
Historage: Fine-grained Version Control System for Java

Hideaki Hata
Osaka University
Osaka, Japan

h-hata@ist.osaka-u.ac.jp

Osamu Mizuno
Kyoto Institute of Technology

Kyoto, Japan
o-mizuno@kit.ac.jp

Tohru Kikuno
Osaka University
Osaka, Japan

kikuno@ist.osaka-u.ac.jp

ABSTRACT
Software systems are changed continuously for adapting to the en-
vironment, correcting faults, improving performance, and so on.
For in-depth analysis related to software evolution, it is informa-
tive to obtain the histories of fine-grained source code entities. This
paper presents a tool named Historage that can provide entire histo-
ries of fine-grained entities in Java, such as methods, constructors,
fields, etc. A characteristic of Historage is the ability of tracing
entity histories including renaming changes. We applied our tech-
nique to five open source software projects to quantitatively evalu-
ate the renaming change identification.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.9 [Software Engineering]: Man-
agement—Software configuration management

General Terms
Management

Keywords
fine-grained version control, software repository, fine-grained anal-
ysis, software evolution

1. INTRODUCTION
Software configuration management (SCM) system data have

been mined and analyzed for many research purposes because they
contain rich information on real software activities and products;
for example, bug prediction based on historical data [15, 16, 23],
code clone management [6, 10, 19]. File-level histories can be eas-
ily collected from SCM systems, but it is not easy to collect fine-
grained entity histories.
The concept of method-level version control in object-oriented

programming can be seen in Orwell SCM system [24]. Though
several tools have been proposed to support fine-grained version
control for development, no such a tool has been actually integrated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-EVOL’11, September 5–6, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0848-9/11/09 ...$10.00.

into widely used SCM systems [5]. These systems intend to control
fine-grained entity histories during the development. Since existing
repositories remain at file-levels, what we have to do is constructing
a fine-grained entity history storage with the data from the existing
file-level SCM systems.
Better are required for future research in software evolution [22].

There are several related tools proposed and used in research. BEA-
GLE is a framework incorporating subtools from software metrics
software visualization, and relational databases [13, 26]. On the
point of fine-grained entity histories, it performs origin analysis to
identify change types including renaming, moving, splitting, and
merging. However, it targeted selected release revisions for apply-
ing origin analysis. C-REX is an evolutionary extractor [14]. It
intends to record fine-grained entity changes over the development
periods. Though C-REX targets entire revisions, it cannot iden-
tify renaming. Kenyon is designed to facilitate software evolution
research [1]. It supports CVS, Subversion, and ClearCase SCM
systems and conducts preprocessing tasks for fine-grained change
analysis. Though it stores entire revisions, change types are limited
to adding, deleting, and modifying. APFEL collects fine-grained
changes in relational databases [31]. It investigates fine-grained
changes at the token level. Though revisions are stored entirely,
renaming is not identified.
In this paper, we address the problem of achieving, in storage,

fine-grained entity histories as rich as file histories in SCM systems.
For providing fine-grained histories, we consider that both storing
entire histories (revisions) and identifying renaming (not only pro-
viding differences [21]) are important. However there is no tool
satisfying both requirements. We propose a system for construct-
ing fine-grained version control storage that satisfies both require-
ments. We empirically evaluate our system with real open source
software projects.
This paper is organized as follows. Section 2 presents our tech-

nique for constructing fine-grained version control system and im-
plementation. Empirical evaluation is provided in Section 3. Sec-
tion 4 discussed related work about rename identification techniques
and finally, we conclude in Section 5.

2. HISTORAGE

2.1 Overview
Overview of our system for providing fine-grained entity histo-

ries is presented in Figure 1. From file-level snapshots, each entity
content (text) is extracted and stored independently. Renaming be-
tween two revisions is identified between two revisions. Then each
entity history is presented including renames.
We use Git, which is one source code management systems, as

a storage. Recently Git attracts some researchers [2, 17]. Bird et



Figure 1: Providing fine-grained entity histories from file-level
repositories.

Figure 2: How a snapshot is stored in Git.

al. reported both its promise and peril [2]. Though Git is known
for decentralization of source code management, we found that Git
architecture is also effective for our purpose.

