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Abstract— 
Background: Association rules are more comprehensive and 
understandable than fault-prone module predictors (such as 
logistic regression model, random forest and support vector 
machine). One of the challenges is that there are usually too 
many similar rules to be extracted by the rule mining. 

Aim: This paper proposes a rule reduction technique that can 
eliminate complex (long) and/or similar rules without 
sacrificing the prediction performance as much as possible. 

Method: The notion of the method is to removing long and 
similar rules unless their confidence level as a heuristic is high 
enough than shorter rules. For example, it starts with 
selecting rules with shortest length (length=1), and then it 
continues through the 2nd shortest rules selection (length=2) 
based on the current confidence level, this process is repeated 
on the selection for longer rules until no rules are worth 
included. 

Result: An empirical experiment has been conducted with the 
Mylyn and Eclipse PDE datasets. The result of the Mylyn 
dataset showed the proposed method was able to reduce the 
number of rules from 1347 down to 13, while the delta of the 
prediction performance was only .015 (from .757 down 
to .742) in terms of the F1 prediction criteria. In the 
experiment with Eclipsed PDE dataset, the proposed method 
reduced the number of rules from 398 to 12, while the 
prediction performance even improved (from .426 to .441.) 

Conclusion: The novel technique introduced resolves the rule 
explosion problem in association rule mining for software 
proneness prediction, which is significant and provides better 
understanding of the causes of faulty modules. 

 

Keywords-defect prediction; empirical study; association 
rule mining; data mining; software quality 

I.       INTRODUCTION 

According to Pareto's law that 80 percent of the faults can be 
found in 20 percent of the modules, identification of fault-prone 
modules is an important challenge for effective testing and/or 
software inspection [11][13] [18]. To date, various multivariate-
modeling techniques applicable to fault-prone module prediction 
have been used, including the most commonly used linear 
discriminant analysis [18], logistic regression analysis [16], 
classification tree [9], support vector machine[6] and random 
forest [10]. 

However, the problem common to all these prediction models is 
that the model itself is not easily understandable to human, that is, 
software engineers cannot easily recognize and agree as why a 
certain module is faulty (or not faulty.) Even a simplest linear 
discriminant model, correlations between predictor variables 
makes it difficult to interpret their coefficients clearly. In addition, 
such difficulties can be easily interpreted as a negative opinion: 
“this technique (or model) does not fit to our project”, which is 
commonly uttered by engineers who do not wish to use any newer 
techniques in their project. 

This paper’s primary focus is on the association rule mining 
described in [1][22], which are much more understandable since 
rules are described in a simple and intuitive form (condition   
faulty) or (condition   not faulty). For example, a rule “(20 < 
cyclomatic number) and (10 < fan-in)   fault prone” implies and 
indicates that a module is faulty if its cyclomatic number is larger 
than 20 and its fan-in is larger than 10. When such rules were 
derived from a past project’s module dataset, we could use them 
for the prediction of an ongoing or a future planned project. 

However, as we will explain in Section II.D, association rule 
mining suffers from a rule explosion problem which also makes 
human understanding difficult, i.e. there are too many similar 
rules and/or complex rules are mined. In our study, the Mylyn 
data set (consists of 13 metrics of 1023 modules) produced 1346 
rules even though we only have mined the high confidence 
(≥0.75) rules (see Section V). We could reduce these rules by 
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commonly used rule measures such as confidence and support, but 
using these measures cannot reduce similar rules or complex rules. 
Instead of using these measures, we could remove complex rules 
by mining simple rules only (whose antecedents are short); but in 
this case we may sacrifice the prediction accuracy. 

Based on the above discussion, this study attempts to balance the 
following two requirements: 

(Req.1) Remove similar and/or complex rules as much as 
possible from a rule set. 

(Req.2) At the same time, not sacrificing the prediction 
performance. 

To achieve these requirements simultaneously, we propose a new 
algorithm for rule reduction. The notion of this algorithm is to 
reduce long (complex) rules as much as possible unless their 
confidence is enough higher than similar shorter rules. We will 
show the effectiveness of the algorithm using the Mylyn and 
Eclipse PDE datasets in our experiment. 

The next section introduces association rule mining and its rule 
explosion problem. Followed by Section III, in which we propose 
an algorithm for rule reduction. Section IV describes an 
experiment setting to evaluate the algorithm and Section V 
describes the result and discussion of the experiment. We 
summarize this paper and presents future research directions in 
Section VI. 

 

II.       BACKGROUND: RULE MINING AND ITS EXPLOSION 

PROBLEM 
Association rule mining is a typical method for discovering the 
patterns of co-occurrences of the attributes in a dataset. Below we 
introduce its details, related work and the rule explosion problem. 

A. Association Rule Mining 
Association rule mining is also referred to as an association 
analysis. Its applications have been applied to discover 
associations hidden amongst data in the POS (Point-Of-Sales) 
product-purchasing logs of retail stores [1], access logs of website 
[25], proteins [19], etc. In the case of POS logs, researchers have 
mined rules about products purchased together, such as 
“(purchases product A)∩(purchases product B)   purchases 
product C.” There are a number of possible ways to use such rules, 
for example a retailer could place products A, B, and C near to 
each other in the store so that customers can find them easily; or, 
it could ensure revenues by setting the prices of antecedent 
products A and B to make up the discounts on the sale price of 
consequent product C. 

