
What Type of Thread Can Get Feedback
in OSS User Mailing List?

Akinori Ihara, Yuji Tsuda, Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, JAPAN 630-0192
{ akinori-i, yuji-tsu, matumoto } @ is.naist.jp

ABSTRACT
High quality Open Source Software (OSS) has been used in
many commercial software developments. In order to pro-
vide technical support to end users, OSS projects manage
a user mailing list. It is for discussion about bugs and new
functions of OSS with end users. However, according to a
survey of Japanese companies that use OSS to build their
commercial software, the biggest problem is the lack of ade-
quate technical support. In this study, we investigate what
type of thread can get feedback in user mailing list. As
a result of a case study using Apache and Python project
data, a thread is posted by a deep experienced user would be
received a useful answer. In addition, we found threads writ-
ten about internal system information of the OSS is more
likely to be replied.

Categories and Subject Descriptors
D.2 [Software Engineering]: Management; D.4.4 [Com-
munications Management]: [Message sending]

General Terms
Management

Keywords
Open Source Software, User Mailing List, Communication

1. INTRODUCTION
Recently, many software companies use Open Source Soft-
ware (OSS) such as Apache, Linux to build their develop-
ment environment and to create a commercial software. The
software companies hope to be short-cycle development, to
reduce development cost. On the other hand, some of the
company developers concerned about the quality and the
maintenance. According to a survey of IPA [4] in 2009, the
most key disadvantage of OSS for software company devel-
opers is difficult to get technical supports by OSS project
in case of an emergency. If companies have troubles about

SSE ’13, August 18, 2013, Saint Petersburg, Russia

OSS, they ask questions in user mailing list provided by OSS
project to get supports.

In this study, we investigate when and what should the com-
panies’ developers post a thread to user mailing list to get
technical supports from OSS project. The user mailing list
is used by not only users but developers use it to get some
feedback (new function requirements and bug reports) from
users directly [7]. If we post a thread to the user mailing list,
developers or users may reply. On the other hand, unfortu-
nately you may not get replies. Using Apache and Python
project data, we reveal what type of thread can get feedback
in user mailing list in terms of the feature of sender, posting
time, and message context.

2. MAILING LIST IN OSS PROJECTS
When users get information about OSS, they search in web
sites at first. Next, they search in a mailing list [3], because
large-scale OSS projects manage various mailing list to share
information such as development, bug fixing, and trouble
(e.g., developer mailing list, user mailing list).

In user mailing list, the participants are users and develop-
ers. Some users have a deep knowledge of the OSS. They
exchange information each other in the user mailing list.
However, according to survey of Japanese companies use
OSS to build their commercial software, some of them have
not yet provided the technical support in user mailing list.
We consider that the user mailing list is not working well.
In this study, we analyze what type of threads can get reply
in user mailing list in terms of sender and message context
that Dabbish et al. presented important factor influenced
users’ perceptions [2]. Also, we focus on posting time.

Sender: If a user has used the OSS for a long time, he may
get a feedback from the other participants in user mailing
list, because he may send a clear message to user mailing
list. Also, if a user often post a thread to user mailing list,
he may get a feedback from participants who communicated
with him in the past. On the other hand, if a user has never
sent e-mail to user mailing list, he may be difficult to get
feedback from participants in the mailing list.

Posting time: Geographically-distributed developers and
users use OSS. Some of them at day or night, on weekday or
weekend [8]. Therefore, they are difficult to contact to the
other people in real time each other [6]. And they do not
know when they should post a thread.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SSE’13, August 18, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2313-0/13/08...$15.00
http://dx.doi.org/10.1145/2501535.2501541

25

!"#$%"&'

()*"+&,!

-.(/*"#$%"&'

()*"+&,!01'/'12!

01'/'32!

032!

042!

5.,("&'67'

&"8"$.#"*!

9"8"$.#"*'

"/:+%$'$%,(!

;)*"+&,'%<'=,"*'

:+%$%<>'$%,(!

Figure 1: Method to extract the treads from mailing
list archive.

