
An Extension of Fault-Prone Filtering Using Precise
Training and a Dynamic Threshold

Hideaki Hata, Osamu Mizuno, Tohru Kikuno
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita
Osaka 565-0871, Japan

{h-hata, o-mizuno, kikuno}@ist.osaka-u.ac.jp

ABSTRACT
Fault-prone module detection in source code is important for assur-
ance of software quality. Most previous fault-prone detection ap-
proaches have been based on software metrics. Such approaches,
however, have difficulties in collecting the metrics and in construct-
ing mathematical models based on the metrics.
To mitigate such difficulties, we have proposed a novel approach

for detecting fault-prone modules using a spam-filtering technique,
named Fault-Prone Filtering. In our approach, fault-prone mod-
ules are detected in such a way that the source code modules are
considered as text files and are applied to the spam filter directly.
In practice, we use the training only errors procedure and apply

this procedure to fault-prone. Since no pre-training is required, this
procedure can be applied to an actual development field immedi-
ately.
This paper describes an extension of the training only errors pro-

cedures. We introduce a precise unit of training, “modified lines of
code,” instead of methods. In addition, we introduce the dynamic
threshold for classification. The result of the experiment shows that
our extension leads to twice the precision with about the same re-
call, and improves 15% on the best F1 measurement.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.2.8 [Software Engineering]: Metrics—Product met-
rics; H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Measurement, Reliability

Keywords
spam filter, fault-prone modules, text mining

1. INTRODUCTION
Fault-prone code detection is one of the most traditional and im-

portant areas in software engineering. Once fault-prone modules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08,May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

are detected at an early stage of the development, developers can
take more careful notice of the detected modules. Furthermore,
keeping track of fault-prone modules is useful in order to prevent
injecting additional faults in them.
Various studies have been done in the detection of the fault-prone

modules [3,4,6,8,10,11,14]. Most of these studies used some kind
of software metrics, such as program complexity, size of modules,
object-oriented metrics, and so on, and constructed mathematical
models to calculate fault-proneness.
We have introduced a spam filter based approach, named Fault-

Prone Filtering, to detect fault-prone modules [12]. The spam filter
is one of the most widely used in text mining applications. Re-
cently, since the usefulness of Bayesian theory for spam filtering
has been recognized, most spam filtering tools implement Bayesian
theories. Consequently, the accuracy of spam detection has been
improving drastically.
Inspired by the spam filtering technique, we tried to apply text-

mining techniques to fault-prone detection. In fault-prone filtering,
we consider a software module as an e-mail message, and assume
that all of the software modules belong to either fault-prone(FP) or
not-fault-prone(NFP). We also conducted an experiment based on
the training only errors(TOE) procedure that can simulate practi-
cal situations. In this procedure, software modules are classified
in developed order. Only misclassified software modules are used
for training of corpuses for further classification. This procedure
reduces the time for training and avoids over-training. However,
the result of predictions shows that the recall is very high, but the
precision is low. Such an unbalanced result is not appropriate for
fault-prone prediction.
We thus introduce the following 2 extensions for fault-prone fil-

tering:

Precise training: In our previous approach, the unit of training
was a whole software module. However, faulty parts of a
software module are usually very small in source code. Thus,
much useless training was performed in the previous way.
In this study, we introduce more a precise unit of training,
“modified lines of code”.

Dynamic threshold: To classify modules according to calculated
probabilities, we have to determine a threshold of classifica-
tion. The threshold was pre-determined and not changed in
the TOE. However, we guessed that the threshold varies de-
pending on the characteristics of modules. We thus define
the way to change the threshold according to the types of
modules.

An experiment is prepared to show the effectiveness of the ex-
tended approach using the source code repository of 2 open source
software developments. Both FP and NFP modules are then col-

lected from the repository. We conducted the TOE procedure using
about 100 thousand software modules and classified them into FP
or NFP. The result of the experiment shows that the extended ap-
proach leads to twice the precision with about the same recall, and
improves 15% on the best F1.
The rest of this paper is organized as follows: Section 2 describes

an overview of previous “fault-prone filtering” approaches as well
as its extension for better accuracy. The procedure of collecting FP
and NFP modules is then described in Section 3. An experiment
to show the effectiveness of our extended approach is shown in
Section 4. Section 5 discusses the result obtained in the experiment.
Section 6 addresses threats to the validity of this study. Finally,
Section 7 summarizes this study and also addresses future work.