Association rule mining (association analysis) is defined by 
Agrawal et al. as follows [1].  

Let I = {I1, I2, ..., Im} be a set of items where each Ik (1 ≤ k ≤ m) is 
an item and m is the number of unique items. An association rule 
is denoted by an expression A  B, where A  I, B  I, B ∉ A. 
We refer to A as the antecedent of the rule, and B as the 
consequent of the rule. Let a database D be {T1, T2, ..., Tn} where 
Ti  I is called a transaction, n is the number of transactions. We 

call “Ti satisfies the rule A  B” if A  Ti  B  Ti holds. 

In the POS log example, D corresponds to a log of all past 
purchases and Ti  D corresponds to one purchase by a customer. 
I corresponds to all unique products sold. A  I corresponds to 

one or more products purchased. B  I corresponds to a product 
purchased together with A. 

In this paper, the antecedent expresses a condition of module 
metrics and the consequent denotes either a module is faulty (i.e. a 
module contains one or more fault) or not faulty (i.e. a module 
contains no fault). The association analysis is normally applied to 
qualitative variables (ordinal scale variables); ratio scale and 
interval scale variables are generally pre-processed and 
transformed to ordinal scale variables before rule mining. For 
example, it would be possible to transform “cyclomatic number” 
and “fan-in” into ordinal scale variables consisting of three 
categories — low [0, 10), medium  [10, 30) and high [30, ∞ ). A 
rule “(cyclomatic number = medium)∩(fan-in = high)  faulty” 
indicates that a module is fault-prone if its cyclomatic number is 
between 10 and 30, and its fan-in is larger than or equal to 30. 

There are two key measures of interestingness (or importance) of 
a rule as follows. 

Support: Support is an indicator of rule frequency. It is expressed 
as support(A  B), which is equal to a/n, where a = |{T 
 D|A  T   B  T}| and n = |D|. 

Confidence: Confidence is the probability that consequent B will 
follow antecedent A. It is expressed as confidence(A  
B), which is equal to a/b, where a is defined as in 
Support and b = |{T  D|A  T}|. 

For example, assuming that the number of modules expressed as  
n = 20, the number of modules that satisfies A is 10, the number of 
modules that satisfies B is 8, and the number of modules that 
satisfies both A and B is 6. For the rule A  B, the support is .3 (= 
6/20), the confidence is .6 (= 6/10). 

We also define the length of a rule as follows: 

Length: Length is an indicator of rule’s complexity (larger 
length indicates more complex rules). It is expressed as 
length (A  B), which is equal to the number of items  
in A. 

For example, the length of the rule “(cyclomatic number = 
medium)∩(fan-in = high)   faulty” is 2 since two metrics 
(cyclomatic number and fan-in) is in the antecedent. 

Finally, we define the relationship between two rules as follows: 

Subsumed: We call that a rule A  B subsumes a rule C  B if 
C  A. 

For example, a rule “(cyclomatic number = medium)  faulty” 
subsumes a longer rule “(cyclomatic number = medium)∩(fan-in 
= high)  faulty.” 

B. Fault-prone Module Prediction by Rules 
A rule set obtained by association rule mining is often used as 
predictive rules for the future business. In general, higher 
confidence (or support) rules yield higher prediction accuracy; 
thus, after rules are mined from module metrics and fault data sets, 
a set of rules whose confidence (or support) is greater than their 
threshold confidence (or support) are selected and used for their 
prediction. 

To conduct a prediction, given a selected rule set and a target 
module to be predicted, we need to consider that more than one 
rules can match the module, that is, module metrics satisfy the 
antecedent means of multiple rules. This becomes a problem when 



matched rules had different consequents (faulty and not-faulty). A 
typical way to handle this situation is to classify the module by the 
majority of rules’ consequent [7]. Another way is to select the 
longest rules among matched rules [22]. 

We also need to consider the cases where no rule matches the 
module. In such cases, Kamei et al. proposed to conduct a model-
based prediction as a complementary method [7]. 

This paper employs a novel approach to prediction. To keep the 
rule set small and understandable, we mined rules whose 
consequent is “faulty” only, where non-faulty rules are ignored. If 
one or more rules match the module, then we consider it is faulty. 
Otherwise, we classify it as non-faulty. By selecting high 
confidence (and support) rules, we could also obtain promising 
prediction accuracy with “faulty” rules only (see Section V.) 

C. Related Work: Rule Mining in Software Engineering 
A number of cases studied have reported association rule mining 
for a software related dataset. Kamei et al. proposed a hybrid 
faulty module prediction method combining association rule 
mining with a model based approach (logistic regression analysis) 
for the purpose of improving the performance of fault-prone 
module prediction [7]. 