Message context: Many messages are posted to a user
mailing list on a daily basis. Developers do not only read
the message, but also they have to fix bugs, expand new
functions, and write many documents. They cannot spend
enough time to read the messages in user mailing list. Then,
they may decide which message they should read based on
message context (e.g. the characteristic words, writing skill)
to save time.

In this study, we analyze what type of messages will be
replied based on these point.

3. ANALYSIS METHODS
3.1 Message Parsing
In our study, we analyze e-mails collected from user mail-
ing list archive provided by OSS project. As the collected
messages were ordered in time, we need to classify the e-
mails into the same discussion (thread) to know whether
the e-mail did get the replies or not. If nobody replied, we
consider that sender could not get feedback from the OSS
project. Figure 1 shows our approach from collecting e-mails
to classifying threads into the replied threads and the not-
replied threads.

(1) Collecting e-mails from mailing list archive
OSS projects provide mailing list archive in their web page.
From the archive, user mailing list and developers mailing
list are collected. In the user mailing list, not only users
but also developers post messages for announcement. Since
our goal is to know whether users can get feedback in user
mailing list, we remove threads posted by developers.

(1-1) Classifying e-mails into same discussion in user
mailing list
Using a user mailing list, the e-mails are classified into threads.
When users or developers reply to a posted threads, most of
them do not change the subject of the e-mail, because the
other participants easily find the discussion in the future. In
our study, we classify the e-mails into threads based on the
subject.

In addition, some users or developers use more than one e-
mail address by oneself. If different e-mails were posted by
different e-mail and same name, we unify the e-mail address.
Also, a user or a developer use different name between a
couple of e-mail systems. In such case, we unify the name.

Table 1: Summary of the target data
Apache Python

target period 2001/11-2013/2 1999/5-2008/11
of messages 90,004 522,282
of threads 32,572 99,777

by developers 6,467 17,364
by users 26,105 82,413

replied 13,981 60,090
not replied 12,124 22,323

of users 10,727 28,399

(1-2) Extracting developers’ e-mail from developer
mailing list
To remove the threads posted by a developer from user mail-
ing list, developers e-mail addresses are collected from a de-
veloper mailing list. And developers’ e-mail address list is
created.

(2) Removing threads posted by a developer
Threads posted by a developer are removed from the threads
collected in (1-1) based on the developer e-mail address list.

(3) Classifying threads into replied threads and not-
replied threads
Threads posted by users are classified into replied threads
and not-replied threads. The replied threads means that a
thread posted by a user was replied by the other partici-
pants. On the other hand, the not-replied threads means a
thread was not replied.

3.2 Analysis of Sender
Many participants often leave OSS project. A few active
participants join an OSS project for a long time. On the
other hand, many participants leave the project in a short
period. The more participant have experience of posting to
user mailing list, the higher the participant may be likely
to get feedback. In this study, we calculate the rate of
the replied messages according to sender who posted many
threads and the number of posted threads.

3.3 Analysis of Posting Time
Most of developers posted e-mail in the evening and by night
after their work [6]. However, there has been no study that
tried to analyze when users post a thread to user mailing
list and how many threads get feedback. In this study, we
calculate the rate of replied messages according to week and
hour.

3.4 Analysis of Message Context
Anybody can post a comment to user mailing list. The
quality of comments depends on authors, because all users
do not have a deep knowledge like developers. Therefore,
a readable message may be replied. In this study, we cal-
culate the rate of replied message according to the message
context using tf-idf technique after stemming and removing
stop words.

4. CASE STUDY
This section describes a case study which has been con-
ducted to understand what type of threads can get feedback
in a user mailing list. In our case study, we target two OSS
projects: Apache HTTP Server project and Python Project.

26

!"

#!"

$!!"

$#!"

%!!"

$" %" &" '" #" (")" *" +"$!"$$"$%"$&"$'"$#"$("$)"$*"$+"%!"

