
A Study of the Characteristics of Developers’
Activities in GitHub

Saya Onoue, Hideaki Hata, and Ken-ichi Matsumoto
Graduate School of Information Science

Nara Institute of Science and Technology, Nara, Japan
{onoue.saya.og0, hata, matumoto}@is.naist.jp

Abstract—What types of developers do active software
projects have? This paper presents a study of the characteristics
of developers’ activities in open source software development.
GitHub, a widely-used hosting service for software development
projects, provides APIs for collecting various kinds of GitHub
data. To clarify the characteristics of developers’ activities, we
used these APIs to investigate GitHub events generated by each
developer. Using this information, we categorized developers
based on measures such as whether they prefer communication
by coding or comments, or whether they are specialists or
generalists. Our study indicates that active software projects have
various kinds of developers characterized by different types of
development activities.

I. INTRODUCTION

When trying to identify good developers and understand
how developers set goals in life, the different types of devel-
opers are an interesting topic for investigation. For example,
the blog article “Are You a Good Programmer?1,” 1 describes
four types of good programmers.

This article suggests that the four types of programmers
approach code in different ways based on their motivation.
The Philosopher, driven by a need for safety and security,
writes tightly controlled code. The Inventor, driven to explore,
creates quirky and unique code. The Conqueror, driven to
compete, looks for harder challenges. Finally, The Problem
Solver, motivated to create value, tries to deliver the desired
outcome.

Similarly, the article “The 6 Types of Software Engineers:
Identification, Care and Feeding2,” introduces the following
six types of software engineers: The Veteran, The Hotshot
(smart and young engineer), The Great One (always delivers
on schedule, writes solid code, and so on), The Teflon-gineer
(will do anything to reduce his work), Offshore, The Mav-
erick (smart, creative, dependable, does not want to build on
or maintain the existing codebase). Then the article “10 Types
of Programmers You’ll Encounter in the Field3:” presents 10
types: Gandalf (as adept at working magic as Gandalf), The
Martyr (a workaholic), Fanboy, Vince Neil, The Ninja (the
team’s MVP, and no one knows it), The Theoretician, The
Code Cowboy, The Paratrooper, Mediocre Man, and The
Evangelist.

1http://techiferous.com/2011/08/are-you-a-good-programmer/
2http://crankypm.com/2008/08/the-6-types-of-software-engineers-

identification-care-and-feeding/
3http://www.techrepublic.com/blog/10-things/

10-types-of-programmers-youll-encounter-in-the-field/

These lists of developer types are neither complete nor
comprehensive, nor do developers have to fit these categories.
The point is that there are many different types of developers,
with many different ways of making valuable contributions.
This research studied types of developers based on actual de-
velopers’ activities. We did not investigate the social structure
in software projects, nor did we analyze the roles of developers
in such projects. Instead, we tried to characterize developers
based on their observed activities.

As case studies for this research, we chose two active
software projects, node and jQuery. Both of these use GitHub4,
which is a widely-used hosting service for software develop-
ment projects that used the Git revision control system. GitHub
provides “social coding” services for developers to collaborate
with each other. GitHub provides APIs (GitHub API v35)
which allowed us to collect developers’ activity data.

Our study collected data from the two projects, which we
then analyzed to investigate the characteristics of developers’
activities. We analyzed the frequencies of types of activities,
such as code-related, comments-related, and issue handling.
We also investigated the specialization of the projects and the
rates of the activities. Our study showed that the top contrib-
utors in these projects include different kinds of developers
with different characteristics of development activities.

II. GITHUB ACTIVITIES

Figure 1 provides an overview of a developer’s activities
in GitHub. A project is identified by the owner and the
name of the project (owner/project_name). In GitHub, a
developer can work on various projects. Also, in our study, we
consider (a) and (b) projects as target projects and (c) and (d) as
other projects. Therefore, we classify developer’s activities in
terms of target projects and other projects. This means that for
a developer User who is a contributor to one specific project
Project , there are four categories of working projects:

(a) Target project TargetProject belonging to the
developer User. This code repository may have been
forked from another user’s repository.