2. EXTENDED FAULT-PRONEFILTERING

2.1 Fundamental Idea of Fault-Prone Filter-
ing

The basic idea of fault-prone filtering is inspired by spam mail
filtering. In spam mail filtering, the spam filter first trains both
spam and ham (non-spam) e-mail messages from the training data
set. Then, an incoming e-mail is classified into either spam or ham
by the spam filter.
This framework is based on the fact that spam e-mails usually in-

clude particular patterns of words or sentences. From the viewpoint
of source code, similar situations usually occur in faulty software
modules. That is, similar faults may occur in similar contexts. We
thus guessed that faulty software modules have similar patterns of
words or sentences like spam e-mail messages. In order to grab
such features, we adopted a spam filter in fault-prone module pre-
diction.
We then try to apply a spam filter for fault-prone module predic-

tion. We named this approach, “fault-prone filtering”. That is, the
fault-prone trainer first trains both FP and NFP modules. Then, a
new module can be classified into FP or NFP using the fault-prone
classifier. To do so, we have to prepare a spam filtering software
and sets of FP and NFP modules.
In this study, we used “CRM114” spam filtering software [5].

The reason why we used CRM114 was its versatility and accuracy.
Since CRM114 is implemented as a language to classify text files
for general purpose, it is easy to apply source code modules.

2.2 Training Only Errors
In order to apply our approach to data from a source code reposi-

tory, we implemented tools named “FPTrainer” and “FPClassifier”
for training and classifying software modules, respectively.
The typical procedure for fault-prone filtering is summarized as

follows:

1. Apply FPClassifier to a newly created software module, Mi,
and obtain the probability to be fault-prone.

2. By the threshold tF P (0 < tF P < 1), classify module Mi

into FP or NFP.

3. When the actual fault-proneness ofMi is revealed by a fault
report, investigate whether the predicted result for Mi was
correct or not.

4. If the predicted result was correct, go to step 1; otherwise,
apply FPTrainer toMi to train actual fault-proneness and go
to step 1.

This procedure is called the “Training only Errors (TOE)” proce-
dure because the training process is invoked only when classifica-
tion errors happen. The TOE procedure is quite similar to an actual

FPClassifier

Correct
prediction?

Yes

No

Modules sorted by date

Prediction
(FP / NFP)

Training
FPTrainer

Get next
module

Figure 1: Outline of Fault-Prone Filtering by Training only Er-
rors

classification procedure in practice. For example, in an actual e-
mail filtering, e-mail messages are classified when they arrive. If
some of them are misclassified, actual results (spam or ham) should
be trained.
Figure 1 shows an outline of this approach. At this point, we con-

sider that fault-prone filtering can be applied to the set of software
modules developed in the same (or a similar) project.
As referred to in [2], fault-prone codes could be spread also on

different parts in a class file. We thus used class files of a Java
program in each revision as a software module.

2.3 Extension to Fault-Prone Filtering

2.3.1 Precise Training
In our previous study [13], the input unit of both FPTrainer and

FPClassifier was a method of Java. That was because we treated
methods in Java code as software modules. If a method contained
bug-introducing changes, we considered it an FP module. A bug-
introducing change is a modification that introduces bugs into the
source code. However in such an FP module, there may contain
“not bug-introducing lines” as well as “bug-introducing lines”. An
NFP module is considered a module which does not contain “bug-
introducing lines,” which trained all “not bug-introducing lines”
that can be in an actual FP module.
The difference in the corpuses of FP and NFP is the essence of

fault-prone filtering. However, the difference between FP and NFP
modules is smaller than the difference between spam and ham e-
mail messages because of the poor vocabulary in the programming
language.
We thus introduce a more precise unit of training, “modified lines

of code”. Only bug-introducing changes are stored in the FP cor-
pus and only bug-fix changes which resolve bug modifications, are
stored in the NFP corpus. Such input of the FPTrainer allows a
bigger difference between the corpuses of FP and NFP, because a
bug-introducing change must not be in NFP modules, and a bug-fix
change must not be in FP modules which are related to the bug.

2.3.2 Dynamic Change of Threshold
The threshold tF P is pre-determined and not be changed in [13].

However, we guessed that the threshold varies depending on the
characteristics of modules. We also guessed that more accurate
classification may be obtained with the dynamic threshold.
We thus define the way to change the threshold according to the

types of modules. The way of changing the threshold is simple as
follows:

• If an actual NFP module was misclassified as FP, then the
threshold moves higher. That is, more modules are predicted
as NFP.

• If an actual FP module was misclassified into NFP, then the
threshold moves lower. That is, more modules are predicted
as FP.

This is because we can avoid misclassification of NFP if the thresh-
old is sufficiently high. Contrary to that, we can avoid misclassifi-
cation of FP if the threshold is sufficiently low.

3. EXPERIMENTAL SETTINGS
This section describes the settings of the experiment. To begin,

we identify bug-introducing changes and bug-fix changes. These
changes are extracted as changed lines we call modified lines, by a
version control system, such as CVS. In this paper, we call lines of
bug-introducing change “FP lines”, and lines of bug-fix change as
“FIX lines”. A set of FP lines and FIX lines can be extracted after
one bug is resolved.

3.1 Finding Modified Lines
First, we have to collect sets of FP lines and FIX lines to train FP

and NFP corpuses. Both FP lines and FIX lines are extracted from
source code repositories based on an algorithm shown by Sliwerski
et al. [15]. The following restriction and assumption exist in this
collection method:

Restriction We seek FP lines and FIX lines by examining cvs logs.
Therefore, faults that do not appear in the cvs logs cannot be
considered. That is, the set of FP modules used in this study
is not complete.

