
A Heuristic Rule Reduction Approach to
Software Fault-proneness Prediction

Akito Monden* Jacky Keung† Shuji Morisaki‡

Yasutaka Kamei+ Ken-ichi Matsumoto*

*Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

†
Department of Computing, Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
‡
Faculty of Informatics, Shizuoka University

3-5-1 Shirokita, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan
+
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University

West 2-810, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan

*{akito-m, matumoto}@is.naist.jp, †Jacky.Keung@comp.polyu.edu.hk, ‡ismoris@ipc.shizuoka.ac.jp,
+kamei@ait.kyushu-u.ac.jp

Abstract—
Background: Association rules are more comprehensive and
understandable than fault-prone module predictors (such as
logistic regression model, random forest and support vector
machine). One of the challenges is that there are usually too
many similar rules to be extracted by the rule mining.

Aim: This paper proposes a rule reduction technique that can
eliminate complex (long) and/or similar rules without
sacrificing the prediction performance as much as possible.

Method: The notion of the method is to removing long and
similar rules unless their confidence level as a heuristic is high
enough than shorter rules. For example, it starts with
selecting rules with shortest length (length=1), and then it
continues through the 2nd shortest rules selection (length=2)
based on the current confidence level, this process is repeated
on the selection for longer rules until no rules are worth
included.

Result: An empirical experiment has been conducted with the
Mylyn and Eclipse PDE datasets. The result of the Mylyn
dataset showed the proposed method was able to reduce the
number of rules from 1347 down to 13, while the delta of the
prediction performance was only .015 (from .757 down
to .742) in terms of the F1 prediction criteria. In the
experiment with Eclipsed PDE dataset, the proposed method
reduced the number of rules from 398 to 12, while the
prediction performance even improved (from .426 to .441.)

Conclusion: The novel technique introduced resolves the rule
explosion problem in association rule mining for software
proneness prediction, which is significant and provides better
understanding of the causes of faulty modules.

Keywords-defect prediction; empirical study; association
rule mining; data mining; software quality

I. INTRODUCTION

According to Pareto's law that 80 percent of the faults can be
found in 20 percent of the modules, identification of fault-prone
modules is an important challenge for effective testing and/or
software inspection [11][13] [18]. To date, various multivariate-
modeling techniques applicable to fault-prone module prediction
have been used, including the most commonly used linear
discriminant analysis [18], logistic regression analysis [16],
classification tree [9], support vector machine[6] and random
forest [10].

However, the problem common to all these prediction models is
that the model itself is not easily understandable to human, that is,
software engineers cannot easily recognize and agree as why a
certain module is faulty (or not faulty.) Even a simplest linear
discriminant model, correlations between predictor variables
makes it difficult to interpret their coefficients clearly. In addition,
such difficulties can be easily interpreted as a negative opinion:
“this technique (or model) does not fit to our project”, which is
commonly uttered by engineers who do not wish to use any newer
techniques in their project.

This paper’s primary focus is on the association rule mining
described in [1][22], which are much more understandable since
rules are described in a simple and intuitive form (condition 
faulty) or (condition  not faulty). For example, a rule “(20 <
cyclomatic number) and (10 < fan-in)  fault prone” implies and
indicates that a module is faulty if its cyclomatic number is larger
than 20 and its fan-in is larger than 10. When such rules were
derived from a past project’s module dataset, we could use them
for the prediction of an ongoing or a future planned project.

However, as we will explain in Section II.D, association rule
mining suffers from a rule explosion problem which also makes
human understanding difficult, i.e. there are too many similar
rules and/or complex rules are mined. In our study, the Mylyn
data set (consists of 13 metrics of 1023 modules) produced 1346
rules even though we only have mined the high confidence
(≥0.75) rules (see Section V). We could reduce these rules by

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト
In Proc. 19th Asia-Pacific Software Engineering Conference (APSEC 2012), pp.838-847, Dec. 2012.

commonly used rule measures such as confidence and support, but
using these measures cannot reduce similar rules or complex rules.
Instead of using these measures, we could remove complex rules
by mining simple rules only (whose antecedents are short); but in
this case we may sacrifice the prediction accuracy.

Based on the above discussion, this study attempts to balance the
following two requirements:

(Req.1) Remove similar and/or complex rules as much as
possible from a rule set.

(Req.2) At the same time, not sacrificing the prediction
performance.

To achieve these requirements simultaneously, we propose a new
algorithm for rule reduction. The notion of this algorithm is to
reduce long (complex) rules as much as possible unless their
confidence is enough higher than similar shorter rules. We will
show the effectiveness of the algorithm using the Mylyn and
Eclipse PDE datasets in our experiment.

The next section introduces association rule mining and its rule
explosion problem. Followed by Section III, in which we propose
an algorithm for rule reduction. Section IV describes an
experiment setting to evaluate the algorithm and Section V
describes the result and discussion of the experiment. We
summarize this paper and presents future research directions in
Section VI.

II. BACKGROUND: RULE MINING AND ITS EXPLOSION

PROBLEM
Association rule mining is a typical method for discovering the
patterns of co-occurrences of the attributes in a dataset. Below we
introduce its details, related work and the rule explosion problem.

A. Association Rule Mining
Association rule mining is also referred to as an association
analysis. Its applications have been applied to discover
associations hidden amongst data in the POS (Point-Of-Sales)
product-purchasing logs of retail stores [1], access logs of website
[25], proteins [19], etc. In the case of POS logs, researchers have
mined rules about products purchased together, such as
“(purchases product A)∩(purchases product B)  purchases
product C.” There are a number of possible ways to use such rules,
for example a retailer could place products A, B, and C near to
each other in the store so that customers can find them easily; or,
it could ensure revenues by setting the prices of antecedent
products A and B to make up the discounts on the sale price of
consequent product C.

Association rule mining (association analysis) is defined by
Agrawal et al. as follows [1].