Song et al. [22] mined association rules from defect data logged 
during development (type of defect cause, correction effort, etc.) 
to predict types of defects that would occur simultaneously and to 
predict defect-correction effort (staff-hours: “one hour or less”, 
“one hour to one day”, “one day to three days”, and “more than 
three days”).  Hamano et al. [5] collected risk evaluation metrics 
in software development, and conducted association analysis to 
reveal project-confusion factors (whether development budgets or 
deadline standards will be overrun). Michail [12] found reuse 
patterns of libraries in application software by using association 
rule mining, and tried to use the derived patterns in building a 
class library. 

Morisaki et al. [14] proposed an extended association rule mining 
method that takes advantage of interval and ratio scale variables, 
instead of simply replacing them into nominal or ordinal variables. 
In the proposed method, an extended rule describes the statistical 
characteristic of quantitative variables (e.g. mean and standard 
deviation) in the consequent part together with related metrics (e.g. 
“lift of mean” and “lift of standard deviation”) so that conditions 
producing distinctive statistics can be discovered as rules. They 
also conducted an empirical study to reveal rules associated with 
defect correction effort of an industry project. 

However, none of these studies focused on reducing the rule set to 
solve the rule explosion problem, which we will explain in the 
next subsection. 

D. Rule Explosion Problem 
“Rule explosion” effect refers to the fact that an excessive number 
of rules are generated by the association rule mining technique. 
This causes the following problems for human understanding. 

(P1) Similar rules are included in the derived rule set. For 
example, we may have a slightly different two rules 
“α∩β∩γ∩δ faulty” and “α∩β∩γ∩ε faulty” in the 
rule set. This makes it difficult for an engineer to decide 
which rule should be focused on. 

(P2) Some rules subsumes other rules. For example, “α∩β  
faulty” subsumes “α∩β∩γ  faulty”. From the point of 
view of prediction, the latter rule is not needed. 

(P3) Some rules are very long. Usually long rules are difficult 
to interpret by human. For example, “α∩β∩γ∩δ∩ε∩λ∩ζ
 faulty” is too complex to understand. Moreover, very 
long rules can cause overfitting problem. 

There are several possible ways to reduce the rules. A typical 
practice is to select high confidence (or support) rules. For 
example, suppose we have the following four rules and 
confidence values: 

(Rule #1) α∩β  faulty  Confidence=82% 
(Rule #2) α∩β∩γ faulty      Confidence=83% 
(Rule #3) α∩λ∩ε faulty     Confidence=92% 
(Rule #4) λ∩ζ  faulty     Confidence=30% 

In this case, rule #4 can be removed by setting a threshold value 
(e.g. minimum confidence = 70%) in rule selection. However, 
rules #1,2,3 still remain, thus we cannot solve neither of the 
problems P1, P2 and P3 above. 

We could also reduce the rules by setting the threshold values to 
the length of rules (e.g. maximum length = 2.) In this case, rules 
#2 and #3 are removed; however, the rule #3 should not be 
removed because it has very high confidence (92%). We need to 
consider that some long rules are worth selecting if they have high 
indication of confidence, i.e. they are likely to increase the 
prediction accuracy. 

On the contrary, we could reduce the rules by selecting long rules 
rather than short rules since selecting longer rules is one of the 
promising practices in rule-based prediction [22]. By this 
approach, problem P2 may be solved, but P1 and P3 cannot be 
solved. In addition, we need to consider that not all the longer 
rules are worth selecting than the shorter rules, as we will explain 
in the next section. 

III.     PROPOSED METHOD 

A. Basic Idea 
Given a rule set, our goal is to remove as many rules that are (1) 
similar to others, (2) subsumed by other rules or (3) complex (i.e. 
long), while not losing the prediction performance of the rule set. 

Our basic idea is to evaluate the tradeoffs between length and 
confidence of a rule. We remove rules unless they have enough 
confidence for their length. Suppose we have the following two 
rules in the derived rule set. 

(Rule #1) α∩β  faulty  Confidence=82% 
(Rule #2) α∩λ∩γ faulty      Confidence=83% 

In this case, rule #2 is longer (i.e. more difficult to understand) 
than rule #1. We consider that rule #2 is NOT worth selected 
because it could gain only 1% improvement (in confidence) by 
increasing the length. Since the longer rules are more difficult to 
understand, we do not select longer rules unless it yields 
acceptable improvements in confidence, as shown in the 
following example: 

(Rule #1) α∩β  faulty  Confidence=82% 
(Rule #2) α∩λ∩ε faulty     Confidence=92% 

In this case, we consider that rule #2 is worth selecting because 
enough improvement (10% in confidence) is achieved. If we 
remove rule #2, then we might lose the prediction accuracy. To 



decide whether a rule is worth selecting or not, this paper employs 
a threshold improvement to the improvement of rule’s confidence. 

A yet another case is that a shorter rule subsumes a longer rule as 
follows. 

(Rule #1) α∩β  faulty  Confidence=82% 
(Rule #2) α∩β∩ε faulty     Confidence=93% 

In this case, rule #2 could be selected since it has high confidence 
level. However, if we decided to select rule #1, then rule #2 must 
be removed as it is subsumed by rule #1. 