(b) Target project TargetProject belonging to an-
other developer OtherUser, who may be the owner
of the project.

(c) Non-target projects OtherProject belonging to
the developer User. These code repositories have
been forked from the original repositories.

4https://github.com/
5http://developer.github.com/



Fig. 1. Developer’s Activities in GitHub.

TABLE I. STATISTICS OF TARGET PROJECTS (AUG. 15, 2013)

Project Language Commits Stars Forks Contributors

node JavaScript 8, 974 23, 984 4, 572 447

jQuery JavaScript 5, 270 22, 305 4, 587 168

(d) Non-target projects OtherProject belonging to
another developer OtherUser.

Each project has a code repository and an issue repos-
itory. Although a developer can directly access their own
code repositories, they cannot directly push their changes to
code repositories belonging to another developers’ account. To
work with code from another developer’s code repositories, a
developer can make cloned repositories in their own account.
This operation is called forking. Similarly, a developer can
create or delete branches and tags in their own repos-
itories. A developer can also push changes from their local
code repositories to the GitHub code repositories. As shown
in Figure 1, when a developer wants to apply changes from
their own code repositories ((a) or (c)) to another developer’s
code repositories ((b) or (d)), a PullRequest is sent to the
other developer’s projects.

Issue repositories contain reports of issues including
bugs and feature requests. As shown in Figure 1, a de-
veloper can open, close, or reopen any issues in
her issue repositories for (a), (b), (c) or (d). Developers
can also make comments on commits (CommitComment),
pull requests (PullRequestReviewComment) and issues
(IssueComment).

In our study, we consider (a) and (b) projects as target
projects and (c) and (d) as other projects. Therefore, we
classify developer’s activities in terms of target projects and
other projects.

III. EMPIRICAL STUDY

A. Target Projects

To investigate various developers’ activities, in this study
we selected two active projects, node6 (joyent/node. De-
scription: evented I/O for v8 javascript http://nodejs.org/) and

6https://github.com/joyent/node

TABLE II. CHARACTERISTICS OF DEVELOPERS’ ACTIVITIES.
PARTIAL NAMES ARE USED, BECAUSE OF PRIVACY CONCERNS.

node jQuery

1 *ry* 2, 941 *er* 1, 591

2 *sa* 1, 413 *me* 436

3 *no* 1, 208 *za* 318

4 *is* 502 *wl* 297

5 *nd* 288 *im* 267

6 *oo* 177 *au* 266

7 *oi* 157 *ra* 248

8 *el* 119 *le* 200

9 *re* 114 *ib* 145

10 —- *rk* 117

jQuery7 (jquery/jquery. Description: jQuery JavaScript Li-
brary http://jquery.com/). We chose these projects because
they have many stars and forks, and they appear in the
trending repositories. Table I presents statistics for these two
projects. These projects also have many contributors who have
participated in many GitHub activities, as explained in Section
II.

Table II shows the top contributors with more than 100
commits in these two projects, and how many commits each
has made. Each project webpage shows such information. We
only show partial names of developers because of privacy
concerns. In this study, we selected data about such top
contributors from the two target projects for our analysis of
developers’ activities. While GitHub identifies the contributors
to projects based on the cumulative number of commits, we
intended our study to clarify the differences in contributions
between developers.

B. Data Collection

Using the GitHub APIs, we collected data about the
developers’ activities. There are various APIs for different
kinds of GitHub data, such as Git revision control data, issues,
repositories, and users. All API access is over HTTPS, and all
data is received as JSON data structures. We collected data on
Aug. 14, 2013 in two phases, first identifying contributors and
second extracting activities.

7https://github.com/jquery/jquery



Fig. 2. Distributions of developer’s activities for three typical developers in the node project.

Phase 1: Identifying Contributors. When we identified a
repository, such as joyent/node or jquery/jquery, the repository-
related API provided a list of contributors8 to that repository.
This list included the developers’ names and number of contri-
butions, which is the number of activities related to the project.
For our study, we limited the contributors to developers who
have made more than 100 contributions because we wanted
to investigate active developers. In this phase, we identified 9
contributors for the node project and 10 contributors for the
jQuery project. Table II shows all the contributors for both
projects.