2.2 Preliminary – Git
Git is a content-addressable file system [3]. Git controls file con-

tents, directory structures, file histories, commit logs, etc., by man-
aging Git objects. Each object is stored in Git object database and
is compressed and named by the SHA-1 (Secure Hash Algorithm)
value of its contents.
Storage of snapshots Figure 2 shows how directory structure

of a snapshot is stored and managed with Git object model. The
left side of Figure 2 represents sample directory structure at the
time of a commit and the right side shows a Git object model that
reflect the directory structure. Each blob object, which represents
a file, is referred by a tree object. A tree object, which represents a
directory, refers blobs and trees. The top tree object is referred by
a commit object, which contains the author and log of the commit.
As shown in Git object model in Figure 2, each object is identified
with SHA-1 value.
Identify changesHere, we explain howGit identify change types

with Figure 3. Figure 3 (a) shows an original directory structure in
Git object model. It shows that fileA.java exists in the direc-
tory named lib. The content of fileA.java is stored in a blob,
which is named by SHA-1 value: a5352e. The lib directory is
represented as tree named d4352, and the name of the directory is
stored in the 324a1 tree.
If the fileA.java is modified, the Git object model changes

to Figure 3 (b). Since the file content is changed, the corresponding
blob is also changed. Figure 3 (c) represents the rename of the file.

(a) Original structure. (b) File A is modified.

(c) Renamed to file B. (d) File A is moved.

Figure 3: How changes are detected in Git.

Figure 4: Directory structure for fine-grained entities.

This can be identified because same blob SHA-1 value is linked to
different file name, fileB.java. The Figure 3 (d) represented
a directory structure after moving the fileA.java. This can be
detected because the directory, which has different name lib2,
contains the fileA.java.
When file paths are changed, it is often the case with files that

contents of the files are also modified. Even in such cases, Git is
able to detect relationships between changes if the file contents are
similar enough. This is performed by checking that the amount of
deletion of original content and insertion of new content is larger
than a threshold, which is set to 50% of the size of smaller files
(original or modified). Therefore, if deletion or insertion is less
than 50%, two files in parent and child commits are detected as
moving or renaming. The threshold value can be changed.

2.3 Technique
For storing fine-grained entity files, the directory structure is de-

signed as Figure 41. If there are fine-grained entities in a Java file,
fine-name.java, each entity is additionally stored as a file.
Three kind of entity files are stored in three kind of directories,

FE (for fields), CN (for constructors), and MT (for methods). And
these directories are stored in a directory identified as class or inter-
face name, which contains those entities as shown at the right part
of Figure 4. Anonymous classes are ignored in this paper. Entire
1This is a prototypal structure. It is also reasonable to store class
declarations for representing logical structures.



Table 1: Open source software projects for evaluation
Project Description First Commit Last Commit (# of .java) Total Commits
WTP incubator Subproject of Eclipse IDE 2007-11-10 2010-07-22 1,944 541
Hadoop Utilities for distributed application framework 2009-05-19 2010-12-26 667 375
Subversion SCM system 2000-03-01 2010-11-29 127 738
jEdit Text editor 2001-09-02 2010-10-02 546 4,399
Android Mobile operating system 2008-10-21 2010-12-23 2,690 25,965

Figure 5: Historage architecture.

files and directories are stored in the file-name directory. Di-
rectories and files in gray space of Figure 4 are newly prepared for
new directory structure.
The entities we target in this paper are named as follows for files:

Field: field name.

Constructor: constructor name and parameter list.

Method: method name and parameter list.

Changes of entity names correspond to file name changes, and
moving of entities correspond to moving files. If an entity is deleted
in a commit and reappear in a later commit, Git can output its his-
tory including disappearing periods.
As described in Section 2.2, renames are identified based on file

content similarity. If two entities are highly similar, it is rational to
detect them as corresponding entities. Because this matching tech-
nique is simple, there may be obvious mismatches, that is, matches
between different entity types, such as a match between method
and constructor, for example. These mismatches are distinguished
easily by checking directory names whether they are same or not.
We filter out these mismatches before providing entity histories.

2.4 Architecture
Figure 5 shows the architecture of Historage2. As shown in Fig-

ure 1, extracting and storing fine-grained entities are conducted on
each snapshot. A snapshot in each revision can be obtained eas-
ily from Git. Even if existing repositories are not in Git system,
it is possible to convert them to Git repositories from most SCM
systems. For extracting the fine-grained entities in Java files, we
use the source code analysis tool MASU3, which is an open source
tool. The threshold value for rename identification is set to 30%
(as a option of Git commands) based on empirical study reported
in Section 3 for filtering appropriate matching entities beyond re-
naming and moving.