B. Rule Reduction Algorithm 
After mining a set of rules from a module data set with threshold 
values of minimum support and confidence, our rule reduction 
algorithm starts with selecting all the shortest (e.g. length = 1) 
rules. Then, we look through the 2nd shortest rules (length = 2) if 
there exists good enough rules to be selected in comparison with 
already selected shorter rules based on the threshold improvement. 
We also remove rules that are subsumed by shorter rules. We 
continue this selection for longer rules (length = 3, 4, …) until no 
rules are worth selected. 

Let R={ ܴଵ ∪ ܴଶ ∪ ⋯∪ ܴఏ೗೐೙೒೟೓ሽ	 be a rule set derived by 
association rule mining with threshold values: 

minimum support = support 
minimum confidence = confidence 

where Rx be a set of rules whose length = x. 

Then, Fig. 1 shows our rule reduction algorithm that removes 
rules from R and obtains a reduced rule set R’. To explain how the 
algorithm works, here we assume that initial threshold values are 
confidence = 0.75 and improvement = 0.05, and the given rule set R 
consists of the following rules. 

(Rule #1) α  faulty  Confidence=75% 
(Rule #2) β  faulty      Confidence=76% 
(Rule #3) α∩λ faulty  Confidence=82% 
(Rule #4) λ∩ζ  faulty     Confidence=74% 
(Rule #5) λ∩γ faulty     Confidence=80% 

In line 1 of Fig.1, we will have two rule subsets as follows. 
R1 = {Rule #1, Rule #2} 
R2 = {Rule #3, Rule #4, Rule #5} 

Next, in line 2 and 3, we will have x = 1 and R’ = R1 = {Rule #1, 
Rule #2}. Then, we start inspecting length = 2 rules in R2 whether 
they are worth selected or not. In line 6, we set a new threshold 

confidence = 0.8 for length = 2 rules. In line 8, in the first iteration, 
we pick r = Rule #3, and in line 9, it is removed from R2 because 
it is subsumed by Rule #1 in R’. Then we go back to line 8 for the 
second iteration, and r = Rule #4 this time. In line 10, since 
confidence(Rule #4) < 0.8, Rule #4 is not considered worth 
selecting, so it is removed from R2. Next, for the third iteration in 
line 8, we have r = Rule #5. Since Rule #5 is not subsumed by any 
of rules in R’ and also confidence(Rule #5) ൒ 0.8, it is kept in R2. 
Then in line 12, new R’ becomes {Rule #1, Rule #2, Rule #5}, 
and we will go back to Loop in line 4. Finally, in line 6, since R3 
is empty, i.e. there is no length=3 rules in R, we goto line 14. 

IV.    EXPERIMENTAL SETTING 

To evaluate the true effectiveness of the proposed method, we 
compare our method with a commonly used rule selection method 
that sets a threshold in confidence. The following describes 
datasets, evaluation criteria and procedures used in the experiment. 

A. Target Software 
In this experiment, we collected module (i.e., source file) datasets 
from two versions in Mylyn [3] and Eclipse PDE [4] both written 
in Java. Table I summarizes the statistics of the used datasets. 
Mylyn dataset has a good balance of faulty and not faulty modules 
while Eclipse PDE is class-imbalance data (21.5% faulty modules 
in v3.1). 

B. Used Metrics 
In Mylyn dataset, we measured both product metrics and process 
metrics (Table II). For product metrics, we used Understand [24] 
to extract complexity and size metrics for each of the files. For 
process metrics, we used the metrics proposed by Moser et al. 
[15][21]. To measure the process metrics, we used CVS 
repository provided by Eclipse Foundation. 

 
1: Let Rx be a set of rules whose length = x in the input rule set R 
2: Let x = (length of the shortest rule in R) 
3: Let R’ = Rx    // keep all the shortest rules in the reduced rule set 
4: Loop: 
5:   Let x = x + 1 
6:   Let confidence =  confidence +  improvement    // set a threshold for length = x rules 
7:   if Rx =  then goto End 
8:   For each rule r in Rx {    // start inspecting longer rules whether they are worth selected 
9:      if r is subsumed by one of rules in R’ then remove r from Rx 

10:      if confidence(r) < confidence then remove r from Rx 
11:   } 
12:   Let R’ = R’∪Rx  // add selected rules to the reduced rule set 
13:   goto Loop: 
14: End: return R’   // return the reduced rule set 

Figure 1. Rule reduction algorithm 

Table I. Statistical summary of Mylyn and Eclipse PDE data 
sets 

Version 
#  of faulty 

modules 
# of not faulty 

modules 
% of faulty 

modules 

Mylyn 1.0 425 598 41.5 

Mylyn 2.0 663 599 52.5 

Eclipse PDE 3.1 49 179 21.5 

Eclipse PDE 3.2 79 230 25.6 
 



Before mining rules, we removed several metrics that had high 
correlation with other metric (correlation coefficient > .9). TLOC 
and MLOC were removed since these two had high correlation 
with FOUT. Also, BFC and PRE were removed since they had 
high correlation with TPC. 