Phase 2: Extracting Activities. Using the names of the
developers, the activity-related API provided a list of each
developers’ activity events9. GitHub has 18 different types of
activity events. However, because some types of events seldom
occurred in our data collection, we ignored them. In our study,
we investigated these eight activity events: CreateEvent,
DeleteEvent, PushEvent, PullRequestEvent,
CommitCommentEvent, IssueCommentEvent,
PullRequestReviewComment, and IssueEvent.
Section II discussed the relationships between the events and
the projects. For each event, the event lists include the date
and touched repositories. The activity-related API limits the
number of events to the most recent 300.

C. Threats to Validity

Construct Validity. The major threat to the construct
validity is the limitation of available event data to the most
recent 300 events in the activity-related GitHub API. In our
study, we found that 300 events was not large enough for some
developers because these developers produce 300 events or
more within a few weeks, so the most recent 300 may not be
representative activities for these developers. As a result, our
study may have only clarified the characteristics of activities
in a short-term window. For more representative analysis, data
obtained over a longer term is desirable.

External Validity. Our study is limited to two projects
written in JavaScript using the GitHub environment, so our
results cannot be generalized to other projects and develop-
ment languages. In addition, these were open source software

8http://developer.github.com/v3/repos/#list-contributors
9http://developer.github.com/v3/activity/events/

projects, and developers’ activities in industry software de-
velopment may be different. Clarifying the characteristics of
developers and their activities in various different projects and
environments will be future work.

IV. RESULTS

We investigated developers’ activities in terms of four
areas, the type of activity, the specialization of contributions,
contributions relative to the day of the week, and the frequency
of activity.

A. Coding, Commenting, and Issue Handling

First, we investigated the frequencies of the extracted eight
events in the 300 events for each developer to identify their
major focus of activities. For convenience, the CreateEvent
and DeleteEvent counts were combined. Figure 2 presents
a bar chart of the characteristic activities of three typical
developers from the node project. These three developers were
chosen because they represent a variety of approaches. In the
bar chart, large areas of each bar represent high numbers of
those types of activity events.

The events Create, Delete, Push, and PullRequest
are related to coding, while the events CommitComment,
IssueComment, and PullRequestReviewComment are
related to commenting. As can be seen in Figure 2, the
first developer, *el* has many IssueComment and Push
events. Similarly, the second developer, *oi*, has many
Push and PullRequest events. The third developer, *no*,
has a relatively balanced mix of activities. Based on this
categorization of events, we can identify the majority of the
first developer’s activities as related to commenting, the second
developer’s activities as related to coding, while the third
developer has a balance of activities including both coding and
commenting activities. Similarly, for every developer on both
projects, we identified the majority focus of their activities.
Table III summarizes this and other results.

B. Specialty of Contribution

Second, we investigated how much developers contribute
to their own target projects and other projects. As explained in
Section II, we classified projects into target projects and other
projects. Figure 3 shows the radar charts of the activity events



(a) Developer *rk*. (b) Developer *au*.

(c) Developer *me*. (d) Developer *im*.

Fig. 3. Radar Charts of Developer’s Activities on the jQuery Project

for four typical developers on the jQuery project. In these radar
charts, we separately plotted the developers’ activities on their
target projects and other projects. The blue lines represent the
activities for the target project, the jQuery project, while the
red lines represent activities for other projects. Each axis shows
the number of events for a specific activity. These charts allow
us to easily see the differences in characteristics of developers’
activities between their target project and other projects.

For example, in Figure 3 (a), the developer contributes
mostly to their target project, particularly with code-related
activities such as creates, deletes, pushes, and pull requests.
In Figure 3 (b), the developer also makes most contributions
to their target project, but with comment-related activities
such as commit comments, issue comments, and pull request
comments. This developer does not make so many code-related
activities such as create, delete, or push. For other projects, this
developer also has some push and issue comment activities.