2A prototype will be available at http://www-ise4.ist.
osaka-u.ac.jp/~h-hata/.
3http://sourceforge.net/projects/masu/

Table 2: Rename identification results in five open source soft-
ware projects
Project Sum† Correct (%) Measure (%)

mismatches 62
WTP s < 30 366 99 27.0 Rec. 96.7
incubator 30  s < 100 436 426 97.7 Prec. 99.6

s = 100 2,641 2,641 100.0

Hadoop
mismatches 32

s < 30 152 43 28.3 Rec. 88.1
30  s < 100 141 141 100.0 Prec. 100

s = 100 178 178 100.0

Subversion
mismatches 41

s < 30 148 88 59.5 Rec. 96.4
30  s < 100 528 521 98.7 Prec. 99.7

s = 100 1,820 1,820 100.0

jEdit
mismatches 254

s < 30 1,229 347 28.2 Rec. 94.4
30  s < 100 1,461 1,457 99.7 Prec. 99.9

s = 100 4,421 4,421 100.0

Android
mismatches 203

s < 30 1,125 98 8.7 Rec. 99.8
30  s < 100 912 903 99.0 Prec. 99.98

s = 100 61,278 61,278 100.0
†: entity pairs exist in January, 2010 for the Android project, and entire
entity pairs for the other projects.
s: similarity.

3. EVALUATION
In this Section, we empirically investigate the usefulness of our

fine-grained version control system, Historage.

3.1 Target Projects
As shown in Table 1, we select five open source software projects:

Eclipse WTP incubator (WTP incubator),Apache Hadoop Com-
mon (Hdoop),Apache Subversion (Subversion),jEdit,and Android
framework classes and services (Android).These projects are writ-
ten in Java and Git repositories are available. We cloned the Git
repositories on the 27th December, 2010.
The disk space overhead compared with original repositories and

constructed Historage depends on projects. It varies from nearly
equal to a few times on Git database.

3.2 Rename Identification
We investigated every matching pairs of fine-grained entities in

the repositories (the number of commits are shown in Table 1)
except for the Android project. As there are more than 180, 000
matching pairs in the Android project, we limited the pairs to those
existing on January, 2010, for the Android project. Entity pairs
are classified according to similarity values, which are calculated
by Git, to see the impact of the threshold and investigated the ef-
fectiveness of rename identification. We determine by hand if a
matching is correct or not.
Table 2 shows the results in the five projects. Mismatches are

matches between different entity types. It is possible to distinguish
them automatically. Shown in bold fonts, the percentage of correct
matches when similarity is greater than or equal to 30% is higher



Table 3: Rename identification results for entity types in WTP
incubator project
Entity Sum† Correct (%) Measure (%)

s < 30 33 6 18.2
Field 30  s < 100 45 39 86.7 Rec. 99.4

s = 100 1,142 1,142 100.0 Prec. 99.4
s < 30 21 11 52.4

Constructor 30  s < 100 59 59 100.0 Rec. 94.4
s = 100 129 129 100.0 Prec. 100
s < 30 312 82 26.3

Method 30  s < 100 332 328 98.8 Rec. 95.4
s = 100 1,370 1,370 100.0 Prec. 99.8

†: entire entity pairs.
s: similarity.

than 97% in every project. This means that we can provide more
than 97% correct rename histories of fine-grained entities. How-
ever there seem to be actual renaming when similarity is less than
30%, it is now difficult to distinguish by our system. The recall and
precision values, whereHistorage provide rename changes with the
threshold value 30%, are presented in Table 2.
Though Table 2 reports the results of every fine-grained entity

change types together, we can conduct more detailed analysis. Ta-
ble 3 represents the rename identification results for each fine-grained
entity type in the WTP incubator project. We can see that the per-
centages of correct pairs are different depending on the entity types.
For example, the result on field is relatively low. We think this
is because it is more difficult to compare the similarity with the
small contents of fields. On the contrary, change type identification
of constructor achieved relatively high result. We think this
is because there is a small number of potential constructor pairs
compared to method pairs. Similar results can be seen in the other
projects.
With the investigation of the results, we found that automatic

rename identification by Git and our filtering works relatively well.
Distinguishing actual renames when similarity values are less than
30% is parts of our future work.