In Eclipse PDE dataset, we measured object oriented metrics 
(Table III) in addition to metrics of Mylyn dataset. 

C. Recovery of Bugs 
We obtained the number of bugs in source code files using the 
SZZ algorithm [23]. This algorithm identifies when a bug was 
injected into the code and who injected it by linking a version 
archive (such as CVS) to a bug database (such as Bugzilla). 

D. Initial Rule Set 
We used NEEDLE [14] as an association rule miner. To obtain an 
initial rule set (for applying rule reduction methods,) rules were 
mined from Mylyn v.1.0 dataset with threshold values: minimum 
support support = .01 and minimum confidence confidence = .75. 
Also, for Eclipse PDE v3.1 dataset, we used support = .02 and 
minimum confidence confidence = .65 to mine enough rules. For 
both datasets, we also set a threshold to the rule length: maximum 
length = 5. It is because we already had enough rules, and also 
rules longer than 5 are not easily understandable to human 
anyway. 

Table IV and V show characteristics of the rule sets. There are no 
“length = 1” rules included since no rule had confidence ≥ 
confidence. Note that this initial set is a sort of “selected” rule set 

whose rules are likely to contribute to high prediction 
performance (because of high confidence.) 

E. Evaluation Criteria 
To evaluate the ease of understanding of a rule set, we used two 
criteria: (1) the number of rules, and (2) sum of length of rules in 
a rule set. In these criteria, smaller value indicates easier 
understanding. 

To evaluate the prediction performance of two rule sets, we 
applied them to Mylyn v.2.0 dataset and Eclipse PDE v3.2 dataset 
respectively. We used three commonly used criteria, recall, 
precision and F1-value [8][20]. “Recall” is the ratio of correctly 
predicted fault-prone modules to actual fault-prone modules and 
“precision” is the ratio of actual fault-prone modules to the 
modules predicted as fault-prone. F1-value is a harmonic mean of 
recall and precision, defined as follows: 

PrecisionRecall

PrecisionRecall
F





2

1
                                     (1) 

For all these criteria (recall, precision and F1-value), higher values 
indicate better prediction performance. 

Table II. Measured Metrics in Mylyn dataset 

Type Name Definition 

Product 
Metrics 

TLOC Source Lines of Codes 

FOUT The number of method calls of a file.

MLOC LOC executable 

NBD Nested block depth 

PAR Number of parameters 

VG Cyclomatic complexity 

NOF The number of attributes 

NOM The number of methods 

NSF The number of static attributes 

NSM The number of static methods 

ACD 
The number of anonymous type 
declarations in a file 

NOI The number of interfaces in a file. 

NOT The number of classes in a file 

Process 
Metrics 

TPC The number of revisions of a file 

BFC 
The number of times a file was 
involved in a bug-fix transaction in 
the 3 months before the release 

PRE 
The number of pre-release defects in 
a file in the 3 months before the 
release 

 

Table III. Additional Metrics in Eclipse PDE dataset 

Type Name Definition 

Product 
Metrics

CBO Coupling Between Object classes 

NOC Number Of Children of a class 

DIT Depth of Inheritance Tree 

LCOM Lack of Cohesion in Methods 
 

Table IV. Characteristics of the initial rule set (Mylyn) 

Rule length #  of rules 
Average 
confidence 

Average 
support 

1 0 — — 

2 8 .797 .139

3 84 .811 .068

4 397 .819 .040

5 858 .825 .031

all 1347 .822 .037

 

Table V. Characteristics of the initial rule set (Eclipse 
PDE) 

Rule length #  of rules 
Average 
confidence 

Average 
support 

1 0 — — 

2 9 .754 .022

3 9 .737 .023

4 80 .737 .023

5 309 .737 .023

all 407 .737 .023
 



F. Comparison with Other Methods 
We compare the proposed with other rule reduction methods, 
namely “naïve 1” and “naïve 2.” The naïve 1 method is a 
conventional rule reduction method that relies on the threshold in 
confidence only. Rules can be reduced by increasing the threshold 
confidence. 

The naïve 2 method is a combination of the naïve 1 method and a 
rule removal method that eliminates long rules subsumed by 
shorter rules. This method is intended to understand how much 
rules are subsumed by other rules. In this method, the shortest 
rules are selected based on a given threshold confidence; then, 
longer rules are selected unless they are not subsumed by shorter 
rules. 

Also, we compare with four commonly used machine learning 
techniques: logistic regression, random forest, CART and naïve 
Bayes classifier. 

G. Experimental Procedure 
Given an initial rule set of Mylyn (Table IV), we run the proposed 
algorithm (Fig.1) with different threshold values, from improvement 
= 0 up to 0.15 where all “length ≥ 3” rules were removed. For 
each reduced rule set, we apply it to the Mylyn v2.0 dataset and 
compute evaluation criteria shown in Section IV.E. Similarly, for 
Eclipse PDE rule set, we run the proposed algorithm with 
improvement = 0 up to 0.3; and, for each reduced rule set, we apply it 
to the Eclipse PDE v3.2 dataset for performance evaluation. 