Let I = {I1, I2, ..., Im} be a set of items where each Ik (1 ≤ k ≤ m) is
an item and m is the number of unique items. An association rule
is denoted by an expression A  B, where A  I, B  I, B ∉ A.
We refer to A as the antecedent of the rule, and B as the
consequent of the rule. Let a database D be {T1, T2, ..., Tn} where
Ti  I is called a transaction, n is the number of transactions. We

call “Ti satisfies the rule A  B” if A  Ti  B  Ti holds.

In the POS log example, D corresponds to a log of all past
purchases and Ti  D corresponds to one purchase by a customer.
I corresponds to all unique products sold. A  I corresponds to

one or more products purchased. B  I corresponds to a product
purchased together with A.

In this paper, the antecedent expresses a condition of module
metrics and the consequent denotes either a module is faulty (i.e. a
module contains one or more fault) or not faulty (i.e. a module
contains no fault). The association analysis is normally applied to
qualitative variables (ordinal scale variables); ratio scale and
interval scale variables are generally pre-processed and
transformed to ordinal scale variables before rule mining. For
example, it would be possible to transform “cyclomatic number”
and “fan-in” into ordinal scale variables consisting of three
categories — low [0, 10), medium [10, 30) and high [30, ∞). A
rule “(cyclomatic number = medium)∩(fan-in = high)  faulty”
indicates that a module is fault-prone if its cyclomatic number is
between 10 and 30, and its fan-in is larger than or equal to 30.

There are two key measures of interestingness (or importance) of
a rule as follows.

Support: Support is an indicator of rule frequency. It is expressed
as support(A  B), which is equal to a/n, where a = |{T
 D|A  T  B  T}| and n = |D|.

Confidence: Confidence is the probability that consequent B will
follow antecedent A. It is expressed as confidence(A 
B), which is equal to a/b, where a is defined as in
Support and b = |{T  D|A  T}|.

For example, assuming that the number of modules expressed as
n = 20, the number of modules that satisfies A is 10, the number of
modules that satisfies B is 8, and the number of modules that
satisfies both A and B is 6. For the rule A  B, the support is .3 (=
6/20), the confidence is .6 (= 6/10).

We also define the length of a rule as follows:

Length: Length is an indicator of rule’s complexity (larger
length indicates more complex rules). It is expressed as
length (A  B), which is equal to the number of items
in A.

For example, the length of the rule “(cyclomatic number =
medium)∩(fan-in = high)  faulty” is 2 since two metrics
(cyclomatic number and fan-in) is in the antecedent.

Finally, we define the relationship between two rules as follows:

Subsumed: We call that a rule A  B subsumes a rule C  B if
C  A.

For example, a rule “(cyclomatic number = medium)  faulty”
subsumes a longer rule “(cyclomatic number = medium)∩(fan-in
= high)  faulty.”

B. Fault-prone Module Prediction by Rules
A rule set obtained by association rule mining is often used as
predictive rules for the future business. In general, higher
confidence (or support) rules yield higher prediction accuracy;
thus, after rules are mined from module metrics and fault data sets,
a set of rules whose confidence (or support) is greater than their
threshold confidence (or support) are selected and used for their
prediction.

To conduct a prediction, given a selected rule set and a target
module to be predicted, we need to consider that more than one
rules can match the module, that is, module metrics satisfy the
antecedent means of multiple rules. This becomes a problem when

matched rules had different consequents (faulty and not-faulty). A
typical way to handle this situation is to classify the module by the
majority of rules’ consequent [7]. Another way is to select the
longest rules among matched rules [22].

We also need to consider the cases where no rule matches the
module. In such cases, Kamei et al. proposed to conduct a model-
based prediction as a complementary method [7].

This paper employs a novel approach to prediction. To keep the
rule set small and understandable, we mined rules whose
consequent is “faulty” only, where non-faulty rules are ignored. If
one or more rules match the module, then we consider it is faulty.
Otherwise, we classify it as non-faulty. By selecting high
confidence (and support) rules, we could also obtain promising
prediction accuracy with “faulty” rules only (see Section V.)

C. Related Work: Rule Mining in Software Engineering
A number of cases studied have reported association rule mining
for a software related dataset. Kamei et al. proposed a hybrid
faulty module prediction method combining association rule
mining with a model based approach (logistic regression analysis)
for the purpose of improving the performance of fault-prone
module prediction [7].

Song et al. [22] mined association rules from defect data logged
during development (type of defect cause, correction effort, etc.)
to predict types of defects that would occur simultaneously and to
predict defect-correction effort (staff-hours: “one hour or less”,
“one hour to one day”, “one day to three days”, and “more than
three days”). Hamano et al. [5] collected risk evaluation metrics
in software development, and conducted association analysis to
reveal project-confusion factors (whether development budgets or
deadline standards will be overrun). Michail [12] found reuse
patterns of libraries in application software by using association
rule mining, and tried to use the derived patterns in building a
class library.

Morisaki et al. [14] proposed an extended association rule mining
method that takes advantage of interval and ratio scale variables,
instead of simply replacing them into nominal or ordinal variables.
In the proposed method, an extended rule describes the statistical
characteristic of quantitative variables (e.g. mean and standard
deviation) in the consequent part together with related metrics (e.g.
“lift of mean” and “lift of standard deviation”) so that conditions
producing distinctive statistics can be discovered as rules. They
also conducted an empirical study to reveal rules associated with
defect correction effort of an industry project.

However, none of these studies focused on reducing the rule set to
solve the rule explosion problem, which we will explain in the
next subsection.

D. Rule Explosion Problem
“Rule explosion” effect refers to the fact that an excessive number
of rules are generated by the association rule mining technique.
This causes the following problems for human understanding.