4. RELATEDWORK
There are many studies about identifying changes.
One-to-one matching techniques Based on the matching tech-

nique survey by M. Kim and Notkin, one-to-one software entity
matching techniques are summarized as follows: entity namematch-
ing, string matching, syntax tree matching, control flow graphmatch-
ing, program dependence graph matching, binary code matching,
clone detection, and origin analysis tools [18]. S. Kim et al. applied
several method matching techniques for origin analysis limited to
renaming and moving to open source software projects, and eval-
uated the effectiveness of the techniques [20]. They reported that
though clone detection yields an accuracy value 67.4, function body
diff achieved 90.2.
Splitting and merging Splitting and merging of software enti-

ties are targeted by origin analysis. Godfrey and Zou proposed a
technique of inferring such events based on matching procedures
using multiple criteria including names, signatures, metric values,
and call dependencies [13]. Splitting and merging correspondence
analysis is also known as one-to-many and many-to-one match-
ing [28]. Wu et al. combined text similarity analysis and call de-
pendency analysis for those method matching [28].
Systematic structural changes Recognizing structure changes

including refactorings and object-oriented design changes is one
of hot topics of change analysis. These analyses are based on tech-
niques of matching object-oriented program elements. With the dif-

Table 4: Change identification techniques and using data
Technique Graph Feature
S. Kim et al. [20] calls name, text, metrics
Godfrey and Zou [13] calls name, metrics
Wu et al. [28] calls text
Dig et al. [7] calls, structure tokens
Weißgerber and Diel [27] structure name, text
Xing and Stroulia [29] structure name
Dagenais and Robillard [4] calls, structure name
This paper - text

ferences of program elements, it is inferred what structure changes
are occurred. RefactoringCrawler detect refactorings based on iden-
tifying renaming packages, classes, methods, and moving meth-
ods [7]. Those changes are identified by using structural data, call-
graph and tokens from entities. MolhadoRef [8, 9] is a semantics-
based and refactoring-aware SCM system [12]. It adopts Refac-
toringCrawler [7] and uses refactoring logs to support merging.
Weißgerber and Diel presented a technique to detect changes that
are likely to be refactorings [27]. Their matching technique is based
on structure similarity and code clone analysis.
Framework usage changes Xing and Stroulia proposed an ap-

proach for API-evolution support, called Diff-CatchUP [30]. On
the step of change identification, UML-diff, which is based on
name similarity and code dependency similarity of program el-
ements [29], is used. After identifying changes, plausible API
replacements are proposed. Dagenais and Robillard presented a
technique to recommend adaptive changes for clients of framework
code based on structure change analysis [4]. Their matching tech-
nique is based on structure similarity and out going call dependency
similarity.
Discussion Though there are some variations, change identifica-

tion is a kind of matching problems. In computer vision research
area, similar problems are known as the correspondence problem
and techniques are classified in following two classes [25]:

Graph-based methods: checking if correlations on graph struc-
tures are similar or not.

Feature-based methods: finding features and seeing if they are
similar or not.

Table 4 summarized the studies based on this classification. As
shown in Table 4, every study except for this paper uses both meth-
ods for change type identification. As graph-based methods and
feature-based methods have different advantages and limitations,
the combination of both methods is expected to achieve better re-
sults. Most studies mainly adopt graph-based methods and use
feature-based methods for improvingmethod correspondence prob-
lems.
Graph-based methods require unchanged or easily understand-

able correlated parts. Therefore, it is difficult to identify corre-
sponding entities if there is no enough correlated part or there are
major changes. Wu et al. reported the limitations and insist that
graph-based analysis cannot be overcome them [28]. Though it is
different entity (AST node) analysis, Fluri et al. proposed an algo-
rithm based on graph-based methods and reported following two
limitations [11]:

• Mismatching can propagate. Not only mismatching for each
targeting entity, correlate entities can be mismatched.

• The worst-case complexity increase. To decrease mismatch-
ing, complex algorithm is needed and this increase the worst-
case complexity.



Since our tool is based only on feature-based method and do not
analyze call-dependencies, it is difficult to recommend alternative
method calls for example. In addition, it is not possible to iden-
tify multiple refactorings, now. However, there is no limitations of
graph-based methods and our matching and filtering technique rel-
atively work well. WithHistorage, fine-grained analysis is possible
for repository mining research, such as bug prediction [15, 16, 23]
and code clone management [6,10,19].

5. CONCLUSIONS
Since software repositories are great sources of software devel-

opment data, repository mining based research has the possibility
of powerful empirical analysis. For research based on SCM sys-
tems, fine-grained change analysis is a desirable approach for an
in-depth study compared to file-level change analysis. This pa-
per presents an automatic technique for constructing fine-grained
version control system from an existing SCM repository. By uti-
lizing the Git architecture, our system stores entire revisions, and
can identify rename changes of fine-grained entities, and provide
accessible system for further research. We empirically evaluate our
system with five open source software projects and found that our
system works well with those projects. Our future work includes
more in-depth comparison with other approaches and rename iden-
tification when similarity values are low.

