
Program Encryption Based on the Execution Time

Hideshi Sakaguchi*, Yuichiro Kanzaki** and Akito Monden***

*Advanced Course of Electronics and Information

Systems Engineering,

Kumamoto National College of Technology

Kumamoto, Japan

**Dept. of Human Oriented Information Systems

Engineering,

Kumamoto National College of Technology

Kumamoto, Japan

***Graduate School of Information Science,

Nara Institute of Science and Technology

Nara, Japan

Abstract— This paper proposes a program encryption method for

protecting software against malicious reverse engineering attacks.

The code fragments in the program are encrypted beforehand

and they are decrypted at runtime using the key derived from

the execution time. The proposed method makes the program

difficult for adversaries to obtain the secret information by

dynamic analysis.

Primary categories— Informatics.

Secondary categories— Software.

Keywords—Software security, software protection, program

encryption, program obfuscation.

I. INTRODUCTION

Many software products contain secret information such as
algorithms that are commercially valuable, the secret keys for
DRM system, and the routines for license checking. Since such
secret information is valuable for malicious users (adversaries),
the secrets can be obtained by their reverse engineering attacks,
which is a serious threat to software vendors. In order to
protect the secret information included in software products
against the attacks by the adversaries, software protection
methods are required Many software protection methods have
been proposed such as program obfuscation, program
encryption, and software tamper-proofing techniques [4]. The
basic idea of the program encryption (e.g. [1] and [2]) is to
encrypt the code fragments in the program before execution
and decrypt/re-encrypt them at runtime. It is effective to make
the program difficult to analyze the code fragments by static
analysis because the program encryption transforms them into
meaningless code. However, the program encryption is not
always effective in complicating dynamic analysis, since the
adversary can stop the execution of the program using a
debugger at the time the encrypted code is decrypted and
obtain the original code.

We propose a program encryption method which aims to
especially complicate dynamic analysis. In our method, the key
is generated from the execution time taken to execute a
designated block of the program. If the time of the block is
within the predetermined range (the execution time is valid),
the encrypted code becomes the original one. However, if the

execution time is out of the predetermined range (the execution
time is invalid) due to dynamic analysis, the encrypted code
becomes the different one.

The rest of this paper is organized as follows: In Section II,
we show the basic idea of the method. In Section III, we
explain the procedure of applying the method to programs. In
Section IV, we conduct a case study to examine whether a
protected program is effective against dynamic analysis. In
Section V, we describe the current problems of the proposed
method. In Section VI, we review the related work. In Section
VII, we conclude the paper.

II. BASIC IDEA

First, we show the basic idea of our method. Our method
aims to protect a program by adding many routines that
correctly decrypts encrypted code only if the execution time is
valid. Fig.1 (a) and (b) show the examples of the original
program P and the protected program Pp, respectively. The
examples are shown by AT&T assembly code. C is the
encryption target, B is the target block of time measurement,
T(B) is the execution time of B, DR is the decryption routine,
ER is the encryption routine, and Cenc is the code which is
generated encrypting C by symmetric key encryption scheme.
A part of P is selected as C and C is overwritten with Cenc. Cenc

is decrypted by DR and Cenc is re-encrypted by ER at runtime,
i.e., C appears only during the time between when Cenc is
decrypted and when Cenc is re-encrypted. The key which is
used when decrypt/re-encrypt Cenc is generated from T(B). The
proposed method is executed as follows:

1. When the execution reaches B, the execution time T(B)
is measured. T(B) is hashed to hash(T(B)) by one-way
hash function and hash(T(B)) is stored in the memory.

2. When the execution reaches DR, Cenc is decrypted with
hash(T(B)) as the key.

3. When the execution reaches Cenc, the decrypted Cenc
(same code as C) is executed.

4. When the execution reaches ER, Cenc is encrypted
again with hash(T(B)) as the key.

If T(B) is longer or shorter than T0(B) (valid execution time of
B), hash(T(B)) does not match hash(T0(B)). It means to

hash(T(B)) is the invalid key (the valid key is hash(T0(Bi))) and
Cenc is not decrypted into C when DR is executed. If Cenc is not

(a) Original program P (b) Protected program Pp

Figure1. Basic idea

decrypted into C, the decrypted code does not perform the
correct behavior. Our method restricts the valid execution time
range in order to detect reverse engineering attacks. If the
adversary executes Pp under debugger, the execution time
becomes invalid and the valid key is not generated. Therefore,
we see our method is effective against dynamic analysis
especially.

III. PROCEDURE FOR APPLYING OUR METHOD

A protected program Pp is obtained by repeating the
following six steps. We assume that the following steps are in
the i-th iteration of the process. The i-th C, Cenc, B, DR, and ER
are denoted as Ci, Cenci, Bi, DRi, and ERi, respectively.

(Step 1) Determining the encryption target Ci

At first, we determine the encryption target Ci to be
encrypted. We select a code fragment of the original program P
as Ci. We usually select a secret part of the program such as
conditional branch, a key used for encryption/decryption of
digital contents, and a valuable algorithm as Ci. Ci is
transformed into the encrypted code (called Cenci) and Ci is
overwritten with Cenci in (Step 6).