!,"

%!,"

'!,"

(!,"

*!,"

$!!,"

$" %" &" '" #" (")" *" +"$!"$$"$%"$&"$'"$#"$("$)"$*"$+"%!"

!"
#
$%
&
'
(
#
)$
*
+$
!"
)#
,
-
.
!

!"
#
$)
,
!#
$*
+$
!"
)#
,
-
.
!

!,"

%!,"

'!,"

(!,"

*!,"

$!!,"

$" %" &" '" #" (")" *" +"$!"$$"$%"$&"$'"$#"$("$)"$*"$+"%!"

!"

#!"

$!!"

$#!"

%!!"

%#!"

$" %" &" '" #" (")" *" +"$!"$$"$%"$&"$'"$#"$("$)"$*"$+"%!"

!"
#
$%
&
'
(
#
)$
*
+$
!"
)#
,
-
.
!

!"
#
$)
,
!#
$*
+$
!"
)#
,
-
.
!

/#012#-$!")#,-! 3*!4)#012#-$!")#,-!

567$60,8"#$0)*9#8!! 5:7$;<!"*%$0)*9#8!!

Figure 2: The number/rate of the threads acceding
to senders. (left: Apache, right: Python)

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

'#!!!"

'" '"("'!" ''"("')" #%"(")!")'"("'!!" '!'"("

*!+"

$!+"

)!+"

%!+"

,!+"

'" '"("'!" ''"("')" #%"(")!")'"("'!!" '!'"("

!! !"!#! !!"$%! $&"%#!%!"!##! !#!"!

!! !"!#! !!"$%! $&"%#!%!"!##! !#!"!

'(
)
*+
,
-
.
)
/*
0
1*
'(
/)
2
3
4
!

'(
)
*/
2
')
*0
1*
'(
/)
2
3
4
!

567)/8)+9)4!

567)/8)+9)4!

!"

)!!!"

'!!!!"

')!!!"

#!!!!"

#)!!!"

*!!!!"

!* !*"*!#* !!*"*!%* $&*"*%#*%!*"*!##* !#!*"*

%!+"

%)+"

,!+"

,)+"

&!+"

!* !*"*!#* !!*"*!%* $&*"*%#*%!*"*!##* !#!*"*

'(
)
*+
,
-
.
)
/*
0
1*
'(
/)
2
3
4
!

'(
)
*/
2
')
*0
1*
'(
/)
2
3
4
!

567)/8)+9)4!

567)/8)+9)4!

:)7;8)3*'(/)23! <0'"/)7;8)3*'(/)23!

!!*"*$%!

!!*"*$%!

=>?*>729()*7/0@)9'! =A?*BC'(0+*7/0@)9'!

Figure 3: The number/rate of the threads acceding to
experiences. (left: Apache, right: Python)

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)*+" ,-+" .*/" 0/1" .2*" 345")67"

&!8"

&'8"

'!8"

''8"

(!8"

)*+" ,-+" .*/" 0/1" .2*" 345")67"

!"
#
$%
&
'
(
#
)$
*
+$
!"
)#
,
-
.
!

!"
#
$)
,
!#
$*
+$
!"
)#
,
-
.
!

(!8"

('8"

9!8"

9'8"

:!8"

)*+" ,-+" .*/" 0/1" .2*" 345")67"

!"

$!!!"

&!!!"

(!!!"

:!!!"

#!!!!"

#$!!!"

#&!!!"

#(!!!"

)*+" ,-+" .*/" 0/1" .2*" 345")67"

!"
#
$%
&
'
(
#
)$
*
+$
!"
)#
,
-
.
!

!"
#
$)
,
!#
$*
+$
!"
)#
,
-
.
!

/#012#-$!")#,-! 3*!4)#012#-$!")#,-!

567$60,8"#$0)*9#8!! 5:7$;<!"*%$0)*9#8!!

Figure 4: The number/rate of the threads acceding
to week. (left: Apache, right: Python)

!"
#
$%
&
'
(
#
)$
*
+$
!"
)#
,
-
.
!