Assumption We assume that faults are reported just after they are
injected in the software.

Next, we collected the following information from a bug database
of a target project such as Bugzilla.

• FLT : A set of faults found in a bug database.

• fi: Each fault in FLT .

• date(fi): Date in which a fault fi is reported.

Here, we consider a line of source code Lj with dj , where dj is
the last modified date of Lj .
We then start mining a source code repository according to the

following algorithm to extract FP lines and FIX lines.

1. For each fault fi, find a certain revision of class CRFixedRev

in which the fault has just been fixed by checking all revision
logs.

2. Take the difference with each CRFixedRev and just previous
revision of the same class.

3. For each line Lm in a CRFixedRev, Lm is a FIX line if it is
changed or added.

Related revision
class CRFixedRev

Fault report: #100
Date: 2007/12/24
A critical bug is found!

Fault f100

date(f100) = 2007/12/24

1.6

Revised in
2007/12/20

1.7

Revised in
2008/01/05

1.8

Revised in
2008/01/15

1.9

Revised in
2008/01/28

Revision
log:
Issue #100
is fixed. ...

(1) Find related revision log

(3) Find unchanged lines since date(f100)

a,f in rev.
1.6, 1.7,

and 1.8 are
FP lines

i
j
b

c

k

h

e

a

b

c

d

e
f

a
g
b

c

h

e
f

(2) Take a difference

add

delete

add

i,j,k in rev.
1.9 are

FIX lines change

change

change

Figure 2: Collection of FP lines and FIX lines

4. For each previous changing or deleting line Ln in the just
previous revision class, examine dn, if dn < date(fi), Ln

is a FP line.

This algorithm collects a pair of FP lines and FIX lines.
An illustrated example of collecting FP lines and FIX lines is

shown in Figure 2. In this example, assume that the class which has
the fixed revision classes CRFixedRev has revisions 1.1, 1.2, · · · ,
1.9, and revision logs are appended when each revision is com-
mitted. First, a fault f100 is found on 24th December, 2007. By
searching all revision logs, assume that the fixed point is found at
revision 1.9 of the class CRFixedRev (Shown as (1) in Figure 2).
Then, take the difference between revision 1.8 and 1.9 (Shown as
(2) in Figure 2). In the CRFixedRev, lines i and j are changed, and
a line k is added, that is they are bug-fix change lines. So these 3
lines are FIX lines.
Lines a, g, and f in revision 1.8 of the class are prospective

FP lines since changes or deletions occur in the next revision. In
prospective FP lines, by searching revision differences, we find
lines that have not been modified since the 24th of December, 2007.
This is the purpose of removing prospective FP lines not being re-
lated to the f100. After checking the last modified date of each
prospective FP line, lines a and f are accepted as FP lines, but line
g is not.
We implemented a prototype tool to track bugs in the cvs reposi-

tory. The inputs of the tool are a cvs repository of the target project
and a bug report to track. The outputs of the tool are sets of FP
lines and FIX lines.

3.2 Definition of FP and NFP Module
Next, we define FP and NFP modules. We consider a software

module Mi with sa
i , which is the actual fault status (FP or NFP) of

Mi. In short, if a module in a certain revision contains FP lines,

lF P : the number of FP lines.
lF IX : the number of FIX lines.

for eachMi

if lF P > 0 in current revision; then
if lF P = 0 in the previous revision; then

sa
i = FP1

else
sa

i = FP2

endif
else if lF IX > 0 then

sa
i = NFP1

else if lF IX > 0 in some of previous revisions; then
sa

i = NFP2

else
sa

i = NFP3

endif
endfor

Figure 3: Procedure of dividing FP and NFP status

the module’s actual fault status is FP, and we call the module an
FP module; otherwise, its actual fault status is NFP and we call the
module an NFP module. An important point of this definition is
that we do not mention of NFP classes. That is to say, not all NFP
modules contain FIX lines.
In the actual fault-prone filtering procedure, we want to train

only FP lines into the FP corpus, and train only FIX lines into the
NFP corpus.
For TOE, we divide the actual fault-prone status into two types,

and the actual not-fault-prone status into three types. First, we di-
vide NFP status into two types depending on whether a module
contains FIX lines or not. If a certain revision of one module is an
NFP module which does not contain FIX lines, sa

i = NFP3; this
means that this module has not been introduced to bugs and has not
been fixed until this revision. Next, we divide status of FP and NFP,
which contain FP or FIX lines in each of the two types depending
on the timing of inserting these lines. One type is just inserted re-
vision, sa

i = FP1 or sa
i = NFP1, and otherwise, sa

i = FP2 or
sa

i = NFP2.
Here we call a module with sa

i = FPx and NFPy an FPx

module and anNFPy module, respectively. In the history of a cer-
tain module, the module becomes an FP1 module, then becomes
an FP2 module successively. The FP1 module becomes a NFP1

module if bugs in the FP1 module are fixed. The NFP1 module
becomes an NFP2 module, successively. As described in subsec-
tion 3.1, FP lines in a certain module, which is related to one bug,
can be extracted in a sequence of revisions of the modules. How-
ever, FIX lines can be extracted in only one revision. This revision
is a NFP1 module, and the following revisions of the module are
NFP2 modules if there are no FP lines. Division of FP status is
related to the movement of the threshold.
We decide those types in Figure 3.