(Step 2) Determining the Target Block of Time
Measurement Bi and the positions of the routines DRi and
ERi

We select the target block of time measurement Bi and the
positions of inserting the decryption routine DRi and the
encryption routine ERi. They are determined that they will
satisfy the following conditions:

1. Bi is a basic block that exists on the path from the entry
point of Pp to Ci.

2. DRi is inserted at a point between Bi and Cenci.

3. ERi is inserted at a point between Cenci and the end of Pp.

(Step 3) Inserting instructions for measuring the time of
Bi

We insert time measurement instructions just before Bi and
just after Bi. T(Bi) means the execution time taken to execute Bi.
We can measure T(Bi) using the instruction which reads the
time stamp counter (such as RDTSC instruction in the Intel A-
32 architecture [3]). We then insert one-way hash function after
the time measurement of Bi. The hash function generates
hash(T(Bi)), the hash value of T(Bi).

(Step 4) Generating Decryption Routine DRi and
Encryption Routine ERi

We generate the decryption routine DRi and the encryption
routine ERi. DRi is to restore Cenci to the original code Ci at
runtime using hash(T(Bi)) as the key. ERi is to encrypt the Ci to
Cenci again using hash(T(Bi)) as the key. DRi and ERi are
inserted into the positions determined in (Step 2).

(Step 5) Determining the threshold time

We determine the threshold time on the assumption that the
execution time becomes longer or shorter if the adversary
executes Pp under a dynamic analysis tool (e.g., a debugger).
We determine T0min(Bi), the minimum execution time of Bi
under normal execution, and T0max(Bi), the maximum execution
time of Bi under normal execution. If T(Bi) falls between
T0min(Bi) and T0max(Bi), we judge normal execution is operating
and T(Bi) is the valid execution time. We determine them in
advance by executing Bi or estimate the approximate execution
time according to the code that constructs Bi and the execution
environment.

(Step 6) Overwriting Ci with Cenci

・
・

orl %edx, %eax
movl %eax, 24(%esp)
movl 24(%esp), %eax
cmpl $1, 28(%esp)

movl %eax, 4(%esp)
movl $LC4, (%esp)

jle L5
movl $LC5, (%esp)

・
・

Encryption
Target C

・
・

orl %edx, %eax
movl %eax, 24(%esp)
movl 24(%esp), %eax
cmpl $1, 28(%esp)

・
・

・
・

6E8680C2
8A3B4BE3465412

・
・

jle L5
movl $LC5, (%esp)

・
・

Target Block of time
measurement B

Decryption Routine
DR

Re-encryption
Routine ER

Encrypted Code Cenc

Decrypt Cenc with
encryption key generated
from B’s execution time

T(B)

Re-encrypt Cenc with
encryption key generated
from B’s execution time

T(B)

We overwrite Ci with Cenci. We use hash(T0(Bi)), the hash
value of the valid execution time of Bi, as the key of the
encryption. We determine T0(Bi) according to T0min and T0max.
We overwrite Cenci on Ci after we encrypt Ci into Cenci.

IV. CASE STUDY

In this section, we examine the behavior of a program
protected by our method. In this case study, the protected
program has routines for checking serial number and expiration
date. Fig. 2 (a) and (b) show the flow of the original program P
and the flow of the protected program Pp, respectively. This
time, we select the routine for checking expiration date as the
encryption target C, and the routine for checking serial number
as the target block of time measurement B. Additionally, we
employ 128-bit AES in ECB mode as the symmetric key
encryption scheme and use MD5 as the one-way hash function.
Table I shows the execution environment. We measure the
execution time in clock cycles. T0min(B) is set to 1,048,576
clock cycles and T0max(B) is set to 2,097,151 clock cycles.

We execute Pp in five different manners as follows:

 Normal execution.

 The execution of the program is paused at B for
approximate three seconds using the breakpoint
function of the debugger.

 All of the executed instruction in B are written to the
file.

 Instruction in a part of B (approximately 10% of
instructions in B) are written to the file.

 Instruction in a part of B (approximately 10% of
instructions in B) are skipped.

The results of each execution are shown in Table II. In the
‘Result’ column in table II, the words “correct” and “wrong”
mean that Cenc is decrypted into the original code, and Cenc is
not decrypted into the original code, respectively. Cenc was
correctly decrypted only when Pp was normally executed. On
the other hand, Cenc was not correctly decrypted when the

TABLE I. Execution environment

OS Windows 7 Home Premium 64-bit

CPU Intel(R) Core(TM) i7 CPU @ 2.80GHz

Memory 4.00GB

 (a) Original program P (b) Protected Program Pp

Figure 2. Execution flow

TABLE II. Execution results

Execution manner Execution time [clock cycles]
Proportion of the execution time to

the normal execution time Result

Normal execution 1,369,098 1.00 times Correct

The execution is paused at B for three seconds 9,679,263,929 Approx. 7,070 times Wrong

All of the executed instruction of B are written
to the file 49,434,046 Approx. 36.1 times Wrong

All of the executed instruction of B are written
28,688,669 Approx. 21.0 times Wrong

