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Abstract This paper proposes an approach using large-scale text features for fault-prone
module detection inspired by spam filtering. The number of every text feature in the source
code of a module is counted and used as data for training detection models. In this paper,
we prepared a naive Bayes classifier and a logistic regression model as detection models.
To show the effectiveness of our approaches, we conducted experiments with five open
source projects and compared them with a well-known metrics set, thereby achieving higher
detection results. The results imply that large-scale text features are useful in constructing
practical detection models, and measuring sophisticated metrics is not always necessary for
detecting fault-prone modules.

Keywords fault-prone module · large-scale · text feature · spam filtering · text mining ·
software repository

1 Introduction

Fault-prone module detection is one of the most traditional and important areas in software
engineering. Once fault-prone modules are detected at an early stage of development, devel-
opers can take more careful notice of the detected modules. Furthermore, keeping track of
fault-prone modules is useful in preventing the injection of additional faults. Various stud-
ies have been done in the detection of fault-prone modules (Briand et al. 2002; Denaro and
Pezze 2002; Guo et al. 2003; Khoshgoftaar and Seliya 2004; Bellini et al. 2005; Seliya et al.
2005; Nagappan et al. 2006; Menzies et al. 2007). Most of these studies used some kind
of software metrics, such as program complexity, size of modules, object-oriented metrics,
etc., and constructed mathematical models to calculate fault-proneness.

Several studies suggest that there is no best subset of metrics that enables a fault-prone
module detector to perform a perfect detection (Nagappan et al. 2006; Menzies et al. 2007).
Nagappan et al. (2006) advised not using complexity metrics without validating them for a
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target project. Menzies et al. (2007) concluded that if there is metrics subset appropriate for a
particular domain, all available metrics can be used to construct detection models. They also
insisted that how metrics are used to build predictors is much more important than which
particular metrics are used. However, it is uncertain how many metrics should be collected.
Should we carefully design effective metrics for each domain one by one?

Different from generalized sophisticated metrics, more concrete and small granularity
of possible cause of faults are also studied. Fowler and Beck (1999) introduced 22 soft-
ware structures as problematic code, which they called “bad smells”. Mäntylä et al. (2003)
presented a subjective taxonomy that categorizes similar bad smells. In addition, they em-
pirically showed correlations between the bad smells. Pan et al. (2009) defined 27 bug fix
patterns. Their studies of open source projects showed that the method call and if-related
bug fix patterns commonly appear. However, software structures in these patterns that in-
troduce bugs do not always cause bugs. Though there are bug fix structure patterns, a bug-
introducing change may be project-specific, package-specific, or other environment-specific.
Livshits and Zimmermann (2005) tried to find out application-specific error patterns that
are concrete method code patterns. Mileva and Zeller (2008) tried to detect project-specific
deletion patterns. They looked for code smell patterns on a fine granularity level.

To capture such code smell patterns on a fine granularity level for a fault-prone module
detection model, we have introduced a spam filtering based approach to detect fault-prone
modules (Mizuno et al. 2007; Mizuno and Kikuno 2007). In spam filtering, a classifier is
trained with large-scale text features from both spam and non-spam mails. Then, an incom-
ing mail is classified into either spam or non-spam. The Bayesian spam filtering technique
was introduced in 1998 at first as a scholarly publication by Sahami et al. (1998). The model
is a well-studied Bayesian model. Since the usefulness of Bayesian theory for spam filtering
has been recognized recently, most spam filtering tools implement Bayesian theories. Conse-
quently, the accuracy of spam detection has improved dramatically. This technique has been
studied to meet the needs of the spam mail problem, that is, spam filtering systems should
be able to automatically adapt to the variable characteristics of spam mails. Moreover, the
systems need to be personalized to the user’s needs. This framework is based on the fact that
spam e-mails usually include particular patterns of words or sentences. From the viewpoint
of source code, similar situations usually occur in faulty software modules. That is, similar
faults may occur in similar contexts. Inspired by the spam filtering technique, we tried to
apply text-mining techniques to fault-proneness detection. In fault-prone module detection,
we treat a software module as an e-mail message, and classify all software modules into
either fault-prone (FP) or non-fault-prone (NFP).