3.3 Procedure of TOE
In the experiment, we have to simulate actual TOE procedure in

the experimental environment. To do so, we first prepare a list of
all modules in all revisions.
Here, we consider a software module Mi as a tuple of datei

tF P : Threshold of probability to determine FP and NFP
sp

i : Predicted fault status (FP or NFP) ofMi

for eachMi in list of modules sorted by datei’s
prob = fpclassify(mi)
if prob > tF P then

sp
i =FP

else
sp

i =NFP
endif
if sa

i �= sp
i then fptrain(Mi, sa

i)
if sa

i = NFP3 & prob < 1 then
tF P = prob

endif
if sa

i = FP2 & prob > 0 then
tF P = prob

endif
endif

endfor

fpclassify(m):
Generate a set of tokens Tm from source code m.
Calculate probability P (TF P | Tm)

using corpuses TF P and TNF P .
Return P (TF P | Tm).

fptrain(M , sa):
if sa = FP1 or FP2 then

Generate a set of tokens Tm from FP lines inM .
Store tokens Tm to the corpus Tsa .

else if sa = NFP1 then
Generate a set of tokens Tm from FIX lines inM .
Store tokens Tm to the corpus Tsa .

else if sa = NFP2 then
Generate a set of tokens Tm from FIX lines

in older revisions ofM .
Store tokens Tm to the corpus Tsa .

endif
Return

Figure 4: Procedure of TOE experiment

mi, in addition to sa
i , where datei is the committed date of Mi,

and mi is the source code of Mi. As stated in subsection 3.2, if a
module Mi contains FP lines, actual fault status sa

i is FP1, FP2

and otherwise, NFP1, NFP2, and NFP3.
The list is sorted by datei of each module so that the first ele-

ment of the list is the oldest module. We then start the simulated
experiment in the procedure shown in Figure 4. During the simula-
tion, modules are classified in order of date. If the predicted result
differs from the actual fault status, that is sp

i is FP though sa
i is

NFP1, NFP2, or NFP3, and sp
i is NFP though sa

i is FP1, or
FP2, the training procedure is invoked.
As shown in Figure 4, if actual fault status sa

i = NFP3, none
of the lines is trained because there are no FIX lines as the defini-
tion of aNFP3 module. In a pilot survey, after training all lines of
NFP3 modules, we got low recall. Since the volume of the corpus
of NFP became much bigger than the volume of FP, modules tend
to be classified as NFP. To avoid such misclassification, we try to

Table 1: Legend of experimental result
Prediction
NFP FP

Actual NFP N1 N2

FP N3 N4

make precise training. However, by raising the threshold, we ex-
pect to reduce misclassification on newNFP3 modules. Intuitively
speaking, we avoid misclassification of NFP1 and NFP2 mod-
ules, with the NFP corpus, which contains FIX lines, and NFP3

modules with the raised threshold.
With this raising procedure, the threshold becomes higher and

higher. As a result, the number of misclassifications of the FP
modules increases. To avoid such a case, we lower the threshold
to proper level. If we lower the threshold when both FP1 and FP2

modules are misclassified, we guess that the threshold falls down to
a level too low. Looking at the revision history of a module, a mod-
ule becomes an FP1 module first, then it becomes an FP2 module.
Therefore, the probability of fault-proneness in the FP2 modules
tends to be higher than in that of the FP1 modules. Therefore, we
lower the threshold when FP2 modules are misclassified.
By the way, some FIX lines can be turned out to be FP lines, that

is, fix-on-fix lines. These fix-on-fix lines are first stored in the NFP
corpus. After being turned out to be FP lines, these fix-on-fix lines
are then stored in the FP corpus. Consequently, the probability of
misclassification of a new module that contains FP lines similar to
the fix-on-fix lines, which is a FP modules, is getting small. The
probability of correct classification as FP is also small because both
FP and NFP corpuses contain the same fix-on-fix lines. However,
if the module is misclassified as NFP, the module’s FP lines, which
are similar to the fix-on-fix lines, are stored in the FP corpus with
the TOE procedure. As a result, the probability of correct classifi-
cation of new modules that contain FP lines similar to the fix-on-fix
lines is expected to be larger.