(P1) Similar rules are included in the derived rule set. For
example, we may have a slightly different two rules
“α∩β∩γ∩δ faulty” and “α∩β∩γ∩ε faulty” in the
rule set. This makes it difficult for an engineer to decide
which rule should be focused on.

(P2) Some rules subsumes other rules. For example, “α∩β 
faulty” subsumes “α∩β∩γ  faulty”. From the point of
view of prediction, the latter rule is not needed.

(P3) Some rules are very long. Usually long rules are difficult
to interpret by human. For example, “α∩β∩γ∩δ∩ε∩λ∩ζ
 faulty” is too complex to understand. Moreover, very
long rules can cause overfitting problem.

There are several possible ways to reduce the rules. A typical
practice is to select high confidence (or support) rules. For
example, suppose we have the following four rules and
confidence values:

(Rule #1) α∩β  faulty Confidence=82%
(Rule #2) α∩β∩γ faulty Confidence=83%
(Rule #3) α∩λ∩ε faulty Confidence=92%
(Rule #4) λ∩ζ  faulty Confidence=30%

In this case, rule #4 can be removed by setting a threshold value
(e.g. minimum confidence = 70%) in rule selection. However,
rules #1,2,3 still remain, thus we cannot solve neither of the
problems P1, P2 and P3 above.

We could also reduce the rules by setting the threshold values to
the length of rules (e.g. maximum length = 2.) In this case, rules
#2 and #3 are removed; however, the rule #3 should not be
removed because it has very high confidence (92%). We need to
consider that some long rules are worth selecting if they have high
indication of confidence, i.e. they are likely to increase the
prediction accuracy.

On the contrary, we could reduce the rules by selecting long rules
rather than short rules since selecting longer rules is one of the
promising practices in rule-based prediction [22]. By this
approach, problem P2 may be solved, but P1 and P3 cannot be
solved. In addition, we need to consider that not all the longer
rules are worth selecting than the shorter rules, as we will explain
in the next section.

III. PROPOSED METHOD

A. Basic Idea
Given a rule set, our goal is to remove as many rules that are (1)
similar to others, (2) subsumed by other rules or (3) complex (i.e.
long), while not losing the prediction performance of the rule set.

Our basic idea is to evaluate the tradeoffs between length and
confidence of a rule. We remove rules unless they have enough
confidence for their length. Suppose we have the following two
rules in the derived rule set.

(Rule #1) α∩β  faulty Confidence=82%
(Rule #2) α∩λ∩γ faulty Confidence=83%

In this case, rule #2 is longer (i.e. more difficult to understand)
than rule #1. We consider that rule #2 is NOT worth selected
because it could gain only 1% improvement (in confidence) by
increasing the length. Since the longer rules are more difficult to
understand, we do not select longer rules unless it yields
acceptable improvements in confidence, as shown in the
following example:

(Rule #1) α∩β  faulty Confidence=82%
(Rule #2) α∩λ∩ε faulty Confidence=92%

In this case, we consider that rule #2 is worth selecting because
enough improvement (10% in confidence) is achieved. If we
remove rule #2, then we might lose the prediction accuracy. To

decide whether a rule is worth selecting or not, this paper employs
a threshold improvement to the improvement of rule’s confidence.

A yet another case is that a shorter rule subsumes a longer rule as
follows.

(Rule #1) α∩β  faulty Confidence=82%
(Rule #2) α∩β∩ε faulty Confidence=93%

In this case, rule #2 could be selected since it has high confidence
level. However, if we decided to select rule #1, then rule #2 must
be removed as it is subsumed by rule #1.

B. Rule Reduction Algorithm
After mining a set of rules from a module data set with threshold
values of minimum support and confidence, our rule reduction
algorithm starts with selecting all the shortest (e.g. length = 1)
rules. Then, we look through the 2nd shortest rules (length = 2) if
there exists good enough rules to be selected in comparison with
already selected shorter rules based on the threshold improvement.
We also remove rules that are subsumed by shorter rules. We
continue this selection for longer rules (length = 3, 4, …) until no
rules are worth selected.

Let R={ ܴଵ ∪ ܴଶ ∪ ⋯∪ ܴఏ೗೐೙೒೟೓ሽ	 be a rule set derived by
association rule mining with threshold values:

minimum support = support
minimum confidence = confidence

where Rx be a set of rules whose length = x.

Then, Fig. 1 shows our rule reduction algorithm that removes
rules from R and obtains a reduced rule set R’. To explain how the
algorithm works, here we assume that initial threshold values are
confidence = 0.75 and improvement = 0.05, and the given rule set R
consists of the following rules.

(Rule #1) α  faulty Confidence=75%
(Rule #2) β  faulty Confidence=76%
(Rule #3) α∩λ faulty Confidence=82%
(Rule #4) λ∩ζ  faulty Confidence=74%
(Rule #5) λ∩γ faulty Confidence=80%

In line 1 of Fig.1, we will have two rule subsets as follows.
R1 = {Rule #1, Rule #2}
R2 = {Rule #3, Rule #4, Rule #5}

Next, in line 2 and 3, we will have x = 1 and R’ = R1 = {Rule #1,
Rule #2}. Then, we start inspecting length = 2 rules in R2 whether
they are worth selected or not. In line 6, we set a new threshold

confidence = 0.8 for length = 2 rules. In line 8, in the first iteration,
we pick r = Rule #3, and in line 9, it is removed from R2 because
it is subsumed by Rule #1 in R’. Then we go back to line 8 for the
second iteration, and r = Rule #4 this time. In line 10, since
confidence(Rule #4) < 0.8, Rule #4 is not considered worth
selecting, so it is removed from R2. Next, for the third iteration in
line 8, we have r = Rule #5. Since Rule #5 is not subsumed by any
of rules in R’ and also confidence(Rule #5) ൒ 0.8, it is kept in R2.
Then in line 12, new R’ becomes {Rule #1, Rule #2, Rule #5},
and we will go back to Loop in line 4. Finally, in line 6, since R3
is empty, i.e. there is no length=3 rules in R, we goto line 14.