In Figure 3 (c), while the developer makes code-related
and issue comment contributions to their target project, most
of their activities are on other projects with pushes, issues, and
issue comments. In Figure 3 (d), the developer shows similar
characteristics, but contributions to their target project are less
than other projects, and most of the activities are either pushes
or issue comments.

This analysis reveals that top contributors contribute differ-
ently to target and other projects. Some developers contribute
most of their development activities to their target projects,
while others contribute most of their activities to other projects.
In our analysis, the rest of the developers showed similar
patterns of activities.

C. Workdays

Figure 4 shows the number of developers’ activities divided
across the days of the week. Charts of four typical developers
in the node project are shown. In Figure 4 (a), the developer
works Monday through Saturday. In Figure 4 (b), the developer
works Monday through Friday and does not work on weekends
(Saturday and Sunday). In Figure 4 (c), the developer mainly
works on Wednesday, while in Figure 4 (d), the developer
works mostly on Saturday. The rest of the developers have sim-
ilar distributions. We found that some developers work mostly
on weekdays, while others work mainly on weekends. This
analysis may allow us to distinguish professional developers
from volunteer developers.

D. Frequencies of Activities

Figure 5 shows the frequencies of activity events over
a range of months for four typical developers. Because the
activity-related GitHub API limits the number of events per
developer to 300, the date of the first recorded event for each
developer differed. For example, in this figure, the developer
*no* worked frequently in GitHub, with over 200 activities
in a week. For comparison, the developer *oi* worked only
a little bit in GitHub each week, so that their 300 activities
covers over a year. We found several patterns of work among
the developers, with some developers producing 300 events in
a few weeks, while others took months for 300 events. Table
III summarizes these results in the Activities column.

E. Summary

Table III summarizes the analysis results in three key areas,
type of activities, specialization, and frequency of activities
for the activities of the top contributors with more than



(a) Developer *sa*. (b) Developer *re*.

(c) Developer *is*. (d) Developer *oi*.

Fig. 4. Frequency of Activities during Days of the Week in the Node Project

Fig. 5. Distributions of 300 Activities During Weeks for Four Typical Developers in the node Project

100 contributions to the target projects. The majority column
shows the distribution of activities discussed in Section IV-A.
If developers have a mixture of coding, commenting, and
issue handling activities, we identified that as balanced. He
specialization column shows the contributions to the target
and other projects as discussed in Section IV-B. We identify
developers as specialists if they work mainly on their target
project, others if they work mainly on other projects, both
if they work on both the target and other projects, and no
contribution when the developer has not contributed to their
target project within their 300 activities. The frequency column
shows the periods of time needed for each of the developers
to produce 300 activity events as described in Section IV-D.

As compared to Table II, which only identified the top
contributors and numbers of cumulative comments, Table III
shows the various characteristics of contributions for different

developers. In this table, we can see that some developers
concentrate on coding and/or commenting, while others con-
tribute with a mix of activities including coding, commenting,
and issue handling. Top contributors may mainly work on
their target projects, some mainly work on other projects, and
some have not contributed to their target projects recently. In
addition, the activity rates of developers are very different, with
some very active while others are much less active. In each
of the two target projects, different developers have different
characteristics of development activities.

V. RELATED WORK

Social Network Analysis is a related field of study to this
research. For example, Bird et al. Reported that developers
play a significant social role in email lists [1]. Similarly,
Bird et al analyzed email addresses in open source software



TABLE III. HEADINGS: CHANGE SPECIALTY TO SPECIALIZATION, AND ACTIVITIES TO FREQUENCY.

node jQuery
Developer Commits Majority Specialty Activities Developer Commits Majority Specialty Activities

1 *ry* 2, 941 Balanced Specialist Years *er* 1, 591 Code/comments No contribution Months
2 *sa* 1, 413 Code/comments Both Weeks *me* 436 Balanced Others Months
3 *no* 1, 208 Balanced Specialist Days *za* 318 Comments No contribution Months
4 *is* 502 Code/comments Others Months *wl* 297 Balanced No contribution Days
5 *nd* 288 Code/comments Both Weeks *im* 267 Code Others Weeks
6 *oo* 177 Code/comments Others Months *au* 266 Comments Specialist Months
7 *oi* 157 Code Both A year *ra* 248 Code No contribution Weeks
8 *el* 119 Comments No contribution Months *le* 200 Balanced No contribution A year
9 *re* 114 Code Specialist Weeks *ib* 145 Code/comments Specialist Months

10 —- *rk* 117 Code Specialist Months

projects to examine the community structure among developers
[2]. Although our study collected data from different kinds
of development archives, specifically the developers’ activity
events in GitHub, these results also indicated contributors have
many different roles.

