Copyright IEEE, 2013. This copy is for your personal use, and is not authorised for redistribution. http://doi.ieeecomputersociety.org/10.1109/TSE.2013.21

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.39, NO. 10, OCTOBER 2013 1345

Assessing the Cost Effectiveness of Fault
Prediction in Acceptance Testing

Akito Monden, Member, IEEE, Takuma Hayashi, Shoji Shinoda, Kumiko Shirai, Junichi Yoshida,
Mike Barker, Member, IEEE, and Kenichi Matsumoto, Senior Member, IEEE

Abstract—Until now, various techniques for predicting fault-prone modules have been proposed and evaluated in terms of their

prediction performance; however, their actual contribution to business objectives such as quality improvement and cost reduction has
rarely been assessed. This paper proposes using a simulation model of software testing to assess the cost effectiveness of test effort
allocation strategies based on fault prediction results. The simulation model estimates the number of discoverable faults with respect to
the given test resources, the resource allocation strategy, a set of modules to be tested, and the fault prediction results. In a case study
applying fault prediction of a small system to acceptance testing in the telecommunication industry, results from our simulation model
showed that the best strategy was to let the test effort be proportional to “the number of expected faults in a module x log(module
size).” By using this strategy with our best fault prediction model, the test effort could be reduced by 25 percent while still detecting as
many faults as were normally discovered in testing, although the company required about 6 percent of the test effort for metrics

collection, data cleansing, and modeling. The simulation results also indicate that the lower bound of acceptable prediction accuracy is
around 0.78 in terms of an effort-aware measure, Norm(P,,). The results indicate that reduction of the test effort can be achieved by
fault prediction only if the appropriate test strategy is employed with high enough fault prediction accuracy. Based on these preliminary

results, we expect further research to assess their general validity with larger systems.

Index Terms—Complexity measures, fault prediction, quality assurance, resource allocation, simulation

1 INTRODUCTION

AS recent software systems have grown in size and
complexity, quality assurance activities such as testing
and inspection have become increasingly important, not
only for software developers, but also for software
purchasers who are responsible for acceptance testing
and/or software service deployment. Since resources are
limited and scheduling is tight in most cases, quality
assurance must be performed as efficiently as possible.

To prioritize quality assurance efforts, techniques for
predicting fault-prone modules have been proposed to select
software modules by their probability of having a fault [16],
the number of expected faults [11], [17], or the fault density
[14]. Based on the prediction results, practitioners can
allocate limited testing (or inspection) efforts to fault-prone
modules so as to find more faults with smaller effort.

However, while the prediction performances of those
techniques have been evaluated in terms of recall/
precision/Fl-measure [12], [26], Alberg diagrams [23],
and/or ROC curves [16], the final goal of reducing the
test effort or increasing software quality has been rarely
explored. To adopt fault prediction techniques in industry,

e A. Monden, M. Barker, and K. Matsumoto are with the Graduate School of
Information Science, Nara Institute of Science and Technology, 8916-5
Takayama, Ikoma, Nara 630-0192, Japan.

E-mail: {akito-m, mbarker, matumoto|@is.naist.jp.

e T. Hayashi, S. Shinoda, K. Shirai, and |. Yoshida are with the R&D Center,
NTT West Corporation, 1-2-31 Sonezaki, Kita-ku, Osaka 530-0057, Japan.
E-mail: {k.shirai, j.yoshida}@rdc.west.ntt.co.jp.

Manuscript received 3 July 2012; revised 30 Jan. 2013; accepted 5 Apr. 2013;
published online 11 Apr. 2013.

Recommended for acceptance by T. Menzies.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-07-0175.
Digital Object Identifier no. 10.1109/TSE.2013.21.

0098-5589/13/$31.00 © 2013 IEEE

one needs to be able to assess the cost effectiveness of the
prediction because not only poor predictions but also a
poor resource allocation strategy could even increase the
test effort. Moreover, one needs to consider that metrics
collection, data cleansing, and modeling themselves
require a significant cost.

In this paper, from the point of view of the software
purchaser-side organization, we set our primary goal to
estimate the reduction of acceptance test effort that fault
prediction can achieve. To achieve this goal, our study
aimed to answer the following research questions:

(RQ1) What is the appropriate strategy to allocate test effort to
each module after prediction?

This question is difficult to answer although several
strategies can be easily developed. The simplest one is to
let the test effort be proportional to the number of
expected faults in a module [17]. The concern with this
strategy is that it does not consider the size of a module,
which may affect the ease of discovering a fault. Another
strategy is to allocate test effort based on the fault density,
but this may also not be the best choice because it
concentrates on modules with high fault density no matter
what their size, even though larger modules will contain
more faults than smaller ones. Moreover, the best strategy
may depend on the available test effort. For example, if we
have plenty of resources, applying equal effort to all
modules might be fine.

To answer this question, we need to be able to compute
the expected number of discoverable faults with respect to
the given test resources, the resource allocation strategy
(with fault prediction result), and the set of modules to be
tested. Then, we could estimate the test effort needed to
discover a desired number of faults.