This approach means that the numbers of particular text features in a module are re-
garded as one of its metrics. Numbers of these features are very large-scale. In previous
work (Mizuno et al. 2007; Mizuno and Kikuno 2007), we conducted a comparative study
of metrics-based methods only on a survey of research papers. In this paper, we prepared
an experimental environment for comparative study and conducted a fair comparison with
metrics-based methods, which are often used in the literature. In addition to a naive Bayes
classifier, we also adopt a logistic regression model for large-scale text features. For repli-
cation of the experiment, we adopted the WEKA data mining toolkit (Witten and Frank
2005).

In summary, this paper contributes to the following:

– Investigating an approach using large-scale text features to detect fault-prone modules.
– Conducting fair comparative experiments with a metrics-based approach.
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Two experiments with five open source projects were conducted to show the effective-
ness of using large-scale text features compared with using well-known metrics. The results
showed that both a naive Bayes classifier and a logistic regression model constructed with
the large-scale text features acted as an almost equivalent or better fault-prone module de-
tector.

The rest of this paper is organized as follows: Section 2 introduces related work. Section
3 describes the detection methodology of our study. The detailed data for experiments and
experimental design are described in Section 4. Experimental results and analysis are shown
in Section 5. Section 6 addresses threats to the validity of this study. Finally, Section 7
summarizes this study.

2 Related Work

Much research on the detection of fault-prone software modules has been carried out so far.
This section introduces three approaches: traditional complexity metrics analysis, historical
analysis, and the text mining approach.

2.1 Complexity Metrics

A number of software metrics related to program attributes such as lines of code, complexity,
frequency of modification, coherency, and coupling, for example, have been proposed. For
detection of fault-prone modules, such metrics are treated as explanatory variables and fault-
proneness is considered an objective variable. Then mathematical models are constructed
from those metrics.

Basili et al. (1996) validated object-oriented metrics proposed by Chidamber and Ke-
merer (1994), called the CK metrics suite, for the first time. They used these metrics and
constructed logistic regression models for detection of fault-prone modules. Gyimóthy et al.
(2005) also used the CK metrics suite and constructed detection models for fault-prone
modules on larger size projects. Menzies et al. (2007) used metrics obtained from a NASA
repository including Halstead (Halstead 1977), McCabe (McCabe 1976), and lines of code.
Their experimental results show that naive Bayes classifiers work well with these metrics.

In contrast to these studies, we do not measure complexity metrics. Fault-prone module
detection models are constructed with text features extracted from source code. Since we
used large-scale text features, the number of explanatory variables are larger compared with
traditional complexity metrics based approaches.

2.2 Historical Metrics

Graves et al. (2000) have studied software change history and found that if modules were
changed many times, the modules tended to contain faults. In addition, they found that if
modules had not changed for one year, the rate of the modules containing faults would be
low. Nagappan and Ball (2005) examined code churn, which is a measure of the amount
of code change, and showed that relative code churn is highly predictive of defect density.
Śliwerski et al. (2005) computed the risk of code locations based on their observation that
“risky to change” is different from “frequently fixed”. Ostrand et al. (2005) showed that fault



4

and modification history of the file from previous release could be predictive of faults in the
next release of a system.

Schröter et al. (2006) have studied the correlation with past failure component history
and failure-prone components. They analyzed SCM repositories and bug-tracking systems to
extract the failure component’s usage pattern, and applied some prediction models to com-
pare the results. They conclude that the support vector machine yields the best predictive
power. Though they examined general failures, Neuhaus et al. (2007) focused specifically
on vulnerabilities, and obtained higher precision and recall values. Li and Zhou (2005) paid
attention to implicit, undocumented programming rules. They extracted programming pat-
terns and detected violations in source code as potential faults.

Hassan and Holt (2005) computed the ten most fault-prone modules after evaluating
four heuristics: most frequently modified, most recently modified, most frequently fixed,
and most recently fixed. Kim et al. (2007) have tried to predict the fault density of enti-
ties using previous faults localities based on the observation that most faults do not occur
uniformly. Ratzinger et al. (2008) investigated the interrelationship between previous refac-
toring and future software defects. Williams and Hollingsworth (2005) have shown that
source code repository data can improve static analysis tools. Livshits and Zimmermann
(2005) combined mining revision history and dynamic analysis. As a result, they discovered
application-specific patterns.