!"
#
$)
,
!#
$*
+$
!"
)#
,
-
.
!

!"
#
$%
&
'
(
#
)$
*
+$
!"
)#
,
-
.
!

!"
#
$)
,
!#
$*
+$
!"
)#
,
-
.
!

/#012#-$!")#,-! 3*!4)#012#-$!")#,-!

567$60,8"#$0)*9#8!! 5:7$;<!"*%$0)*9#8!!

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

!" %" &" '" (" $!" $%" $&" $'" $(" %!" %%"

&!)"

&#)"

#!)"

##)"

'!)"

!" %" &" '" (" $!" $%" $&" $'" $(" %!" %%"

!)"

%!)"

&!)"

'!)"

(!)"

$!!)"

!" %" &" '" (" $!" $%" $&" $'" $(" %!" %%"

!"

$!!!"

%!!!"

*!!!"

&!!!"

#!!!"

'!!!"

!" %" &" '" (" $!" $%" $&" $'" $(" %!" %%"

Figure 5: The number/rate of the threads acceding to
hour. (left: Apache, right: Python)

4.1 Target Projects and Data
In the Apache HTTP Server project and the Python project,
mailing list is used to discuss and share information about
OSS development by users basicly. Apache HTTP Server
Project has managed a user mailing list since Nov.2011.
Python Project has managed a user making list since May.1999.

Table 1 presents the target period, and the number of mes-
sage in each project. The number of threads posted by users
is 26,105 (80% of all threads) in Apache project and 82,413
(83% of all threads) in Python project. In the threads posted
by users, the number of the replied threads is 13,981 (54%
of threads posted b y users) in Apache project and 60,090
(73% of threads posted by users) in Python project. Many
threads in both of projects were not replied. This result
clearly shows that the most key disadvantage of company de-
velopers is difficult to get technical supports by OSS project
in case of an emergency. In our paper, we analyze the reason
for not being replying in terms of sender, posting time and
message context qualitatively and quantitatively.

4.2 Analysis of Sender
4.2.1 Replied threads according to sender

Figure 2 presents the number/rate of the replied threads (y-
axis) posted by top 20 users (x-axis) in Apache project and
Python project. The rate of the replied threads is 28%-77%
for Apache project, 45%-94% for Python project. Looking at
these results, we can see a difference between users. Hence,

the rate of the replied threads may depend on message con-
tents or an individual writing style.

4.2.2 Replied Threads According to the Number of
Posted E-mails

Figure 3 presents the number/rate of threads (y-axis) ac-
cording to the experiences (the number of the posted threads)
of users (x-axis). In both projects, threads posted by users
that have posted more than 50 times may not be replied.
The rate of the replied threads drops by 10% over 100 times
in Apache project. Also, it drops by 4% over 100 times in
Python project. Looking at these results, we found that we
should post a thread 11-50 times.The more participant posts
threads, the less the threads are replied.

4.3 Analysis of Posting Time
4.3.1 Replied Messages According to Week

Figure 4 presents the number/rate of threads (y-axis) ac-
cording to week (x-axis) in Apache project and Python project.
In both projects, the number of threads that posted in the
weekend is less than in the weekday. However, no matter
what day of the week, the rate of replied threads was not so
different between the weekday and the weekend. From this
result, we found the thread was supported by geographically
distributed developers or users.

27

Table 2: Differences of the high tf-idf score rank in
the replied/not-replied thread in Apache project.

Higher replied thread rank Higher not-replied thread rank

word
Replied Not-replied

word
Replied Not-replied

thread thread thread thread
virtual 9 23 configure 10 21
host 10 18 request 12 32
log 13 21 install 15 22

directory 14 25 module 19 33
redirect 15 34
access 16 24
rewrite 18 33

mod rewrite 20 27

Table 3: Differences of the high tf-idf score rank in
the replied/not-replied thread in Python project.