We run naïve 1 and 2 methods, which removes rules whose 
confidence values are smaller than the given threshold confidence. 

For Mylyn dataset, we start with confidence = 0.78 up to 0.95 where 
all “length ≤ 3” rules were removed. Similarly, for Eclipse PDE 
dataset, we start with confidence = 0.70 up to 0.86. 

V.    RESULT AND DISCUSSION 

A. Result 1: Comparison with Naïve Rule Reduction 
Methods 

Fig.2 and 3 show the overview of the result for Mylyn and Eclipse 
PDE respectively. The upper graph shows reduction of the 
number of rules, and the lower graph shows the reduction of the 
total rule length. As the number of rules and the total rule length 
reduces, the conventional method (naïve 1), which reduces rules 
by the threshold in confidence, loses prediction accuracy (in terms 
of F1 value.) On the contrary, our proposed method sustains high 
prediction accuracy. 

Regarding the naïve 2 method, it showed better performance than 
the naïve 1 method, which indicates the effectiveness of 
eliminating long rules that are subsumed by shorter rules. In 
Mylyn dataset, 1287 out of 1347 (95.5%) rules were subsumed by 
shorter rules. However, giving higher threshold confidence and the 
number of rules became smaller than 60, the prediction accuracy 
dropped down much more than the proposed method. This 
indicates the proposed method’s advantage of setting thresholds 
based on the length of rules. Similarly in Eclipse PDE dataset, the 
naïve 2 method did better than the naïve 2 method; however, 
when the number of rules became smaller than 20, the prediction 
accuracy dropped down greatly. 

 

 

Figure 2. Overview of the experiment result (Mylyn) 

 

 

 

Figure 3. Overview of the experiment result (Eclipse PDE) 
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Details of results are shown in Table VI and VII. For Mylyn 
dataset, in Table VI (a), the proposed method could reduce the 
number of rules from 1347 down to 13, while the delta of the 
prediction performance is only .015 (from .757 down to .742) in 
terms of the F1 value. On the other hand, in Table VI (b) and (c), 
naïve 1 and 2 methods could also reduce the number of rules, 
however, F1 value became extremely low. For example, when the 
number of rules is reduced down to 23 in the naïve 1 method, F1 
value became .176, which is very low (Table VI(b).) Also in naïve 
2 method, when the number of rules is reduced down to 19, F1 

value became .456 (Table VI (c).) Similarly in Eclipse PDE 
dataset, the proposed method outperformed both naïve 1 and 2 
methods. The proposed method was able to reduce the number of 
rules from 398 down to 12, while the prediction performance even 
improved from .426 to .441 (Table VII (a).) 

Regarding the ease of understanding of a rule set, the proposed 
method could effectively reduce the complex (long) rules. In 
Table VII (a), when the number of rules is 13, all longest (length 
= 5) rules were removed. On the other hand, in naïve 1 and 2 
methods, the longest rules were always remaining. Also, shortest 
(length = 2) rules disappeared as the rule set reduced in the naïve 
methods. Similar result exhibits in the experiment based on 
Eclipse PDE. 

Table VI (a). Rule reduction by the proposed method (Mylyn) 

  

 

Table VI (b). Rule reduction by the naïve 1 method (Mylyn) 

 

 

Table VI (c). Rule reduction by the naïve 2 method (Mylyn) 

 

Table VII (a). Rule reduction by the proposed method (Eclipse 
PDE) 

  

 

Table VII (b). Rule reduction by the naïve 1 method (Eclipse 
PDE) 

  

 

Table VII (c). Rule reduction by the naïve 2 method (Eclipse 
PDE) 

 

2 3 4 5
initial 1347 8 84 397 858 6146 0.731 0.784 0.757
none 60 8 13 26 13 224 0.731 0.784 0.757

0.010 41 8 9 17 7 146 0.747 0.778 0.762
0.020 29 8 7 12 2 95 0.749 0.748 0.749
0.030 26 8 5 11 2 85 0.751 0.748 0.750
0.040 21 8 4 8 1 65 0.758 0.732 0.744
0.050 18 8 4 6 0 52 0.758 0.724 0.741
0.060 14 8 3 3 0 37 0.742 0.720 0.742
0.070 13 8 3 2 0 33 0.767 0.719 0.742
0.080 10 8 1 1 0 23 0.725 0.679 0.725
0.090 9 8 1 0 0 19 0.777 0.674 0.722
0.150 8 8 0 0 0 16 0.777 0.674 0.722

Accuracy

precision recall F1

Threshold

θ improvement

# of rules
rule length

Total

Sum of
rule

length

2 3 4 5
initial 1347 8 84 397 858 6146 0.731 0.784 0.757

0.78 999 6 59 289 645 4570 0.757 0.760 0.758
0.80 841 3 51 247 540 3847 0.756 0.733 0.744
0.85 397 1 15 105 276 1847 0.790 0.614 0.691
0.88 184 0 6 44 134 864 0.827 0.520 0.639
0.90 106 0 2 27 77 499 0.856 0.449 0.590
0.92 64 0 2 14 48 302 0.848 0.312 0.456
0.93 44 0 1 9 34 209 0.842 0.256 0.393
0.94 38 0 1 8 29 180 0.843 0.235 0.368
0.95 30 0 0 6 24 144 0.879 0.175 0.292
1.00 23 0 0 5 18 110 0.867 0.098 0.176