IV. EXPERIMENTAL SETTING

To evaluate the true effectiveness of the proposed method, we
compare our method with a commonly used rule selection method
that sets a threshold in confidence. The following describes
datasets, evaluation criteria and procedures used in the experiment.

A. Target Software
In this experiment, we collected module (i.e., source file) datasets
from two versions in Mylyn [3] and Eclipse PDE [4] both written
in Java. Table I summarizes the statistics of the used datasets.
Mylyn dataset has a good balance of faulty and not faulty modules
while Eclipse PDE is class-imbalance data (21.5% faulty modules
in v3.1).

B. Used Metrics
In Mylyn dataset, we measured both product metrics and process
metrics (Table II). For product metrics, we used Understand [24]
to extract complexity and size metrics for each of the files. For
process metrics, we used the metrics proposed by Moser et al.
[15][21]. To measure the process metrics, we used CVS
repository provided by Eclipse Foundation.

1: Let Rx be a set of rules whose length = x in the input rule set R
2: Let x = (length of the shortest rule in R)
3: Let R’ = Rx // keep all the shortest rules in the reduced rule set
4: Loop:
5: Let x = x + 1
6: Let confidence = confidence + improvement // set a threshold for length = x rules
7: if Rx =  then goto End
8: For each rule r in Rx { // start inspecting longer rules whether they are worth selected
9: if r is subsumed by one of rules in R’ then remove r from Rx

10: if confidence(r) < confidence then remove r from Rx
11: }
12: Let R’ = R’∪Rx // add selected rules to the reduced rule set
13: goto Loop:
14: End: return R’ // return the reduced rule set

Figure 1. Rule reduction algorithm

Table I. Statistical summary of Mylyn and Eclipse PDE data
sets

Version
of faulty

modules
of not faulty

modules
% of faulty

modules

Mylyn 1.0 425 598 41.5

Mylyn 2.0 663 599 52.5

Eclipse PDE 3.1 49 179 21.5

Eclipse PDE 3.2 79 230 25.6

Before mining rules, we removed several metrics that had high
correlation with other metric (correlation coefficient > .9). TLOC
and MLOC were removed since these two had high correlation
with FOUT. Also, BFC and PRE were removed since they had
high correlation with TPC.

In Eclipse PDE dataset, we measured object oriented metrics
(Table III) in addition to metrics of Mylyn dataset.

C. Recovery of Bugs
We obtained the number of bugs in source code files using the
SZZ algorithm [23]. This algorithm identifies when a bug was
injected into the code and who injected it by linking a version
archive (such as CVS) to a bug database (such as Bugzilla).

D. Initial Rule Set
We used NEEDLE [14] as an association rule miner. To obtain an
initial rule set (for applying rule reduction methods,) rules were
mined from Mylyn v.1.0 dataset with threshold values: minimum
support support = .01 and minimum confidence confidence = .75.
Also, for Eclipse PDE v3.1 dataset, we used support = .02 and
minimum confidence confidence = .65 to mine enough rules. For
both datasets, we also set a threshold to the rule length: maximum
length = 5. It is because we already had enough rules, and also
rules longer than 5 are not easily understandable to human
anyway.

Table IV and V show characteristics of the rule sets. There are no
“length = 1” rules included since no rule had confidence ≥
confidence. Note that this initial set is a sort of “selected” rule set

whose rules are likely to contribute to high prediction
performance (because of high confidence.)

E. Evaluation Criteria
To evaluate the ease of understanding of a rule set, we used two
criteria: (1) the number of rules, and (2) sum of length of rules in
a rule set. In these criteria, smaller value indicates easier
understanding.

To evaluate the prediction performance of two rule sets, we
applied them to Mylyn v.2.0 dataset and Eclipse PDE v3.2 dataset
respectively. We used three commonly used criteria, recall,
precision and F1-value [8][20]. “Recall” is the ratio of correctly
predicted fault-prone modules to actual fault-prone modules and
“precision” is the ratio of actual fault-prone modules to the
modules predicted as fault-prone. F1-value is a harmonic mean of
recall and precision, defined as follows:

PrecisionRecall

PrecisionRecall
F





2

1
 (1)

For all these criteria (recall, precision and F1-value), higher values
indicate better prediction performance.

Table II. Measured Metrics in Mylyn dataset

Type Name Definition

Product
Metrics

TLOC Source Lines of Codes

FOUT The number of method calls of a file.

MLOC LOC executable

NBD Nested block depth

PAR Number of parameters

VG Cyclomatic complexity

NOF The number of attributes

NOM The number of methods

NSF The number of static attributes

NSM The number of static methods

ACD
The number of anonymous type
declarations in a file

NOI The number of interfaces in a file.

NOT The number of classes in a file

Process
Metrics

TPC The number of revisions of a file

BFC
The number of times a file was
involved in a bug-fix transaction in
the 3 months before the release

PRE
The number of pre-release defects in
a file in the 3 months before the
release

Table III. Additional Metrics in Eclipse PDE dataset

Type Name Definition

Product
Metrics

CBO Coupling Between Object classes

NOC Number Of Children of a class

DIT Depth of Inheritance Tree

LCOM Lack of Cohesion in Methods

Table IV. Characteristics of the initial rule set (Mylyn)

Rule length # of rules
Average
confidence

Average
support

1 0 — —

2 8 .797 .139

3 84 .811 .068

4 397 .819 .040

5 858 .825 .031

all 1347 .822 .037

Table V. Characteristics of the initial rule set (Eclipse
PDE)

Rule length # of rules
Average
confidence

Average
support

1 0 — —

2 9 .754 .022

3 9 .737 .023

4 80 .737 .023

5 309 .737 .023

all 407 .737 .023

F. Comparison with Other Methods
We compare the proposed with other rule reduction methods,
namely “naïve 1” and “naïve 2.” The naïve 1 method is a
conventional rule reduction method that relies on the threshold in
confidence only. Rules can be reduced by increasing the threshold
confidence.