6. ACKNOWLEDGMENTS
We would like to thank Dr. Livieri Simone in Osaka University

for valuable comments from early versions of this paper, and thank
the MASU developers in Osaka University for providing the tool
and valuable advice. Authors would like to thank anonymous re-
viewers who gave us many valuable suggestions to the paper. This
research is supported by Grant-in-Aid for JSPS Fellows (No.23-
4335).

7. REFERENCES
[1] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey.

Facilitating software evolution research with kenyon.
ESEC/FSE-13, pp. 177–186, 2005.

[2] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, and P. Devanbu. The promises and perils of mining
git. MSR ’09, pp. 1–10, 2009.

[3] S. Chacon. Pro Git. Apress, Berkely, CA, USA, 1st edition,
2009.

[4] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. ICSE ’08, pp. 481–490,
2008.

[5] A. De Lucia, F. Fasano, R. Oliveto, and D. Santonicola.
Improving context awareness in subversion through
fine-grained versioning of java code. IWPSE ’07, pp.
110–113, 2007.

[6] M. de Wit, A. Zaidman, and A. van Deursen. Managing code
clones using dynamic change tracking and resolution. ICSM
’09, pp. 169 –178, 2009.

[7] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving components.
ECOOP ’06, pp. 404–428, 2006.

[8] D. Dig, K. Manzoor, R. E. Johnson, and T. N. Nguyen.
Effective software merging in the presence of object-oriented
refactorings. IEEE Trans. Softw. Eng., 34:321–335, May
2008.

[9] D. Dig, T. Nguyen, and R. Johnson. Refactoring-aware
software configuration management. Technical report,
UIUCDCS, 2006.

[10] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in
evolving software. ICSE ’07, pp. 158–167, 2007.

[11] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Softw. Eng., 33:725–743,
November 2007.

[12] T. Freese. Refactoring-aware version control. ICSE ’06, pp.
953–956, 2006.

[13] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
Softw. Eng., 31:166–181, February 2005.

[14] A. E. Hassan and R. C. Holt. C-REX: An evolutionary code
extractor for c, 2004.

[15] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. ICSM ’05, pp. 263–272, 2005.

[16] H. Hata, O. Mizuno, and T. Kikuno. Fault-prone module
detection using large-scale text features based on spam
filtering. Empirical Softw. Eng., 15:147–165, April 2010.

[17] I. Herraiz, G. Robles, and J. M. Gonzalez-Barahona.
Research friendly software repositories. IWPSE-Evol ’09,
pp. 19–24, 2009.

[18] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. MSR ’06, pp. 58–64, 2006.

[19] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. ESEC/FSE-13,
pp. 187–196, 2005.

[20] S. Kim, K. Pan, and E. J. Whitehead, Jr. When functions
change their names: Automatic detection of origin
relationships. WCRE ’05, pp. 143–152, 2005.

[21] J. I. Maletic and M. L. Collard. Supporting source code
difference analysis. ICSM ’04, pp. 210–219, 2004.

[22] T. Mens. The ERCIM working group on software evolution:
the past and the future. IWPSE-Evol ’09, pp. 1–4, 2009.

[23] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. ICSE ’05, pp.
284–292, 2005.

[24] D. Thomas and K. Johnson. Orwell-a configuration
management system for team programming. OOPSLA ’88,
pp. 135–141, 1988.

[25] E. Trucco and A. Verri. Introductory Techniques for 3-D
Computer Vision. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1998.

[26] Q. Tu and M. W. Godfrey. An integrated approach for
studying architectural evolution. IWPC ’02, pp. 127–136,
2002.

[27] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. ASE ’06, pp. 231–240, 2006.

[28] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim. Aura: a
hybrid approach to identify framework evolution. ICSE ’10,
pp. 325–334, 2010.

[29] Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. ASE ’05, pp. 54–65,
2005.

[30] Z. Xing and E. Stroulia. Api-evolution support with
diff-catchup. IEEE Trans. Softw. Eng., 33:818–836,
December 2007.

[31] T. Zimmermann. Fine-grained processing of CVS archives
with APFEL. eclipse ’06, pp. 16–20, 2006. ACM.