These studies show that there are more concrete and project-specific possible causes of
faults. This insight motivates us to propose our approach. Historical metrics enables us to
capture project-specific patterns, which is useful in predicting the future. The difference in
these studies and our approach is that we do not intend to create sophisticated historical
metrics.

2.3 Text Mining

Aversano et al. (2007) trained prediction classifiers with a weighted-term vector created
from text belonging to software changes. They used variables, names, language keywords
etc. as terms. They concluded that the K-Nearest Neighbors classifier yielded a significant
trade-off between precision and recall. Kim et al. (2008) introduced a change classification
technique. They gathered features from source code text and other meta data, and applied
them to the Support Vector Machine to predict buggy changes. They obtained 78 percent
accuracy and a 60 percent buggy change recall on average. Madhavan and Whitehead Jr.
(2007) have implemented the change classification tools as an Eclipse plugin.

These text mining approach has some desirable points, such as:

– Independence from programming languages
– Flexibility in the granularity of a unit
– No need of semantic information

Though Aversano et al. (2007) and Kim et al. (2008) used text features extracted only
from software changes, we target entire text features in source code. In addition, although
these two studies conducted only 10-fold cross validation, we conduct not only 10-fold cross
validation but also evaluate the detection of post-release fault-prone modules.
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Fig. 1 Identify faulty modules on one file

3 Detection Methodology

3.1 Feature Extraction

Text features are extracted from source code that is removed comment. This means that
everything except for comment words separated by space or tab can be treated as a fea-
ture. The number of each text feature is counted per module. For replication of experiment,
the WEKA data mining toolkit (Witten and Frank 2005) is used in this paper. To extract
features properly, every variable, method name, function name, keyword, and operator con-
necting without a space or tab is separated. Since using all features requires much time and
memory, the approximate number of features used can be determined by setting options. We
set 5, 000 in this paper1. This option is intended to discard other, less useful features. These
text features can be regarded as one of the metrics Num(termi), where termi represents ith
text features. Text feature metrics are very large-scale compared with for example the CK
metrics suite proposed by Chidamber and Kemerer (1994).
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3.2 Faulty Module Identification

We identify faulty modules with a algorithm proposed by Śliwerski et al. (2005). In the
algorithm, we only get fixed and closed status bug reports from bug-tracking systems. From
a bug report with bug bi, where i represents a bug ID, we extract the following information:

– Reported date Rdate(bi): date when bug bi was reported.
– Closed date Cdate(bi): date when the status changed to ‘CLOSED’ after bug bi had

been fixed.

For each bug bi, we perform the following procedure:

1. Find fixed revisions of files related to bug bi by checking all revision logs made before
Cdate(bi).

2. Perform the ‘diff’ command on the same file between a fixed revision and a preceding
revision.

3. Examine when modified regions are inserted into files. If they are inserted before Rdate(bi),
we can assume that they are bug-introducing regions.

4. Identify as a faulty module if the module contains bug-introducing regions.

Figure 1 illustrates an example of identifying faulty modules with one bug on one file.
The revision number of file A is increased from 1.3 to 1.6. When the revision number was
1.4, bug b100 was reported. After that, the bug was fixed. Then, we locate faulty modules
related to bug b100.

By searching all revision logs, we find a number ‘100’ and a keyword ‘fixed’ at the log
of file A in revision 1.6. We can assume that file A was modified in order to fix bug b100.
Then, we perform the diff command between revision 1.5 and 1.6. The diff tool returns a list
of regions that differ in the two files. As shown in Figure 1, from revision 1.5 to 1.6, region
R3 was changed to region R4, region R1 was changed to region R5, region R6 was added,
and region R2 was deleted. As a result, regions R1, R2, and R3, which were in revision 1.5
and not in revision 1.6, are recognized to be modified regions. After examining when the
modified regions R1, R2, and R3 are inserted into file A, it is revealed that region R1 and
R2 had been inserted before bug b100 was reported. Therefore modified regions R1 and R2

can be assumed to be bug-introducing regions. Since regions R1 or R2 spread over revision
1.3 to 1.5, we can identify modules of revision 1.3, 1.4, and 1.5 of file A as faulty modules.