The naïve 2 method is a combination of the naïve 1 method and a
rule removal method that eliminates long rules subsumed by
shorter rules. This method is intended to understand how much
rules are subsumed by other rules. In this method, the shortest
rules are selected based on a given threshold confidence; then,
longer rules are selected unless they are not subsumed by shorter
rules.

Also, we compare with four commonly used machine learning
techniques: logistic regression, random forest, CART and naïve
Bayes classifier.

G. Experimental Procedure
Given an initial rule set of Mylyn (Table IV), we run the proposed
algorithm (Fig.1) with different threshold values, from improvement
= 0 up to 0.15 where all “length ≥ 3” rules were removed. For
each reduced rule set, we apply it to the Mylyn v2.0 dataset and
compute evaluation criteria shown in Section IV.E. Similarly, for
Eclipse PDE rule set, we run the proposed algorithm with
improvement = 0 up to 0.3; and, for each reduced rule set, we apply it
to the Eclipse PDE v3.2 dataset for performance evaluation.

We run naïve 1 and 2 methods, which removes rules whose
confidence values are smaller than the given threshold confidence.

For Mylyn dataset, we start with confidence = 0.78 up to 0.95 where
all “length ≤ 3” rules were removed. Similarly, for Eclipse PDE
dataset, we start with confidence = 0.70 up to 0.86.

V. RESULT AND DISCUSSION

A. Result 1: Comparison with Naïve Rule Reduction
Methods

Fig.2 and 3 show the overview of the result for Mylyn and Eclipse
PDE respectively. The upper graph shows reduction of the
number of rules, and the lower graph shows the reduction of the
total rule length. As the number of rules and the total rule length
reduces, the conventional method (naïve 1), which reduces rules
by the threshold in confidence, loses prediction accuracy (in terms
of F1 value.) On the contrary, our proposed method sustains high
prediction accuracy.

Regarding the naïve 2 method, it showed better performance than
the naïve 1 method, which indicates the effectiveness of
eliminating long rules that are subsumed by shorter rules. In
Mylyn dataset, 1287 out of 1347 (95.5%) rules were subsumed by
shorter rules. However, giving higher threshold confidence and the
number of rules became smaller than 60, the prediction accuracy
dropped down much more than the proposed method. This
indicates the proposed method’s advantage of setting thresholds
based on the length of rules. Similarly in Eclipse PDE dataset, the
naïve 2 method did better than the naïve 2 method; however,
when the number of rules became smaller than 20, the prediction
accuracy dropped down greatly.

Figure 2. Overview of the experiment result (Mylyn)

Figure 3. Overview of the experiment result (Eclipse PDE)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

050100150

F
1

va
lu

e

of rules

Proposed

Naïve 1

Naïve 2

0.1

0.2

0.3

0.4

0.5

020406080

F
1

va
lu

e

of rules

Proposed

Naïve 1

Naïve 2

0.1

0.2

0.3

0.4

0.5

0100200300400500

F
1

va
lu

e

Sum of length of rules

Proposed

Naïve 1

Naïve 2

Details of results are shown in Table VI and VII. For Mylyn
dataset, in Table VI (a), the proposed method could reduce the
number of rules from 1347 down to 13, while the delta of the
prediction performance is only .015 (from .757 down to .742) in
terms of the F1 value. On the other hand, in Table VI (b) and (c),
naïve 1 and 2 methods could also reduce the number of rules,
however, F1 value became extremely low. For example, when the
number of rules is reduced down to 23 in the naïve 1 method, F1
value became .176, which is very low (Table VI(b).) Also in naïve
2 method, when the number of rules is reduced down to 19, F1

value became .456 (Table VI (c).) Similarly in Eclipse PDE
dataset, the proposed method outperformed both naïve 1 and 2
methods. The proposed method was able to reduce the number of
rules from 398 down to 12, while the prediction performance even
improved from .426 to .441 (Table VII (a).)

Regarding the ease of understanding of a rule set, the proposed
method could effectively reduce the complex (long) rules. In
Table VII (a), when the number of rules is 13, all longest (length
= 5) rules were removed. On the other hand, in naïve 1 and 2
methods, the longest rules were always remaining. Also, shortest
(length = 2) rules disappeared as the rule set reduced in the naïve
methods. Similar result exhibits in the experiment based on
Eclipse PDE.

Table VI (a). Rule reduction by the proposed method (Mylyn)

Table VI (b). Rule reduction by the naïve 1 method (Mylyn)

Table VI (c). Rule reduction by the naïve 2 method (Mylyn)

Table VII (a). Rule reduction by the proposed method (Eclipse
PDE)

Table VII (b). Rule reduction by the naïve 1 method (Eclipse
PDE)

Table VII (c). Rule reduction by the naïve 2 method (Eclipse
PDE)

2 3 4 5
initial 1347 8 84 397 858 6146 0.731 0.784 0.757
none 60 8 13 26 13 224 0.731 0.784 0.757

0.010 41 8 9 17 7 146 0.747 0.778 0.762
0.020 29 8 7 12 2 95 0.749 0.748 0.749
0.030 26 8 5 11 2 85 0.751 0.748 0.750
0.040 21 8 4 8 1 65 0.758 0.732 0.744
0.050 18 8 4 6 0 52 0.758 0.724 0.741
0.060 14 8 3 3 0 37 0.742 0.720 0.742
0.070 13 8 3 2 0 33 0.767 0.719 0.742
0.080 10 8 1 1 0 23 0.725 0.679 0.725
0.090 9 8 1 0 0 19 0.777 0.674 0.722
0.150 8 8 0 0 0 16 0.777 0.674 0.722