Higher replied thread rank Higher not-replied thread rank

word
Replied Not-replied

word
Replied Not-replied

thread thread thread thread
list 5 24 install 12 20

newbie 8 19 embed 19 43
string 9 51
class 10 21

function 11 25

4.3.2 Replied Threads According to Hour
Figure 4 presents the number/rate of replied threads (y-
axis) according to local time (hour) (x-axis) for the loca-
tion where the sender stays in Apache project and Python
project. In Python project, the rate of the replied threads
drops early morning and at meals. On the other hand, in
Apache project, the rate of threads was not so different be-
tween in a day. The rate of the replied thread in Apache
project is lower than Python project in a day.

4.4 Analysis of Message Context
Table 2 and table 3 present high tf-idf score rank words
in the subject of the replied threads or the subject of the
not-replied threads, and the tf-idf score rank of a word in
the replied threads more than 7 ranking different from the
not-replied threads. We targeted only subject that is sum-
marized the body of an e-mail.

Many internal system words (module name, log, internal
function name) were written in the replied threads. On the
other hand, many words for implementation (e.g. install,
input command) were written in the not-replied threads.

5. DISCUSSION
From the result of our case study, we found 2 types of threads
that are likely to be gotten feedback in user mailing list.

The number of the posted threads would be interesting
to receive a useful answer.
According to our analysis of sender, threads posted by a
user who have posted a couple dozens times are likely to be
replied. We consider if users submit many messages, they
may find partners who answer their questions, because OSS
developers often contact to same developers [5].

Threads written about internal system information of
the OSS is more likely to be replied.
When Bettenburg et al. analyzed what makes a good bug
report, they got similar results [1]. They found when a user
submits a bug report and reports code examples and test
cases, developers are likely to fix the bug. As in the case
of the bug report, if users post a message using the specific
word such as module name, they may get a feedback.

6. CONCLUSION AND FUTURE WORK
In this study, we analyzed when and what should users send
e-mail to user mailing list in OSS project. Using Apache
and Python data, we conducted a case study to understand
how many e-mails can get feedback in the user mailing list
in terms of sender, posting time, message context. We found
that users should have experiences in a user mailing list to
get technical supports. And, users post a message using the
specific word such as module name.

Many threads are posted to user mailing list on a daily basis.
Developers and users are difficult to check all of them. Users
should understand this condition. If users use OSS and are
also interested in OSS development, users should study how
to write a clear e-mail. In the future, our study will indicate
how to write e-mails to get feedback in user mailing list
based on this study.

7. ACKNOWLEDGMENTS
We appreciate the anonymous reviewers giving insightful
comments and helpful suggestions. This research is con-
ducted as part of Grant-in-Aid for Young Scientists (B),
25730045 and for ScientificResearch (B) 23300009 by Japan
Society for the Promotion of Science (JSPS).

8. REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss,

R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the FSE’08, pages
308–318, 2008.

[2] L. A. Dabbish, R. E. Kraut, S. Fussel, and S. K.
Kiesler. Understanding email use: Predicting action on
a message. In In Proceedings of the CHI’05, pages
691–700, 2005.

[3] K. Fogel. Producing open source software: how to run
sucessful free software project. O’Reilly Media,
Sebastopol, CA, 2005.

[4] Information Technology Promotion Agency. A survey
report on open source software based businesses. (year
2009 edition), 2010.

[5] G. Jeong, S. Kim, and T. Zimmermann. Improving bug
triage with bug tossing graphs. In Proceedings of the
ESEC/FSE’09, pages 111–120, 2009.

[6] M. Ohira, K. Koyama, A. Ihara, S. Matsumoto,
Y. Kamei, and K. Matsumoto. A time-lag analysis for
improving communication among oss developers. In
Proceedings of the KCSD’09, pages 49–62, 2009.

[7] E. S. Raymond. The cathedral and the bazzar: musings
on linux and open source by an accidental revolutionary.
O’Reilly and Associates, Sebastopol, CA, 1999.

[8] G. Robles and J. M. Gonzalez-Barahona. Geographic
location of developers at sourceforge. In Proceedings of
the MSR’06, pages 144–150, 2006.

28