3.3 Detection Models

Regarding text features as metrics Num(termi), it is easy to construct well-known detection
models. In this paper, we constructed the following two models.

3.3.1 Logistic Regression Model

The multivariate logistic regression model is represented as follows:

f(m1, m2, ..., mn) =
eC0+C1m1+C2m2+,,,+Cnmn

1 + eC0+C1m1+C2m2+,,,+Cnmn

where mi is the value of metrics in a module. If f(m1, m2, ..., mn) > 0.5, the module
is classified as FP, otherwise, as NFP.

1 java weka.filters.unsupervised.attribute.StringToWordVector -C -W 5000
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Table 1 Calculated metrics

Metrics Description
LOC Lines of code
WMC

CK metrics suite

Weighted methods per class
DIT Depth of inheritance tree
NOC Number of children
CBO Coupling between object classes
RFC Response for class
LCOM Lack of cohesion on methods
ADD Churn metrics # of added lines
CHG # of changed lines
FIX Fixed or not

3.3.2 Naive Bayes Classifier

The naive Bayes classifier classifies a module as follows:

argmax
C∈{FP,NFP}

P (C)

n∏
i=1

P (mi|C)

Menzies et al. (2007) reported that defect predictors using naive Bayes achieved standout
good results compared with OneR, J48 in their experiment using the WEKA.

4 Evaluation Settings

To show the effectiveness of using large-scale text features, experiments were conducted. In
the experiments, we targeted Java programming language.

4.1 Compared Features

To show the effectiveness of our proposal, we compared our proposal with software metrics
in experiments. We collected the CK metrics suite proposed by Chidamber and Kemerer
(1994). This metrics suite is collected with an implemented tool also used by Higo et al.
(2008). In addition, we collected the code churn, the amount of code change (Layman et al.
2008), change history (Kim et al. 2007), and the LOC of each module. Table 1 shows all
collected metrics in this paper.

4.2 Data for experiments

For the experiment, we selected open source software projects in which we can track faults.
For this reason, we targeted five projects in Eclipse: Business Intelligence and Reporting
Tools (BIRT), Eclipse (ECLP), Eclipse Modeling Project (MODE), the Test and Perfor-
mance Tools Platform (TPTP), and the Eclipse Web Tools Platform (WTP) 2. Table 2 shows

2 http://www.eclipse.org/
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Table 2 Target project information

Release 1 Release 2
Project Release (Date) Total LOC Release (Date) Total LOC
BIRT 2.1 (2006-06-30) 768K 2.2.0 (2007-06-29) 1,135K
ECLP 3.2 (2006-06-29) 2,617K 3.3 (2007-06-28) 2,588K
MODE Callisto (2006-06-30) 1,730K Europa (2007-06-29) 2,191K
TPTP 4.2.0 (2006-06-30) 718K 4.4.0 (2007-06-29) 722K
WTP 1.5 (2006-06-30) 1,432K 2.0 (2007-06-29) 2,338K

Table 3 Result of module collection

Release 1 Release 2
Project # of faulty modules Total modules # of faulty modules Total modules
BIRT 227 (8.6%) 2,645 291 (8.2%) 3,563
ECLP 376 (4.5%) 8,429 236 (3.2%) 7,351
MODE 36 (0.6%) 5,649 44 (0.6%) 7,049
TPTP 792 (28.2%) 2,811 366 (15.8%) 2,310
WTP 183 (2.5%) 7,336 133 (1.7%) 7,996

the information of each target project. These projects are written in Java language, and revi-
sions are maintained by CVS. The source repository of CVS used in this study was uploaded
on the Eclipse project Web site, and was obtained on the 6th January, 2009. We treated a
Java class file in each revision as a software module.