Serial number input

Serial number check

Expiration date check (C)

Message output

Derivation of T(B),
the execution time of B

Decryption of Cenc (encrypted C)

Expiration date check (Cenc)

Re-encryption of Cenc

Message output

Serial number input

Serial number check (B)

to the file

All of the executed instruction of B are skipped 944 Approx. 6.90 10
-4

 times Wrong

execution of the program was paused at B, the executed
instruction of B (both part and all) were written to the file, and
instruction in a part of B were skipped. When Cenc is not
decrypted into C correctly, exceptions (illegal instruction,
access violation, and privileged instruction) occur. In terms of
the execution time, it took approximate 7,070 times in case of
the execution of the program is paused at B for three seconds,
approximate 36.1 times in case of all of the executed
instruction in B are written to the file, approximate 21.0 times
in case of instruction in a part of B are written to the file, and
approximate 6.90 10

-4
 times in case of instruction in a part of

B are skipped, respectively compare to the execution time in
case of normal execution.

As seen in this experiment, Cenc is decrypted into the original
code correctly when Pp is normally executed. On the other
hand, if the execution time of a certain part of the program is
changed due to dynamic analysis, Cenc is overwritten with
uncertain code.

V. DISCUSSION

We have proposed a program encryption method which
aims to protect against dynamic analysis. In the case study
described in Section IV, we showed that the method is
effective against dynamic analysis in certain circumstances.
Then, we suggest below things to improve the method.

First, we make the target block of time measurement B
more difficult to find. If the adversary has knowledge about our
method, he could obtain the original code C. He could obtain C
by finding B and normally execute B. In our method, B is put
between the time measurement instructions. He could find B
from the positions of the time measurement instructions. Then
we suggest protecting the time measurement instruction by our
method and we suggest inserting the dummy time
measurement instructions in many positions of the protected
program.

Secondly, we adjust the threshold time to the protected
program runs under the different execution environments. In
practical situation, the protected program would be executed
under the various execution environments. Therefore the
execution time changes in each of execution environment.
Then it is required to adjust the threshold time T0min(B) and
T0max(B) according to the execution environment.

Thirdly, we reduce the performance overhead of the
protected program Pp. The execution time of Pp is longer than
the original program P due to the inserted routines and
instructions. The execution time of Pp which is used in the case
study is approximate 5.81 times longer than the one of P. Then
we suggest deploying fast algorithm for hashing and
encrypting/decrypting.

VI. RELATED WORK

There have been methods for encrypting program. For
example, Cappaert et al. proposed a program encryption

method [2]. In the method, all functions (except for the main
function) are encrypted beforehand. Each function is decrypted
just before the caller of the function jumps to the function and
the function is re-encrypted just after returning to the caller of
the function. Aucsmith et al. proposed another program
encryption method [1]. In the method, a function is split into
pieces (called cells) and the cells are separated into two groups.
Each cell of a group is xored with the cells of another group
and is encrypted. The method continuously takes xor and
encryption round during execution. Each cell is transformed
into the cleartext before the cell is executed. Our method is
different from the above methods in that the execution time is
exploited for protecting against dynamic analysis.

There also have been software protection methods based on
the execution time. For example, Kanzaki et al. proposed a
program camouflage method [5]. The instructions which are
camouflaged with other instructions are restored according to
the execution time at runtime. Our method is different from
this method in that the encryption technique is used to
transform the code. Collberg et al. also proposed the software
protection method [4]. In the method, the execution time is
compared with the threshold time at the conditional branch.
The instruction that is executed is determined according to the
result of the comparison. Our method is different from the
method in that the execution time is used to generate the key.

VII. CONCLUSION

In this paper, we proposed a program encryption method
which aims to protect against dynamic analysis. The code
fragments in the program are encrypted with the symmetric key
encryption scheme beforehand. The encrypted code fragments
are decrypted/re-encrypted at runtime. The key is generated
from the execution time. We examined the behavior of the
program protected by our method in Section IV. It was shown
that the cleartext of the encryption target does not appear when
the execution time is invalid due to dynamic analysis.

A foreseeable extension of our method would be to make
the inserted codes such as time measurement instruction and
encryption routine difficult to analyze against the adversary,
adjust the threshold time for different execution environments,
and reduce the performance overhead of the protected program.

REFERENCES

[1] D. W. Aucsmith. Tamper Resistant Software: An Implementation. In
Information Hiding, Vol. 1174 of Lecture Notes in Computer Science,
pp. 317-333. Springer-Verlag, 1996.

[2] J. Cappaert, N. Kisserli, D. Schellekens and B. Preneel. Self-encrypting
Code to Protect Against Analysis and Tampering. Proc. Benelux
Workshop on Information and System Security, 2006

[3] Intel Co. IA-32 Intel Architecture software developer's manual vol.2 :
Instruction Set Reference, http://www.intel.co.jp.

[4] C. Collberg and J. Nagra. Surreptitious Software. Addison-Wesley, 2009

[5] Y. Kanzaki and A.Monden. A Method for Hiding Program Code
Focused on the Execution Time Difference, Vol. 1 of Lecture Notes in
FIT 2009, pp. 361-364, September 2009.