Threshold

θ confidence

# of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

2 3 4 5
initial 1347 8 84 397 858 6146 0.731 0.784 0.757
none 60 8 13 26 13 224 0.731 0.784 0.757

0.78 48 6 8 25 9 181 0.757 0.760 0.758
0.80 59 3 18 26 12 224 0.756 0.733 0.744
0.85 50 1 4 29 16 210 0.790 0.614 0.691
0.88 38 0 6 15 17 163 0.827 0.520 0.639
0.90 26 0 3 15 8 109 0.856 0.449 0.590
0.92 19 0 2 5 12 86 0.848 0.312 0.456
0.93 13 0 1 6 6 57 0.842 0.256 0.393
0.94 11 0 1 6 4 47 0.843 0.235 0.368
0.95 7 0 0 6 1 29 0.879 0.175 0.292

Threshold

θ confidence

# of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

2 3 4 5
initial 398 0 9 80 309 1892 0.336 0.582 0.426
none 89 0 9 30 50 397 0.336 0.582 0.426

0.020 69 0 9 21 39 306 0.333 0.557 0.417
0.050 32 0 9 20 3 122 0.362 0.417 0.388
0.070 17 0 9 5 3 62 0.508 0.380 0.434
0.100 12 0 9 3 0 39 0.583 0.354 0.441
0.200 10 0 9 1 0 31 0.565 0.329 0.416
0.300 9 0 9 0 0 27 0.578 0.329 0.419

Accuracy

precision recall F1

Threshold

θ improvement

# of rules
rule length

Total

Sum of
rule

length

2 3 4 5
initial 398 0 9 80 309 1892 0.336 0.582 0.426

0.70 330 0 8 67 255 1567 0.333 0.557 0.417
0.75 108 0 2 19 87 517 0.519 0.341 0.412
0.76 92 0 2 17 73 439 0.485 0.203 0.286
0.83 92 0 2 17 73 439 0.485 0.203 0.286
0.84 13 0 1 4 8 59 0.579 0.139 0.224
0.86 4 0 1 2 1 16 0.750 0.076 0.138

Threshold

θ confidence

# of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

2 3 4 5
initial 398 0 9 80 309 1892 0.336 0.582 0.426
none 89 0 9 30 50 397 0.336 0.582 0.426

0.70 69 0 8 22 39 307 0.333 0.557 0.417
0.75 21 0 2 8 11 93 0.519 0.341 0.412
0.76 11 0 2 6 3 45 0.485 0.203 0.286
0.83 11 0 2 6 3 45 0.485 0.203 0.286
0.84 3 0 1 2 0 11 0.579 0.139 0.224
0.86 1 0 1 0 0 3 0.750 0.076 0.138

Threshold

θ confidence

# of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1



B. Result 2: Comparison with Commonly Used Machine 
Learners 

Table VIII and XI show the prediction performance of commonly 
used machine learners, compared with the proposed method (i.e. 
prediction by the reduced rule set) in Mylyn and Eclipse PDE 
respectively. In Mylyn dataset (Table VIII), the proposed method 
and tree-based methods (Random Forest and CART) 
outperformed other two methods (logistic regression and naïve 
Bayes classifier) in terms of F1 value. In Eclipse PDE dataset 
(Table IX), the proposed method outperformed other four 
methods in F1 value. These results indicate that the proposed 
association rule mining approach is able to produce accuracy that 
is comparative to commonly used machine learners. 

C. Discussion 
Table X shows the details of rules in the reduced rule set (13 
rules) derived by the proposed method with a threshold improvement 
= .07 in Mylyn dataset. Although interpretation of rules itself is 
not the main scope of this paper, here we try to give a possible 
interpretation of rules. (Due to page limitation, this Section 
investigates Mylyn dataset only.) 

There are 8 shortest (length=2) rules, and all of them consist in 
their antecedent “TPC = H,” which means the number of revisions 
of a file is high (TPC ≥ 3.) This indicates the frequent revisions to 
a module is the most influential factor of fault injection in the 
Mylyn dataset. This corroborates the results of previous studies 
[2][15][17]. However, the condition “TPC = H” alone is not 
sufficient to have a consequent “faulty.” Looking at rules no. 1-8 
in Table X, either of “NOF = H”, “NBD = H”, “FOUT = H”, 
“NSF = H”, “VG = H”, “PAR = H”, “NOM = H” or “NOT = H” 
is needed in addition to “TPC = H” to have a fault with high 
confidence level (≥ 0.75.) These metrics include control flow 
complexity (NBD and VG), data complexity (PAR, NOF and 
NSF), inter-module complexity (FOUT) and size metrics (NOM 
and NOT). Therefore, it can be interpreted as that the fault is 
injected when the revision to a module is frequent and the module 
has high complexity or its size is large. 