We also obtained bug reports from the bug databases of each project. We extracted faults
from the bug database (Bugzilla) under the following conditions. The type of these faults
is “bugs”; therefore, these faults do not include any enhancements or functional patches.
The status of faults is either “resolved”, “verified”, or “closed”, and the resolution of faults
is “fixed”. This means that the collected faults have already been fixed and have been re-
solved, and thus fixed revisions should be included in the entire repository. The severity
of the faults is either “BLOCKER”, “CRITICAL”, or “MAJOR” in order to remove trivial
bugs. Herraiz et al. (2008) categorized these severity categories as important and the oth-
ers without ENHANCEMENT as non-important. Using our faulty modules collection tool,
we collected both faulty and not faulty modules from these five projects. The result of the
module collection is shown in Table 3.

4.3 Design of Experiments

Using collected data shown in Table 3, we conducted the following two experiments.

1. Ten-fold cross validation
For 10-fold cross validation, we used release 1 data only. The 10-fold cross validation
can show relatively fair results for a given data set. However, it cannot take into account
important features such as the order of construction of the modules.

2. Fault-prone module detection on post-release
Here, we used both release 1 data and release 2 data. Fault-prone modules are detected
on release 2 data using detection models trained with release 1 data. On the release 2
data, we evaluate the detection performance.

To show the effectiveness of using large-scale text features, the same two experiments
were also conducted with well-known software metrics as shown in Table 1. Generally
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Table 4 Legend of classification matrix

Classified

NFP FP

Actual
not faulty True negative False positive

(TN) (FP)

faulty False negative True positive
(FN) (TP)

speaking, the performance of fault-prone module detection varies according to the com-
bination of these metrics used in a detection model. In order to find the best metrics subset
for the release 1 data, we prepared all (= 210 = 1, 024) combinations of metrics shown in
Table 1. Then, we performed 10-fold cross validation for each combination, and obtained
the best combination with the highest evaluation measurement. This procedure is iterated
for all projects. Once we get the best combination of compared features, we construct a de-
tection model using the best combination of metrics and the release 1 data. Next, we apply
the constructed model to the release 2 data.

4.4 Performance Evaluation

For the evaluation of the experiment, we define several measures. Table 4 shows a legend
of the classification result matrix. True negative (TN) shows the number of modules that
are classified as not fault-prone, and are actually not faulty. False positive (FP) shows the
number of modules that are classified as fault-prone, but are actually not faulty. On the
contrary, false negative (FN) shows the number of modules that are classified as non-fault-
prone, but are actually faulty. Finally, true positive (TP) shows the number of modules that
are classified as fault-prone which are actually faulty.

To evaluate the results, we prepared four measures: accuracy, recall, precision, and F1.
The accuracy rate shows the ratio of correctly predicted modules to entire modules and is
defined as follows:

Accuracy =
TP + TN

TN + FP + FN + TP

Recall is the ratio of modules correctly classified as fault-prone to the number of entire
faulty modules Recall is defined as follows:

Recall =
TP

TP + FN

Precision is the ratio of modules correctly classified as fault-prone to the number of
entire modules classified fault-prone. Precision is defined as follows:

Precision =
TP

TP + FP

F1 is used to combine recall and precision. F1 is defined as follows:

F1 =
2 × recall × precision

recall + precision
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Table 5 The best subset of metrics for naive Bayes models

Project Subset of metrics
BIRT LOC,CHG,DIT,CBO,NOC
ECLP FIX,CHG,WMC,LCOM
MODE CHG,CBO,RFC
TPTP LOC,FIX,ADD,WMC,DIT,CBO,LCOM,RFC
WTP FIX,WMC,DIT,LCOM,NOC

Table 6 Regression coefficients of selected metrics for logistic regression models

Project LOC FIX ADD CHG WMC
BIRT 0.0004 0.920
ECLP -0.001 1.292 -0.005 -0.0003 0.012
MODE 0.002
TPTP -0.001 0.776 0.005 0.001
WTP 1.737 0.007

Project DIT CBO LCOM RFC NOC
BIRT -0.079 0.008 -0.0002 0.0006 -0.114
ECLP -0.053 0.001
MODE
TPTP 0.030 0.002 -0.001 0.002 -0.025
WTP -0.053 0.002