Accuracy

precision recall F1

Threshold

θ improvement

of rules
rule length

Total

Sum of
rule

length

2 3 4 5
initial 1347 8 84 397 858 6146 0.731 0.784 0.757

0.78 999 6 59 289 645 4570 0.757 0.760 0.758
0.80 841 3 51 247 540 3847 0.756 0.733 0.744
0.85 397 1 15 105 276 1847 0.790 0.614 0.691
0.88 184 0 6 44 134 864 0.827 0.520 0.639
0.90 106 0 2 27 77 499 0.856 0.449 0.590
0.92 64 0 2 14 48 302 0.848 0.312 0.456
0.93 44 0 1 9 34 209 0.842 0.256 0.393
0.94 38 0 1 8 29 180 0.843 0.235 0.368
0.95 30 0 0 6 24 144 0.879 0.175 0.292
1.00 23 0 0 5 18 110 0.867 0.098 0.176

Threshold

θ confidence

of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

2 3 4 5
initial 1347 8 84 397 858 6146 0.731 0.784 0.757
none 60 8 13 26 13 224 0.731 0.784 0.757

0.78 48 6 8 25 9 181 0.757 0.760 0.758
0.80 59 3 18 26 12 224 0.756 0.733 0.744
0.85 50 1 4 29 16 210 0.790 0.614 0.691
0.88 38 0 6 15 17 163 0.827 0.520 0.639
0.90 26 0 3 15 8 109 0.856 0.449 0.590
0.92 19 0 2 5 12 86 0.848 0.312 0.456
0.93 13 0 1 6 6 57 0.842 0.256 0.393
0.94 11 0 1 6 4 47 0.843 0.235 0.368
0.95 7 0 0 6 1 29 0.879 0.175 0.292

Threshold

θ confidence

of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

2 3 4 5
initial 398 0 9 80 309 1892 0.336 0.582 0.426
none 89 0 9 30 50 397 0.336 0.582 0.426

0.020 69 0 9 21 39 306 0.333 0.557 0.417
0.050 32 0 9 20 3 122 0.362 0.417 0.388
0.070 17 0 9 5 3 62 0.508 0.380 0.434
0.100 12 0 9 3 0 39 0.583 0.354 0.441
0.200 10 0 9 1 0 31 0.565 0.329 0.416
0.300 9 0 9 0 0 27 0.578 0.329 0.419

Accuracy

precision recall F1

Threshold

θ improvement

of rules
rule length

Total

Sum of
rule

length

2 3 4 5
initial 398 0 9 80 309 1892 0.336 0.582 0.426

0.70 330 0 8 67 255 1567 0.333 0.557 0.417
0.75 108 0 2 19 87 517 0.519 0.341 0.412
0.76 92 0 2 17 73 439 0.485 0.203 0.286
0.83 92 0 2 17 73 439 0.485 0.203 0.286
0.84 13 0 1 4 8 59 0.579 0.139 0.224
0.86 4 0 1 2 1 16 0.750 0.076 0.138

Threshold

θ confidence

of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

2 3 4 5
initial 398 0 9 80 309 1892 0.336 0.582 0.426
none 89 0 9 30 50 397 0.336 0.582 0.426

0.70 69 0 8 22 39 307 0.333 0.557 0.417
0.75 21 0 2 8 11 93 0.519 0.341 0.412
0.76 11 0 2 6 3 45 0.485 0.203 0.286
0.83 11 0 2 6 3 45 0.485 0.203 0.286
0.84 3 0 1 2 0 11 0.579 0.139 0.224
0.86 1 0 1 0 0 3 0.750 0.076 0.138

Threshold

θ confidence

of rules Sum of
rule

length

Accuracy

Total
rule length

precision recall F1

B. Result 2: Comparison with Commonly Used Machine
Learners

Table VIII and XI show the prediction performance of commonly
used machine learners, compared with the proposed method (i.e.
prediction by the reduced rule set) in Mylyn and Eclipse PDE
respectively. In Mylyn dataset (Table VIII), the proposed method
and tree-based methods (Random Forest and CART)
outperformed other two methods (logistic regression and naïve
Bayes classifier) in terms of F1 value. In Eclipse PDE dataset
(Table IX), the proposed method outperformed other four
methods in F1 value. These results indicate that the proposed
association rule mining approach is able to produce accuracy that
is comparative to commonly used machine learners.

C. Discussion
Table X shows the details of rules in the reduced rule set (13
rules) derived by the proposed method with a threshold improvement
= .07 in Mylyn dataset. Although interpretation of rules itself is
not the main scope of this paper, here we try to give a possible
interpretation of rules. (Due to page limitation, this Section
investigates Mylyn dataset only.)

There are 8 shortest (length=2) rules, and all of them consist in
their antecedent “TPC = H,” which means the number of revisions
of a file is high (TPC ≥ 3.) This indicates the frequent revisions to
a module is the most influential factor of fault injection in the
Mylyn dataset. This corroborates the results of previous studies
[2][15][17]. However, the condition “TPC = H” alone is not
sufficient to have a consequent “faulty.” Looking at rules no. 1-8
in Table X, either of “NOF = H”, “NBD = H”, “FOUT = H”,
“NSF = H”, “VG = H”, “PAR = H”, “NOM = H” or “NOT = H”
is needed in addition to “TPC = H” to have a fault with high
confidence level (≥ 0.75.) These metrics include control flow
complexity (NBD and VG), data complexity (PAR, NOF and
NSF), inter-module complexity (FOUT) and size metrics (NOM
and NOT). Therefore, it can be interpreted as that the fault is
injected when the revision to a module is frequent and the module
has high complexity or its size is large.