Next we focus on rules no.9 and no.10. It can be considered that 
these rules expand the preconditions of shorter rules no.7 and no.3. 
While the rule no.7 requires NOM to be “H”, the rule no.9 allows 
“NOM  = M” by adding “NSM = H” to its antecedent. Similarly, 
while the rule no.3 requires TPC to be “H”, the rule no.10 allows 
“TPC  = M” by adding “NSM = H.” 

Next we focus on the rule no.11. Interestingly, this rule consists in 
its antecedent “NOF = L”, which means the number of attributes = 
zero. At the same time, this rule requires “FOUT = H” (the 
number of method calls of a file ≥33) and “NOM = H” (the 
number of methods ≥8). These characterize a module having no 
attributes while it has many methods and many method calls to 
other classes. 

On the other hand, the rule no.12 consists “NOM = L” (the 
number of methods ≤ 2), “NBD = M” (nested block depth = 1), 
“NSF = H” (the number of static attributes ≥ 1) and “NSM = L” 
(the number of static methods = 0). This indicates that a module 
of less branching complexity with just one or two methods can 
have a fault if it has one or more static attributes. 

Finally, the rule no.13 consists of many complexity metrics 
included in the shortest rules, while it does not consist TPC, 
which is the most influential factor of fault injection. This 
indicates that regardless of the frequency of revisions, a module 
can have a fault if the module is complex enough. 

The analysis above confirmed that interpretation of a rule set 
became possible by our proposed rule reduction algorithm. 

D. Threats to Validity 
In this section, we discuss the threats to the validity of our work. 
We used datasets collected from two projects. We need to analyze 
other open source and closed source systems to generalize our 
results. In addition, the set of metrics used to extract association 
rules is by no means complete. Thus, using other metrics may 
yield different results. However, we believe that the same 
approach can be applied on any set of metrics. 

We used recall, precision and F1-value to evaluate the prediction 
performance of rule sets. We need to use other criteria such as 
ROC curves [10] to increase the reliability of our results. 

This study obtains the number of faults in source code files using 
the SZZ algorithm. The algorithm is commonly used in fault 
prediction researches [13][15], but has the limitation that faults 
not recorded in CVS log comments cannot be collected. Further 
research is required to improve the accuracy of faults collection 
from repositories. 

To mine enough initial rules before applying our rule reduction 
method, this paper set threshold values support = .01 and confidence 
= .75 for Mylyn v.1.0 dataset and support = .02 and confidence = .65 
for Eclipse PDE v3.1 dataset. Since these values may affect the 
result of rule reduction and prediction, we need to conduct further 
experiments using different values. 

We used rules whose consequent is “faulty” only, where non-
faulty rules are ignored. Although we could obtain promising 
prediction accuracy with faulty rules only, further research is 
required to confirm whether non-faulty rules are indeed needless 
or not in fault prediction. To use both faulty and non-faulty rules, 
one of the issues we need to address in future is how to conduct 
prediction for modules that are not included in both faulty and 
non-faulty rules. 

Table IX. Comparison with commonly used machine learners 
(Eclipse PDE) 

 

Table VIII. Comparison with commonly used machine 
learners (Mylyn) 

 

precision recall F1

12 rules (proposed) 0.583 0.354 0.441
Logistic regression 0.889 0.101 0.182
Random Forest 0.625 0.253 0.360
CART 0.330 0.456 0.383
Naive Bayes classifier 0.567 0.215 0.312

precision recall F1

13 rules (proposed) 0.767 0.719 0.742
Logistic regression 0.814 0.600 0.691
Random Forest 0.815 0.689 0.747
CART 0.824 0.698 0.756
Naive Bayes classifier 0.817 0.465 0.592



VI.    CONCLUSION 

To reveal the insights and better understanding of the causes of 
faulty modules, this paper proposed a novel technique to reduce 
association rules that can eliminate long and/or similar rules yet 
sustaining the desirable prediction performance as much as 
possible. Our major findings based on an empirical evaluation 
with the Mylyn dataset and the Eclipse PDE dataset include the 
following: 

 In the Mylyn dataset, the proposed method reduces the 
number of rules from1347 down to 13, while the delta of the 
prediction performance was only .015 (from .757 down 
to .742) in terms of the F1 value. And, in the Eclipse PDE 
dataset, the proposed method reduces the number of rules 
from 398 to 12, while the prediction performance even 
improved (from .426 to .441.) 

 On the other hand, two naïve rule reduction methods, which 
simply remove rules whose confidence values are smaller 
than the given threshold, could also reduce the number of 
rules, but in these cases the prediction performance became 
extremely low. 

 We compared our rule-based prediction with conventional 
model-based approaches such as logistic regression, random 
forest, CART and naïve Bayes classifier. As a result, the 
proposed association rule mining approach was able to 
produce accuracy that is comparative to commonly used 
machine learners. This indicates the reduced rule set is 
worthwhile and important. 

 Through an analysis of a reduced rule set, it is confirmed 
that our proposed rule reduction technique provides a better 
understanding of the causes of faulty modules. 
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