5 Analysis

5.1 Ten-fold Cross Validation

Table 5 shows the best subset of metrics in each project on naive Bayes models. As described
in Section 4.3, each subset of metrics achieved the highest F1 value with a naive Bayes
classifier in each project. Similarly, the best subset of metrics for logistic regression models
in each project and the regression coefficient of each selected metrics are seen in Table 6. In
Table 6, a blank represents a corresponding metrics not used in a corresponding project. For
example, in project WTP, the best subset of metrics for logistic regression models are “FIX”,
“WMC”, “DIT”, and “RFC”. Each value in Table 6 is an estimated regression coefficient
value. The larger the absolute value of the regression coefficient, the stronger the impact of
the metrics on fault-prone modules detection. The used metrics sets are different from each
other. From the viewpoint of the regression coefficient value, FIX and DIT are relatively
high in used projects.

Table 7 presents the top three text features ordered by positive and negative regression
coefficient values of logistic regression models in each project. A positive regression coef-
ficient indicates an increase in the probability of FP, while a negative regression coefficient
indicates a decrease in the FP probability. For example, in project BIRT, if there is “pointer”
and/or “getObject” in the source code of a module, the FP probability of the module is high.
If there is “excel” and/or “Member”, the FP probability is low.

Next, the distribution of the regression coefficient value is investigated. Figure 2 shows
the histogram of the regression coefficient value of a logistic regression model in project
ECLP. A large regression coefficient means a strong impact of the feature on the FP proba-
bility, while a near zero regression coefficient means little impact on the FP probability. As
shown in Figure 2, most of the regression coefficient values are near zero. Such distribution
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Table 7 Top three text features ordered by positive and negative regression coefficient values of logistic
regression models

Project Positive regression coefficient Negative regression coefficient
Feature Value Feature Value

BIRT
pointer 79.2 excel -665.1
getObject 73.9 em -190.0
package 71.8 Member -148.7

ECLP
NavigatorPlugin 21.6 PerformanceTestSetup -32.6
launchConfigurations 14.3 AbstractUIPlugin -18.0
isBaseType 13.0 removeSelectionChangedListener -16.8

MODE
org/uml2/2 11.7 0/UML -12.0
g1 4.5 getFactory -6.7
Factory 3.9 V -5.3

TPTP
LF 75.6 atts -153.4
setTestInvocationId 52.3 scenario -43.0
createPlatformResourceURL 49.6 OK STATUS -39.5

WTP
Missing 10.0 ArrayCreation -31.8
extra 9.5 FieldAccess -31.8
COMPILATION UNIT 8.7 SimpleName -31.8
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Fig. 2 Histogram of the regression coefficient value of a logistic regression model in project ECLP

of the regression coefficient values is seen in the other projects. These distribution can be
interpreted as being able to train logistic regression models without distinguishing a few
project-specific useful text features and other not so useful text features. However, there is
only one text feature whose corresponding regression coefficient value is zero. Therefore,
almost all large-scale text features are needed to construct logistic regression models.

Figure 3 shows the F1 rate in each project comparing the best subset from ten metrics
and text features. Figure 3 (a) is the result of naive Bayes classifiers and (b) is the result of
logistic regression models. Table 8 presents the detailed results of 10-fold cross validation.
As seen in Figure 3 (a), which shows the results of the naive Bayes classifier, though the F1

rate of the results using text features are narrowly less than the results using the best subset of
metrics in project ECLP, MODE, and WTP, the results using text features are much greater
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Fig. 3 Comparing F1 rate of the 10-fold cross validation results

than best subset in project BIRT and TPTP. The results of the logistic regression models,
which are shown in Figure 3, illustrate that large-scale text features have a greater capability
of fault-prone module detection than a best metrics subset. As shown in Table 8, the best
metrics subset achieved a higher precision rate and the text features achieved a higher recall
rate.