Next we focus on rules no.9 and no.10. It can be considered that
these rules expand the preconditions of shorter rules no.7 and no.3.
While the rule no.7 requires NOM to be “H”, the rule no.9 allows
“NOM = M” by adding “NSM = H” to its antecedent. Similarly,
while the rule no.3 requires TPC to be “H”, the rule no.10 allows
“TPC = M” by adding “NSM = H.”

Next we focus on the rule no.11. Interestingly, this rule consists in
its antecedent “NOF = L”, which means the number of attributes =
zero. At the same time, this rule requires “FOUT = H” (the
number of method calls of a file ≥33) and “NOM = H” (the
number of methods ≥8). These characterize a module having no
attributes while it has many methods and many method calls to
other classes.

On the other hand, the rule no.12 consists “NOM = L” (the
number of methods ≤ 2), “NBD = M” (nested block depth = 1),
“NSF = H” (the number of static attributes ≥ 1) and “NSM = L”
(the number of static methods = 0). This indicates that a module
of less branching complexity with just one or two methods can
have a fault if it has one or more static attributes.

Finally, the rule no.13 consists of many complexity metrics
included in the shortest rules, while it does not consist TPC,
which is the most influential factor of fault injection. This
indicates that regardless of the frequency of revisions, a module
can have a fault if the module is complex enough.

The analysis above confirmed that interpretation of a rule set
became possible by our proposed rule reduction algorithm.

D. Threats to Validity
In this section, we discuss the threats to the validity of our work.
We used datasets collected from two projects. We need to analyze
other open source and closed source systems to generalize our
results. In addition, the set of metrics used to extract association
rules is by no means complete. Thus, using other metrics may
yield different results. However, we believe that the same
approach can be applied on any set of metrics.

We used recall, precision and F1-value to evaluate the prediction
performance of rule sets. We need to use other criteria such as
ROC curves [10] to increase the reliability of our results.

This study obtains the number of faults in source code files using
the SZZ algorithm. The algorithm is commonly used in fault
prediction researches [13][15], but has the limitation that faults
not recorded in CVS log comments cannot be collected. Further
research is required to improve the accuracy of faults collection
from repositories.

To mine enough initial rules before applying our rule reduction
method, this paper set threshold values support = .01 and confidence
= .75 for Mylyn v.1.0 dataset and support = .02 and confidence = .65
for Eclipse PDE v3.1 dataset. Since these values may affect the
result of rule reduction and prediction, we need to conduct further
experiments using different values.

We used rules whose consequent is “faulty” only, where non-
faulty rules are ignored. Although we could obtain promising
prediction accuracy with faulty rules only, further research is
required to confirm whether non-faulty rules are indeed needless
or not in fault prediction. To use both faulty and non-faulty rules,
one of the issues we need to address in future is how to conduct
prediction for modules that are not included in both faulty and
non-faulty rules.

Table IX. Comparison with commonly used machine learners
(Eclipse PDE)

Table VIII. Comparison with commonly used machine
learners (Mylyn)

precision recall F1

12 rules (proposed) 0.583 0.354 0.441
Logistic regression 0.889 0.101 0.182
Random Forest 0.625 0.253 0.360
CART 0.330 0.456 0.383
Naive Bayes classifier 0.567 0.215 0.312

precision recall F1

13 rules (proposed) 0.767 0.719 0.742
Logistic regression 0.814 0.600 0.691
Random Forest 0.815 0.689 0.747
CART 0.824 0.698 0.756
Naive Bayes classifier 0.817 0.465 0.592

VI. CONCLUSION

To reveal the insights and better understanding of the causes of
faulty modules, this paper proposed a novel technique to reduce
association rules that can eliminate long and/or similar rules yet
sustaining the desirable prediction performance as much as
possible. Our major findings based on an empirical evaluation
with the Mylyn dataset and the Eclipse PDE dataset include the
following:

 In the Mylyn dataset, the proposed method reduces the
number of rules from1347 down to 13, while the delta of the
prediction performance was only .015 (from .757 down
to .742) in terms of the F1 value. And, in the Eclipse PDE
dataset, the proposed method reduces the number of rules
from 398 to 12, while the prediction performance even
improved (from .426 to .441.)

 On the other hand, two naïve rule reduction methods, which
simply remove rules whose confidence values are smaller
than the given threshold, could also reduce the number of
rules, but in these cases the prediction performance became
extremely low.

 We compared our rule-based prediction with conventional
model-based approaches such as logistic regression, random
forest, CART and naïve Bayes classifier. As a result, the
proposed association rule mining approach was able to
produce accuracy that is comparative to commonly used
machine learners. This indicates the reduced rule set is
worthwhile and important.

 Through an analysis of a reduced rule set, it is confirmed
that our proposed rule reduction technique provides a better
understanding of the causes of faulty modules.

E. ACKNOWLEDGMENTS
Part of this work was conducted under Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Research (C)
(22500028) and Young Scientists (A) (24680003).

F. REFERENCES
[1] Agrawal, R., Imielinski, T. and Swami, A.: Mining

Association Rules between Sets of Items in Large Databases,
Proc. of 1993 ACM SIGMOD Int’l Conf. on Management of
Data,Washington, D.C., USA, pp.207-216 (1993).

[2] D'Ambros, M., Lanza, M., Robbes, R.: Evaluating Defect
Prediction Approaches: a Benchmark and an Extensive

Comparison, Empirical Software Engineering, Published
online, DOI 10.1007/s10664-011-9173-9, (2011).

[3] Eclipse Mylyn Open Source Project,
http://www.eclipse.org/mylyn/

[4] Eclipse Plug-in Development Environment (PDE),
http://www.eclipse.org/pde/

[5] Hamano, Y., Amasaki, S., Mizuno, O. and Kikuno, T.:
Application of Association rule mining to Analysis of Risk
Factors in Software Development Projects, JSSST Computer
Software, Vol.24, No.2, pp.79-87(2007).