3.4 Evaluation Measurements
For the evaluation of the experiments, we define several evalu-

ation measurements. Table 1 shows a legend of tables for experi-
mental result. In Table 1,N1 shows the number of modules that are
predicted as NFP, and are actually NFP. N2 shows the number of
modules that are predicted as FP but are actually NFP. Usually, N2

is called a false positive. On the contrary, N3 shows the number of
modules that are predicted as NFP, but are actually FP.N3 is called
a false negative. Finally,N4 shows the number of modules that are
predicted as FP and are actually FP.
For evaluation purposes, we used two measurements: recall and

precision. Recall is the ratio of modules correctly predicted as FP
to the number of entire modules actually FP. Recall is defined as
follows:

Recall =
N4

N3 + N4

Intuitively speaking, recall implies the reliability of the approach
because a large recall denotes that actual FP modules can be cov-
ered by the predicted FP modules.
Precision is the ratio of modules correctly predicted as FP to the

number of entire modules predicted as FP. Precision is defined as
follows:

Precision =
N4

N2 + N4

Intuitively speaking, precision implies the cost of the approach be-
cause a small precision requires much effort to find actual FP mod-

Table 2: Target projects
Name BIRT EMF

Language Java
Revision control cvs
Size of entire repository 610 MB 1.07 GB

Type of faults Bugs
Status of faults Resolved, Verified, Closed
Resolution of faults Fixed
Severity blocker, critical,

major, normal
Priority of faults all
Total number of faults 7,788 4,821

ules from the predicted FP modules.
F1 is used to combine recall and precision. F1 is defined as

follows:

F1 =
2 × recall × precision

recall + precision

In this definition, recall and precision are evenly weighted.
The rates of Type I error and Type II error are defined as follows:

Type I error rate =
N2

N1 + N2 + N3 + N4

Type II error rate =
N3

N1 + N2 + N3 + N4

4. EXPERIMENT

4.1 Target Project
For the experiment, we selected open source software projects

that can track faults. For this reason, we targeted 2 projects: Eclipse
BIRT plugin(BIRT) and Eclipse modeling framework(EMF) [7].
Table 2 shows the context of each target project. These projects
are constructed in Java language, and revisions are maintained by
concurrent version control system (cvs). The source repository of
cvs used in this study was uploaded once on the eclipse project Web
site, and was obtained on the 1st of December, 2007.
We also obtained a fault report from the bug database of the

eclipse project. We extracted faults from the bug database (Bugzilla)
under the following conditions: The type of these faults is “bugs”,
therefore these faults do not include any enhancements or func-
tional patches. The status of faults is either “resolved”, “verified”,
or “closed”, and the resolution of faults is “fixed”. This means that
the collected faults have already been fixed and been resolved, and
thus fixed revision should be included in the entire repository. The
severity of the faults was either blocker, critical, major, or normal.
We did not use trivial bugs in this study.
Using our FP module collection tool, we collected both FP and

NFP modules from these 2 projects. The result of the collection is
shown in Table 3.

4.2 Result of Experiment
In the experiment, we conducted the following 4 experiments:

e1: TOE procedure with static threshold (tF P = 0.50) applied
to the BIRT project.

e2: TOE procedure with static threshold (tF P = 0.90) applied
to the BIRT project.

Table 3: Result of FP module collection for target projects
Name BIRT EMF

of faults found in cvs log 2758 629
(35% of total) (13% of total)

of FP lines 102,290 43,155
of NFP lines 172,359 73,486
of modules 49,726 99,612

FP # of FP1 modules 2,190 1,853
of FP2 modules 15,441 10,087

subtotal 17,631 32,095
NFP # of NFP1 modules 3,158 2,495

of NFP2 modules 5,120 13,443
of NFP3 modules 23,817 83,880

subtotal 11,940 99,818

Table 4: Result in each experiment of BIRT
Experiment e1 e2 e3

Recall 0.844 0.820 0.798
Precision 0.515 0.599 0.639
F-measure 0.640 0.692 0.710
Type I error rate 0.282 0.194 0.160
Type II error rate 0.055 0.064 0.072

e3: TOE procedure with dynamic threshold applied to the BIRT
project.

e4: TOE procedure with dynamic threshold applied to the EMF
project.

By comparing experiments e1, e2, and e3, we try to show the
effectiveness of the dynamic threshold proposed in this study. Fur-
thermore, we try to show the generality of our approach by com-
paring experiments e3 and e4.
Figure 5 shows transitions of evaluation measurements for each

experiment. In these graphs, the x-axis shows all software modules
sorted by dates and the smaller number shows older modules. The
y-axis shows rates of recall, precision, etc.
Figure 5 (a) shows that high recall is achieved but precision is

low in experiment e1. This low precision implies that modules tend
to be predicted as FP. Figure 5 (b) shows that precision is improved
with a higher static threshold in experiment e2. This improved
precision is because the FPClassifier predicted FP modules more
strictly.
In the case of experiment e3 in Figure 5 (c), precision is more

improved and the type I error rate is held down. This further im-
provement implies that the number of misclassifications of actual
NFP modules has decreased. Table 4 shows the results of evalua-
tion measurements at the end of the TOE procedure for 3 experi-
ments, e1, e2, and e3.
Table 5 shows the detailed classification results for two exper-

iments e3 and e4 at the final point of the TOE application. As
mentioned before, we categorized actual NFP and FP modules into
three and two categories, respectively. Table 5 shows these cate-
gories, too. We can see that the number of NFP3 and FP2 mod-
ules are larger than other categories.
In more detail, we can see that theNFP1 and FP1 modules tend

to be misclassified and theNFP2,NFP3, and FP2 modules tend
to be classified correctly. For example in Table 5 (a), the number
of actual NFP1 modules was 3,158. However, 1,336 modules are
wrongly predicted as FP and the error rate is 42.3%. On the other