For example, with the naive Bayes classifiers using text features, the F1 rates range from
0.100 to 0.635. To explain the difference of the detection performance, Pearson’s correla-
tions are calculated between the evaluation metrics and the percentage of faulty modules.
Table 9 lists the correlation values. The values show a strong negative correlation for ac-
curacy. This means that if the percentages of faulty modules are low, accuracy rates are
high. This is because it is easy to achieve high accuracy with classifying most modules as
NFP when the percentages of faulty modules are low since most modules are not faulty. On
the contrary, there are strong correlations between the F1 rate and the percentage of faulty
modules except for logistic regression models with a best metrics subset. Logistic regres-
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Table 8 Detailed results of the 10-fold cross validation

Project
(% of faulty Detection model Features Accuracy Recall Precision F1

modules)

Naive Bayes Best subset 0.902 0.216 0.377 0.275
BIRT Text features 0.806 0.634 0.252 0.361
(8.6%) Logistic Regression Best subset 0.917 0.075 0.654 0.134

Text features 0.732 0.423 0.143 0.214

Naive Bayes Best subset 0.947 0.215 0.346 0.266
ECLP Text features 0.879 0.449 0.169 0.245
(4.5%) Logistic Regression Best subset 0.956 0.082 0.585 0.145

Text features 0.897 0.371 0.177 0.240

Naive Bayes Best subset 0.980 0.222 0.085 0.123
MODE Text features 0.940 0.463 0.056 0.100
(0.6%) Logistic Regression Best subset 0.994 0.028 0.500 0.053

Text features 0.966 0.220 0.054 0.086

Naive Bayes Best subset 0.353 0.891 0.290 0.437
TPTP Text features 0.745 0.779 0.535 0.635
(28.2%) Logistic Regression Best subset 0.722 0.056 0.571 0.101

Text features 0.703 0.594 0.482 0.532

Naive Bayes Best subset 0.956 0.213 0.180 0.195
WTP Text features 0.854 0.623 0.105 0.180
(2.5%) Logistic Regression Best subset 0.974 0.022 0.308 0.041

Text features 0.898 0.383 0.102 0.161

Table 9 Pearson’s correlation in evaluation metrics and the percentage of faulty modules

Features Naive Bayes Logistic regression
Accuracy F1 Accuracy F1

Best metrics subset -0.987 0.944 -0.999 0.276
Text features -0.881 0.978 -0.830 0.975

sion models with the best metrics subset obtained always less than the 0.15 F1 rate for the
five projects. The other combination of detection models and used features revealed that the
higher the percentage of faulty modules, the higher the F1 rates can be achieved. This is
because if there are few faulty modules, it is very difficult to detect the faulty modules with
only a few false positives and false negatives.

5.2 Detection on Post-Release

Table 10 presents the detailed results of the detection on post-release. Table 11 shows the F1

rate in each project comparing the best subset from ten metrics and text features. Each value
represents the F1 rate with text features, minus the F1 rate with the best metrics subset.
Therefore, a positive value means that text features overcame the best metrics subset, and a
negative value, vice versa. As seen in Table 11 results of the naive Bayes classifier, although
the F1 rate of the results using text features are narrowly less than the results using the best
subset of metrics in project ECLP and WTP, the results using text features are much greater
than the best subset in project BIRT, MODE, and TPTP. In TPTP especially, the text features
achieved almost the 0.15 higher F1 rate. The results of logistic regression models illustrate
how large-scale text features overcame the best metrics subset in every project. As shown in
Table 10, the best metrics subset tends to obtain low recall and relatively high precision, and



14

Table 10 Detailed results of the detection on post-release

Project
(% of faulty Detection model Features Accuracy Recall Precision F1

modules)

Naive Bayes Best subset 0.893 0.199 0.279 0.232
BIRT Text features 0.759 0.630 0.196 0.299
(8.6%) Logistic Regression Best subset 0.919 0.069 0.513 0.121

Text features 0.802 0.526 0.213 0.303

Naive Bayes Best subset 0.946 0.191 0.181 0.186
ECLP Text features 0.868 0.461 0.112 0.180
(4.5%) Logistic Regression Best subset 0.965 0.089 0.350 0.142

Text features 0.946 0.557 0.303 0.392

Naive Bayes Best subset 0.974 0 0 NaN
MODE Text features 0.926 0.023 0.002 0.004
(0.6%) Logistic Regression Best subset 0.994 0 0 NaN