[6] Kamei, Y., Monden, A., and Matsumoto, K.: Empirical
Evaluation of SVM-based Software Reliability Model, In
Proc. 5th ACM-IEEE Int’l Symposium on Empirical
Software Engineering (ISESE2006), Vol.2, pp.39-41(2006).

[7] Kamei, Y., Monden, A., Morisaki, S., and Matsumoto, K.: A
Hybrid Faulty Module Prediction Using Association Rule
Mining and Logistic Regression Analysis, In Proc. 2nd Int’l
Symposium on Empirical Software Engineering and
Measurement (ESEM2008), pp.279-281(2008).

[8] Kim, S., Whitehead, Jr., E. J., and Zhang, Y.: Classifying
Software Changes: Clean or Buggy?, IEEE Trans. Softw.
Eng., Vol.34, No.2, pp.181-196(2008).

[9] Khoshgoftaar, T. M. and Allen, E. B.: Modeling Software
Quality with Classification Trees, Recent Advances in
Reliability and Quality Engineering, Singapore, World
Scientific, pp.247-270(1999).

[10] Lessmann, S., Baesens, B., Mues, C., Pietsch, S.:
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings, IEEE
Trans. on Software Engineering, vol.34, no.4, pp.485-
496(2008).

[11] Li, P. L., Herbsleb, J., Shaw, M. and Robinson, B.:
Experiences and Results from Initiating Field Defect
Prediction and Product Test Prioritization Efforts at ABB
Inc., Proc. 28th Int’l Conf. on Software Engineering,
Shanghai,China, pp.413-422(2006).

[12] Michail, A.: Data Mining Library Reuse Patterns Using
Generalized Association Rules, Proc. 22nd International
Conference on Software Engineering (ICSE’00), pp.167-
176(2000).

Table X. Reduced rule set (Mylyn)

No. Support Confidence Rule

1 0.180 0.760 NOF = H ∩ TPC = H → Faulty
2 0.152 0.800 NBD = H ∩ TPC = H → Faulty
3 0.150 0.789 FOUT = H ∩ TPC = H → Faulty
4 0.148 0.763 NSF = H ∩ TPC = H → Faulty
5 0.139 0.821 VG = H ∩ TPC = H → Faulty
6 0.134 0.797 PAR = H ∩ TPC = H → Faulty
7 0.128 0.799 NOM = H ∩ TPC = H → Faulty
8 0.084 0.851 NOT = H ∩ TPC = H → Faulty
9 0.016 0.889 NOM = M ∩ NSM = H ∩ TPC = H →Faulty

10 0.014 0.824 FOUT = H ∩ NSM = H ∩ TPC = M→Faulty
11 0.014 0.824 FOUT = H ∩ NOF = L ∩ NOM = H →Faulty
12 0.018 0.900 NBD = M ∩ NOM = L ∩ NSF = H ∩ NSM = L → Faulty
13 0.011 0.917 VG = H ∩ NOF = H ∩ NOM = M∩ NOT = H → Faulty

[13] Mizuno, O. and Kikuno, T., “Prediction of fault-prone
software modules using a generic text discriminator,” IEICE
Transactions on Information and Systems, vol. E91-D, no. 4,
pp. 888–896, 2008.

[14] Morisaki, S., Monden, A., Matsumura, T., Tamada, H., and
Matsumoto, K.: Defect Data Analysis Based on Extended
Association Rule Mining, Proc. 4th Int’l Workshop on
Mining Software Repositories (MSR 2007), pp.17-24(2007).

[15] Moser, R., Pedrycz, W., and Succi, G.: A comparative
analysis of the efficiency of change metrics and static code
attributes for defect prediction,” Proc. 30th International
Conference on Software engineering (ICSE’08), pp. 181-190
(2008).

[16] Munson, J. C. and Khoshgoftaar, T. M.: The Detection of
Fault-prone Programs, IEEE Trans. Softw. Eng., Vol.18,
No.5, pp.423-433(1992).

[17] Nagappan, N., Ball, T.: Use of relative code churn measures
to predict system defect density, In Proc. 27th Int’l Conf. on
Software Engineering (ICSE2005), pp.284-292(2005).

[18] Ohlsson, N. and Alberg, H.: Predicting Fault-Prone Software
Modules in Telephone Switches, IEEE Trans. Softw. Eng.,
Vol.22, No.12, pp.886-894(1996).

[19] She R., Chen F., Wang K., Ester M., Gardy J.L., Brinkman
F.L.: Frequent-Subsequence-Based Prediction of Outer
Membrane Proteins, Proceedings of 9th ACM SIGKDD

International conference on Knowledge Discovery and Data
Mining, pp. 436-445, (2003).

[20] Shihab, E., Mockus, A., Kamei, Y., Adams, B., Hassan, A.
E.: High-Impact Defects: A Study of Breakage and Surprise
Defects, Proc. ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE2011), pp.300-
310(2011).

[21] Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B. and
Hassan, A. E.: Understanding the Impact of Code and
Process Metrics on Post-release Defects: A Case Study on
the Eclipse Project, Proc. 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement (ESEM2010), pp.1-10(2010).

[22] Song, Q., Shepperd, M., Cartwright, M. and Mair, C.:
Software Defect Association Mining and Defect Correction
Effort Prediction, IEEE Trans. Softw. Eng., Vol.32, No.2, pp.
69-82(2006).

[23] Śliwerski, J, Zimmermann, T., and Zeller, A.: When do
changes induce fixes? Proc. Int’l Conference on Mining
Software Repositories (MSR’05), pp.1-5(2005).

[24] Understand, Scientific Toolworks, Inc.,
http://www.scitools.com/

[25] Yang, Q., Zhangand, H.H. and Li, T.: Mining Web Logs for
Prediction Models in WWW Caching and Prefetching, Proc.
of 7th ACM SIGKDD Int’l Conf. of Knowledge Discovery
and Data Mining, California , USA, pp. 473-478 (2001).