Table 5: Final classification results in the TOE experiment
(a) Result of experiment e3

Prediction
NFP FP Total

Actual NFP NFP1 1,822 1,336 3,158
NFP2 4,076 1,044 5,120
NFP3 18,236 5,581 23,817
subtotal 24,134 7,961 32,095

FP FP1 1,201 989 2,190
FP2 2,357 13,084 15,441
subtotal 3,558 14,073 17,631

(b) Result of experiment e4

Prediction
NFP FP Total

Actual NFP NFP1 1,899 596 2,495
NFP2 12,595 848 13,443
NFP3 76,764 7,116 83,880
subtotal 91,258 8,560 99,818

FP FP1 1,100 753 1,853
FP2 2,486 7,601 10,087
subtotal 3,586 8,354 11,940

Table 6: Evaluation measurements in TOE experiment
Experiment e3 e4

Recall 0.798 0.700
Precision 0.639 0.494
F1 0.710 0.580
Type I error rate 0.160 0.072
Type II error rate 0.077 0.032

hand, the number of actual NFP2 modules was 5,120. Among
them, 1,044 modules are wrongly predicted as FP and thus the error
rate is 20.4%. Since theNFP1 module is a module in which a bug
has just been corrected, the accuracy of prediction becomes lower.
On the other hand, the NFP2 module is a module in which some
bugs have been corrected in the past and the information of the
bugs has already been trained to the corpuses. For this reason, the
NFP2 modules tend to be predicted correctly.
The evaluation measurements for each experiment are calculated

in Table 6. As shown in Table 6, we obtained better precision and
recall in the experiment e3 than that in e4.

5. DISCUSSION

5.1 Transition of Evaluation Measurements
In Figure 5, it is observed that measurements are not good at an

early stage of the development.In actuality, type I error rate is rel-
atively high at an early stage of development and thus precision is
low. After the training of sufficient modules, type I error rate be-
comes lower and thus precision becomes higher. This fact indicates
that the TOE procedure works well after a certain training period
of the development.
As for the transition of the evaluation measurements, these mea-

surements are expected to increase as time elapses because more
training usually achieves more accuracy. However, recall and pre-
cision do not follow this expectation because the number of type
I errors (N2 in Table 1) and the number of type II errors (N3) in-
crease more rapidly than the number of correctly predicted as FP
(N4).

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

Cumulative number of predicted modules in TOE

Recall

Precision

F1

Type I rate

Type II rate

(a) Experiment e1: Static threshold (tF P = 0.50) in BIRT

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

Cumulative number of predicted modules in TOE

Recall

Precision

F1

Type I rate

Type II rate

(b) Experiment e2: Static threshold (tF P = 0.90) in BIRT

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

Cumulative number of predicted modules in TOE

Recall

Precision

F1

Type I rate

Type II rate

(c) Experiment e3: Dynamic threshold in BIRT

50
00

15
00

0

25
00

0

35
00

0

45
00

0

55
00

0

65
00

0

75
00

0

85
00

0

95
00

0

10
50

00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

Cumulative number of predicted modules in TOE

Recall

Precision

F1

Type I rate

Type II rate

(d) Experiment e4: Dynamic threshold in EMF

Figure 5: Transition of evaluation measurements in TOE experiment

However, the type II error rate remains low during the entire de-
velopment. This low type II error rate means that the number of
misclassifications of actual FP modules is always small.

5.2 Difference between Projects
Both recall and precision in the experiment for BIRT are higher

than that for EMF. In order to find a reason, we examine the transi-
tion of the number of FP modules in both projects. Figure 6 shows
the number of actual FP modules per 1000 modules as well as the
transitions of recall, precision, and F1 measurement.
As shown in Figure 6 (a), the number of FP modules per 1000

modules was about 200 to 400 during the whole development of
BIRT. However, in Figure 6 (b), most of FP modules appear at an
early stage of development in EMF.
We guess that the difference of the number of FP modules per

1000 modules between BIRT and EMF derives the difference of
growth of recall, precision, and the F1 measurements between BIRT
and EMF.

5.3 Comparative Study
In this section, we compare evaluation measurements with our

previous study and other related studies in order to show the effec-

tiveness of our approach. For comparison, we surveyed previous
studies and compared the evaluation measurements shown in these
other studies with our own.
Twenty-four classification results in five fault-prone prediction

studies in 2007 were surveyed. The following describes a summary
of these studies:

Menzies07 Menzies et al. compared 3 classification techniques for
fault-prone prediction in [11]. They then concluded that the
naive Bayesian classifier is the most accurate. They also
used NASA’sMDP (PC1, PC2, PC3, PC4, MW1, KC3, KC4,
CM1) as well as the 38 metrics related to Halstead, McCabe,
etc.