Text features 0.965 0.023 0.006 0.009

Naive Bayes Best subset 0.213 0.896 0.156 0.265
TPTP Text features 0.631 0.807 0.276 0.411
(28.2%) Logistic Regression Best subset 0.831 0.126 0.397 0.191

Text features 0.789 0.658 0.402 0.499

Naive Bayes Best subset 0.938 0.188 0.061 0.092
WTP Text features 0.774 0.579 0.043 0.080
(2.5%) Logistic Regression Best subset 0.980 0.045 0.171 0.071

Text features 0.805 0.609 0.052 0.096

Table 11 F1(text features) - F1(best metrics subset)

Detection model BIRT ECLP MODE TPTP WTP
Naive Bayes 0.067 -0.006 0.004 0.146 -0.012
Logistic regression 0.182 0.393 0.057 0.324 0.148

Table 12 Pearson’s correlation in naive Bayes probability and LOC

BIRT ECLP MODE TPTP WTP
0.136 0.032 0.026 0.007 0.041

text features tend to obtain high recall and low precision, similar to the results of the 10-fold
cross validation.

Although the proposed approach using large-scale text features seems to work well, it
is questionable whether the FP probability of a module may be strongly influenced by the
number of text features in the module. That is, modules whose source code contain lots of
text features might be simply detected as FP. Since the number of text features is related to
LOC, we computed the Pearson’s correlation between the probability yields from the naive
Bayes classifiers and the LOC. Table 12 lists the correlation values. As shown in Table 12,
every correlation value in the five projects is low. This means that there are weak correlations
between the probability yielded from the naive Bayes classifiers and the LOC. Therefore, it
can be said that FP probability is not simply derived from naive Bayes classifiers based on
the number of text features in a module. In addition, it might be said that code smell patterns
related to faults are captured.
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6 Threats to Validity

There are four threats to the validity of this study.
Target projects are the Eclipse projects only. This is the external validity threat for

generality of data used in the experiments. In general, the Eclipse projects do much better
than other open source projects when using machine learning classifiers to predict fault-
prone modules. Using other open source projects, different results may be obtained. In ad-
dition, industrial projects may lead to different results.

There may be incorrect identifications of faulty and not faulty modules. The algo-
rithm adopted in this study to identify faulty modules has a limitation. For example, faults
that are not recorded in logs cannot be collected. Incorrect identifications of training data
badly influence the quality of the detection models. In addition, if identifications of test
data are incorrect, performance evaluation metrics cannot be calculated properly. To make
a complete collection of faulty modules from a source code repository, further research is
required.

Specific settings for implementing the approach may influence the detection per-
formance improperly. Because of the limitations of time and memory, we limit the number
of text features used in each project to approximate 5, 000. Important text features may be
discarded by this setting. In addition, we removed all comments before counting the number
of text features. These settings may result in improper detection.

There might be flaws in the design of experiments In order to show the effective-
ness of our approach using large-scale text features, we compared our approach with the
best subset of well-known metrics including the CK metrics suite. However, these prepared
metrics may be not enough. In addition, although we prepared two experiments including
(1) 10-fold cross validation and (2) fault-prone module detection on post-release in order
to compare fairly, there might be flaws in showing effectiveness. For example, in the (2nd)
experiment, every period between release 1 and release 2 is one year. If we vary the period,
the results might change.

7 Conclusion

We proposed an approach using large-scale text features for fault-prone module detection.
To show the effectiveness of our approach, we conducted two experiments and compared
our approach with metrics-based methods by applying it to five open source Java projects
in Eclipse, and obtained higher F1 values. The performance results of spam filtering based
approaches implies that:

– Large-scale text features are useful to build a practical model.
– Measuring sophisticated metrics is not always necessary for detecting fault-prone mod-

ules.

Constructed models with large-scale text features just detect fault-prone modules. While
traditional sophisticated metrics can suggest how a developer should modify modules or
what problems are in them, text features do not derive such suggestions. However, since
there is no need to collect meaningful module features, applying our approach to projects is
easy.

Moreover, large-scale text features approaches have several desirable points as follows:

– They are independent from programming languages.
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– We can treat the flexible granularity of a unit as classified modules or as a training set.
For example, a method can be treated as a module.

– We do not need semantic information.
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