaluating a
process that produces a list of possible responses to a query
[11]. It can be calculate as follows:

MRR =
1

|B|

|B|∑
i=1

1

ranki
(8)

B means a set of bug reports, andranki means the rank
of the first correct answer of bug reporti.

Results. To answer the research question, we designed
two experiments.Experiment 1aimed to identify which
source code caused bugs based on a text mining approach
and the best approach to combine the results of text mining,
code mining, and change history mining.Experiment 2
aimed to Table 3 reveal differences in accuracy due to
differences in the description of a bug report.
Experiment 1: Locating source codes

1) Selection of Text Mining Approaches: First, we inves-
tigated the effect ofβ (terms have the highest TF-
IDF score) on the performance of the Bug to Code
approach. The result is shown in table II. It is obvious

# of specific words

# of words

(b)25.20% (a)22.55%

(c)16.76% (d)16.74%

6 words

70 words

[66/262] [177/767]

[35/215][118/692]

Figure 3. Accuracy of our model according to features of the description

that we could obtain the best Top1 result (20.51%)
whenβ is 15. Furthermore, we performed a classical
Cosine Similarity approach on the testing data set and
we obtained 12.82% Top1 precision. Based on this,
we believe that our proposed text mining algorithm,
Bug to Code, is better than Cosine Similarity.

2) Selection of Score Merging Approach: This experiment
conducted using our three proposed score merging
approaches on the testing dataset. The score merging
approach was utilized to combine the scores of text
mining, which is Bug to Code, code mining, and
change history mining. The details of this merging
approach was mentioned in section III-C and III-D.
The results are shown in table II. Unfortunately, a bug
prediction based on code metrics and process metrics
did not contribute much to identify a location of buggy
code files.

Experiment 2: Locating source code according to the
description

In this study, we proposed a method to identify the buggy
source code that includes specific keywords extracted from a
bug report document. Most of the specific words are found
in the description of a bug report. Bettenburg et al. [2]
studied how to write good bug report for developers. They
revealed that test code and example code are helpful for
developers. Thus , we expected a difference in accuracy
based on features of the bug report description.

Figure 3 shows Top1 precision related to the number of
words and the number of specific words. To calculate the
accuracy due to each feature of the target bug reports, we
classified them into the following 4 groups according to the
number of words and the number of specific words in the
description of the bug report.

As a result, our study showed that our proposed model
had higher accuracy if there were many specific words in a
bug report. Also, the model had higher accuracy if the bug
report description was short.

VI. DISCUSSION

To identify the buggy source code based on an initial
bug report, we proposed a method using 3 approaches. Our



approach based on a text mining approach has about the
same accuracy as the model proposed by Zhou et al. [12].
One of the reasons is the low accuracy of a bug prediction.
The accuracy is only about 53%. The weighting of the code
mining approach and change history approach shown in
equation 4 was also low because the accuracy of prediction
of the fault-prone module was low. In future work, we will
try to improve the accuracy of prediction of the fault-prone
module to improve the accuracy of our approach.

Our approach identifies specific source code that caused
a bug. However, developers do not always change a single
source file to fix bugs. According to our analysis, for 43%
bug reports developers changed over 2 source files to fix
the bugs. In future work, we will try to identify if there
are several source code files depending on the buggy source
code file.

VII. T HREATS TOVALIDITY

Our study had three limitations. First, the focus of our
study was on resolving software bugs by making changes
to existing source code. Developers could deal with some
kinds of bug reports by adding new files. Unfortunately, this
case is beyond the scope of our research.

Second, the accuracy of our software depends on the
quality of the bug report and the readability of the source
code. If the source code consists of meaningless identifier
names, it leads to lower accuracy. In the same way, if the
bug report provided poor information, it will decrease our
accuracy.

Finally, Zhou et al. [12] used similar bug reports to locate
the buggy file. However, less than 30% of the bug reports
linked the changed source code when the bug was fixed.
So, using similar bug reports to identify source code is not
so easy. In this study, we did not use this approach. In
future work, if many bug reports were linked to the changed
source codes when the bug was fixed, this approach might
be helpful.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a method to identify buggy
files in a source code repository based on 3 approaches, text
mining , code mining, and change history mining. Using
Eclipse platform project data, our model gained around 20%
TOP1 precision. Furthermore, our study revealed that bug
reports that contained a short description and many specific
words was easier to use to locate the buggy files. Even when
developers do not have enough knowledge of the reported
bugs, they have to assign bugs and to fix bugs. Therefore
developers often assign inappropriate fixers. Our method
reduces time spent reassigning bugs. In our future work, we
will try to improve the accuracy of prediction of fault-prone
modules, and to identify when source code files depend on
buggy files. However, it takes a long time to identify the
buggy files from the large amount of software development

data. Therefore, in addition to improving the accuracy of
prediction, we will also try to improve the performance of
the prediction system.
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