Kamei07 Kamei et al. adopted over/under sampling methods tech-
niques for fault-prone prediction [9]. They experimentally
evaluated four sampling methods (ROS, SMOTE, RUS, ONESS)
by using 2 module sets of industry legacy software.

Arisholm07 Arisholm et al. compared various classification tech-
niques in [1]. They used a C4.5 classification tree, Practical
Machine Learning Tools (PART), a Support Vector Machine
classifier (SVM), Logistic Regression, and Neural Networks.

Table 7: Comparison with previous fault-prone prediction studies
Study Approach Recall Precision F1

Menzies07 [11] Naive Bayes 0.79 0.703*◦ 0.74*◦

Kamei07 [9] Sampling method 0.595 0.282 0.382*
Arisholm07 [1] C4.5 classification tree 0.711* 0.047* 0.088*◦

PART 0.785* 0.046* 0.087*◦

SVM 0.745* 0.047* 0.088*◦

Logistic Regression 0.758* 0.054* 0.101*◦

DecorateC4.5 0.765* 0.055* 0.103*◦

BoostC4.5 0.752* 0.047* 0.088*◦

CFSC4.5 0.779* 0.048* 0.090*◦

C4.5 + PART 0.779* 0.051* 0.096*◦

Neural Networks 0.732* 0.058* 0.107*◦

Aversano07 [2] KNN 0.588* 0.588 0.588*◦

Simple Logistic Regression 0.211* 0.800* 0.334*◦

Multi-boosting 0.300 0.520 0.380*◦

C4.5 classification tree 0.290* 0.488 0.364*◦

SVM 0.316* 0.399 0.353*◦

Mizuno07 [13] FP Filtering (tF P = 0.50)† 0.590 0.506 0.545*
Hata08 Extended FP Filtering‡ 0.798 0.639 0.710*

* The best value shown in paper.
◦ Calculated from data shown in paper.
† Classified modules are Java methods.

Project Eclipse (# of faults is 40,627.)
‡ Classified modules are Java classes.

Project Eclipse BIRT (# of faults is 7,788.)

In addition, Arisholm et al. compared improvement of the
C4.5 classification tree, named DecorqateC4.5, BoostC4.5,
CFSC4.5, C4.5+PART.

Aversano07 Aversano et al. compared five prediction models with
two projects in [2]. They used K-Nearest Neighbors (KNN),
Simple logistic regression, Multi-boosting, the C4.5 classifi-
cation tree, and Support Vector Machine classifier (SVM).

Mizuno07 This is our previous approach [13]. We proposed a
spam-filter based approach named fault-prone filtering with a
static threshold between FP and NFP judgment and method-
based training for corpuses.

Table 7 shows evaluation measurements (recall, precision, and
F1) shown in these studies.
Each row in Table 7 shows the best F1 measure and the corre-

sponding measurements for a classification technique. The mark
“*” with a value in Table 7 denotes that the value is the best case
in the paper. The mark “◦” indicates that we calculated the value
from the data shown in the paper.
Menzies07 achieves high F1 with high recall and precision in

their best case, which is in good condition. However,in their paper,
there is a low F1 with another data set in not good condition, for
example, 0.04 of F1 and 0.02 of precision, which were calculated
from data shown in their paper.
Aversano07 used bug-introducing changes for training, which

are similar to our approach. However, they used other prediction
models. Our approach obtain more higher recall and F1.
Mizuno07, which is our previous study, shows relatively low re-

call. In the study, we got high recall, 0.839, with low precision,
0.232, which is an unbalanced result. In addition, F1 is low, 0.363.
Compared with previous studies, we can get twice the precision
with about the same recall. As a result, we can improve 15% on
the best F1.

Table 7 shows the difficulty in a good balance of recall and preci-
sion which leads to a high F1. For example, Arisholm07 obtained
high recall and low precision, and Aversano07 obtained high preci-
sion and low recall. However we can obtain high recall precision,
and F1.
Since this is a survey-based comparison, we cannot validate ad-

vantage of our approach in a rigorous manner. More rigorous com-
parison should be done in the future work.