Personality Analysis is another related work. For example,
using the Myers-Briggs type indicator (MBTI), Sfetsos et al
investigated the impact of personality types on pair program-
ming. Their results showed that pairs with heterogeneous and
temperaments had better communication, pair performance,
and pair collaboration-viability [3]. Salleh et al studied the
affects of personality on pair programming using the five-factor
model, which characterizes personality in terms of five broad
personality traits, openness to experience, conscientiousness,
extraversion, agreeableness, and neuroticism [4]. Compared to
these personality-based analyses which look at how differences
in individuals are reflected in their activities, our study in-
vestigated how developers could be characterized based on
differences in the patterns of activities extracted from the
project activity logs.

VI. CONCLUSION AND FUTURE WORK

This study examined the characteristics of developers’
activities by collecting and analyzing data from two active soft-
ware projects in GitHub. This included code-related, comment-
related, and issue handling activities. While GitHub provides
a list of top contributors in each project based on the number
of commits, we found that various contributors had different
characteristics in their development activities.

In both projects in this study, the top contributors had a
mixture of characteristics. For example, some developers were
balanced in doing coding, commenting, and issue handling,
while others focused more on code or comments. Further,
some developers were specialists, doing most of their work
on their own target project, some did most of their work
on other projects, and others mixed target and other project
contributions. Finally, activity rates varied from days to a year
between developers.

While these results are specific to these projects and
GitHub as a development environment, they suggest that active
software projects need a mixture of developers’ characteristics,
including generalists and specialists in activities such as cod-
ing, commenting, and issue handling, as well as developers
who focus on one project and transients who look in on
multiple projects. Even the differences in activity levels, while

complicating attempts at project management, are part of the
open source software environment and should be expected.

Based on this study, there is some desirable future work,
including:

• As discussed in section III-C, Threats to Validity, the
limitation of the number of available activity events to
300 is problematic. By accessing the API on different
days, we might be able to obtain more data and
generalize our results. In addition, we should study
more projects.

• In this study, if projects were not the target projects,
they were grouped as other projects. More detailed
analyses of which other projects are involved, the
patterns of activities in these projects, and studies of
the migration of developers between projects may also
be useful.

• Based on studies such as this of the classifications of
developers and the effects of different types of devel-
opers on projects, we may be able to recommend ways
to improve management of software development and
participation and measure the effects of such changes.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 25880015.

REFERENCES

[1] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in Proc. of 3rd Int. Workshop on
Mining Softw. Repositories, ser. MSR ’06. New York, NY, USA:
ACM, 2006, pp. 137–143. [Online]. Available: http://doi.acm.org/10.
1145/1137983.1138016

[2] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu,
“Latent social structure in open source projects,” in Proc. of 16th
ACM SIGSOFT Int. Symp. on Found. of Softw. Eng., ser. SIGSOFT
’08/FSE-16. New York, NY, USA: ACM, 2008, pp. 24–35. [Online].
Available: http://doi.acm.org/10.1145/1453101.1453107

[3] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis, “An experimental
investigation of personality types impact on pair effectiveness in pair
programming,” Empirical Softw. Eng., vol. 14, no. 2, pp. 187–226, Apr.
2009. [Online]. Available: http://dx.doi.org/10.1007/s10664-008-9093-5

[4] N. Salleh, E. Mendes, J. Grundy, and G. S. J. Burch, “An empirical
study of the effects of conscientiousness in pair programming using the
five-factor personality model,” in Proc. of 32nd Int. Conf. on Softw.
Eng., ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 577–586.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806883