6. THREATS TO VALIDITY
The threats to validity are categorized into 4 threats as recom-

mended in [16]: external, internal, conclusion, and construction
validity. In this study, we include external and construction valid-
ity.
One of the external validity threats for our study is the general-

ity of the result. In general, the Eclipse project does much better
than other projects when using machine learning classifiers to pre-
dict fault-prone modules. We must study with other projects and
analyze performance across them.
One of the construction validity threats is the collection of fault-

prone modules from open source software projects. The algorithm
adopted in this study has a limitation in that faults that are not
recorded in a cvs log cannot be collected. To make an accurate
collection of FP modules from source code repository, further re-
search is required.
Another construction validity threats is that the threshold does

not converge with our procedure. For this reason, misclassification
happens when the threshold is very low or very high. To reduce
such misclassification, we have to create more appropriate proce-
dures to change the threshold.
One more construction validity threats is that our extension of

smaller granularity of training units, modified lines of code, may
be ignoring the context. That is, when certain lines are modified

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500

600

700

800

900

1000

R
at

e

Cumulative number of predicted modules in TOE

Recall

Precision

F1

of FP / 1000

(a) Experiment e3: BIRT

50
00

15
00

0

25
00

0

35
00

0

45
00

0

55
00

0

65
00

0

75
00

0

85
00

0

95
00

0

10
50

00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500

600

700

800

900

1000

R
at

e

Cumulative number of predicted modules in TOE

of FP / 1000

Recall

Precision

F1

(b) Experiment e4: EMF

Figure 6: Transition of evaluation measurements with the num-
ber of FP modules per 1000 modules

as bug-introducing lines, which may be completely different from
another context where the same lines are changed but not introduce
a bug. However, bigger granularity of training units may contain
much noise. This is a trade-off problem.

7. CONCLUSION
This paper showed the extension of training only errors proce-

dure to classify fault-prone software modules using the spam filter-
ing technique. The result of our experiment showed that our ap-
proach leads to twice the precision with about the same recall and
improves 15% on the best F1 measurement. In addition, our exten-
sion brings another merit, that is, independence from a programing
language.
By analyzing our results, we can say that precision converges

quickly without enough FP modules and precision gets higher with
enough FP modules. In addition, enough FP modules at an early
stage might bring high precision.
Our future research includes creating more appropriate proce-

dures to change the threshold. We expect more accurate classifica-
tion with more appropriate procedures.

8. ACKNOWLEDGMENTS
The authors would like to express their thanks to the developers

of the CRM114 classifier. Without the CRM114, this work could

not be conducted. Finally, authors also thank to the developers
of Eclipse who have made the repository of Eclipse available for
research.

9. REFERENCES
[1] E. Arisholm, L. C. Briand, and M. J. Fuglerud. Data mining

techniques for building fault-proneness models in telecom
java software. In Proc. of 18th International Symposium on
Software Reliability Engineering (ISSRE2007), pages
215–224, 2007.

[2] L. Aversano, L. Cerulo, and C. D. Grosso. Learning from
bug-introducing changes to prevent fault prone code. In
IWPSE ’07: Ninth international workshop on Principles of
software evolution, pages 19–26, New York, NY, USA, 2007.
ACM.

[3] P. Bellini, I. Bruno, P. Nesi, and D. Rogai. Comparing
fault-proneness estimation models. In Proc. of 10th IEEE
International Conference on Engineering of Complex
Computer Systems (ICECCS’05), pages 205–214, 2005.

[4] L. C. Briand, W. L. Melo, and J. Wust. Assessing the
applicability of fault-proneness models across
object-oriented software projects. IEEE Trans. on Software
Engineering, 28(7):706–720, 2002.

[5] CRM114 – the Controllable Regex Mutilator.
http://crm114.sourceforge.net/.

[6] G. Denaro and M. Pezze. An empirical evaluation of
fault-proneness models. In Proc. of 24th International
Conference on Software Engineering (ICSE ’02), pages
241–251, 2002.

[7] Eclipse Project. http://www.eclipse.org/.
[8] L. Guo, B. Cukic, and H. Singh. Predicting fault prone

modules by the Dempster-Shafer belief networks. In Proc. of
18th IEEE International Conference on Automated Software
Engineering (ASE’03), pages 249–252, 2003.

[9] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and
K. ichi Matsumoto. The effects of over and under sampling
on fault-prone module detection. In Proceedings of the 1st
International Symposium on Empirical Software Engineering
and Measurement (ESEM2007), pages 196–204, September
2007.

[10] T. M. Khoshgoftaar and N. Seliya. Comparative assessment
of software quality classification techniques: An empirical
study. Empirical Software Engineering, 9:229–257, 2004.

[11] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans. on
Software Engineering, 33(1):2–13, January 2007.

[12] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno. Spam filter
based approach for finding fault-prone software modules. In
Proc. of 2007 International Workshop on Mining Software
Repositories (MSR2007), 2007.

[13] O. Mizuno and T. Kikuno. Training on errors experiment to
detect fault-prone software modules by spam filter. In The
6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE2007),
pages 405–414, 2007. Dubrovnik, Croatia.

[14] N. Seliya, T. M. Khoshgoftaar, and S. Zhong. Analyzing
software quality with limited fault-proneness defect data. In
Proc. of Ninth IEEE International Symposium on
High-Assurance Systems Engineering (HASE’05), pages
89–98, 2005.

[15] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? (on Fridays.). In Proc. of Mining
Software Repository 2005, pages 24–28, 2005.

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in software engineering:
An introduction. Kluwer Academic Publishers, 2000.