Published by the IEEE Computer Society

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト
Copyright IEEE, 2013. This copy is for your personal use, and is not authorised for redistribution. http://doi.ieeecomputersociety.org/10.1109/TSE.2013.21

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト

akito-m
タイプライターテキスト

1346

In this paper, we propose a fault discovery model that
can represent the relationship among the prediction results,
test efforts, module sizes, and the probability of fault
discovery. By using this model, we simulated testing to
compare the effectiveness of resource allocation strategies.

(RQ2) What is the required level of prediction accuracy?

If the prediction accuracy is very low, we cannot rely on
any test effort allocation strategy that uses the prediction
result. This paper tries to find the lower bound of the
required accuracy to distinguish between resource alloca-
tion strategies.

(RQ3) How much is test effort reduced by the prediction and
how much effort is needed to conduct the prediction?

This is the primary question companies want answered.
To answer this question, we assume that the tests currently
conducted by the company are not complete, i.e., there are
still some faults remaining after testing because most
software systems contain faults after release [7].

Therefore, we define a parameter called the remaining
fault rate in Section 4.3, and compute a required test effort
that potentially discovers as many faults as actual testing
through the simulation.

We also need to measure the effort needed for metrics
collection, data cleansing, and modeling to assess the cost
effectiveness of prediction.

The next section introduces our project context, includ-
ing motivation and related work. In Section 3, we explain
how we built the fault prediction models. Section 4
proposes our assessment method, including effort alloca-
tion strategies, a fault discovery model, and the simulated
testing. Section 5 describes the results and discusses the
case study. We summarize this paper in Section 6.

2 PROJECT CONTEXT
2.1 Motivation

The target organization is a software purchaser-side
company that provides various types of telecommunication
services using acquired software systems. In the software
acquisition processes, the company is responsible for
requirements analysis, architectural design, and acceptance
testing, while developer-side companies are in charge of
detailed design, programming unit/integration/system
testing, and debugging.

As the services grow in the number of variations with
shorter renewal cycles than ever before, the main motiva-
tion here is optimization of acceptance testing to provide high-
quality services to customers. From this perspective, the
primary goal of this paper is reduction of acceptance test
effort using techniques for predicting fault-prone modules.
Our study includes metrics collection, building predictor
models, and assessing the reduction of test effort.

2.2 Target Software and Modules

The target software consists of workflow modules, basic
function modules, library modules (of third parties), and
COTS components, with links to external systems such as
database and point-to-point systems. As shown in Fig. 1,
each functionality is implemented as one or more workflow
modules, and each workflow module uses basic function
modules, library modules, and COTS components as needed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

Test Cases Test Cases Test Cases
1 2 n

Design document

R N .
Workflow Workflow Workflow Workflow
Module 1 Module 2 Module3 | 777 Module &
Basic Function Modules Library Modules CoTS

Components

Fig. 1. Modules in target software.

To apply fault module prediction to this software, the
primary question we need to answer is “what is the
appropriate level of ‘module’ to be predicted?” Previously,
some studies showed package-level prediction was more
effective (in terms of recall and accuracy) than file-level
prediction [28], [34] while others showed the opposite
conclusion (in terms of effort-aware evaluation) [8].

In this study, we approach this question from the
perspective of test case allocation. In acceptance testing,
each functionality specified in the design document can be
independently tested, that is, a set of test cases is
developed for each functionality, not for each workflow
module or other module/component. Therefore, to opti-
mize test effort allocation, in this paper the appropriate
granularity level of “module” to be predicted is a
“functionality.” Please note that the software purchaser-
side company does not need to care about the location of
faults in the code because “debugging” after testing is done
by the developer-side organization.

In terms of measurements of the module metrics of
source code, our targets are the workflow modules only.
Other modules/components (i.e., basic function modules,
library modules, and COTS components) are out of scope
for measurements because more than two functionalities
used each of these modules/components; thus it is not
considered as a part of an individual functionality.

The programming language used in the workflow
modules is a recently developed scripting language that
runs on a virtual machine. It is a procedural language
somewhat similar to C language. We developed a measure-
ment tool to measure source code metrics such as
cyclomatic complexity and nested block depth (NBD).

In addition to the source code metrics, design metrics can
be measured from the architectural design document for
each functionality. The design document consists of natural
language pages and business flow diagrams.

The target software had eight releases in the past. This
paper targets the five most recent releases, which we refer
to as releases 1 to 5 (5 is the most recent). Releases 1 to 4 are
used to construct fault-prone module prediction models,
and release 5 is our target to predict fault-prone modules
(functionalities) and to conduct the simulation of effort
allocation. Table 1 shows the number of modules (function-
alities) in each release. The total size of each release is

MONDEN ET AL.: ASSESSING THE COST EFFECTIVENESS OF FAULT PREDICTION IN ACCEPTANCE TESTING

TABLE 1
Size and the Number of Modules in Each Release

of modules

Release (functionalities)
1 32
2 34
3 36
4 36
5 (latest) 36

around 25,000 lines of code (KLOC). The percentage of
modules having a fault ranges from 14 to 41 percent in each
release. (For confidentiality, we cannot show the exact
number of faults, sizes of modules, or the name of the
programming language.)

2.3 Related Work

While many case studies applying fault prediction to
industry datasets have been reported [22], [23], [24], [31],
few studies have estimated the reduction of test effort or
increase of software quality achieved by fault prediction. Li
et al. [17] reported experiences of applying field defect
prediction in ABB Inc. Their experiences include practical
issues of how to select an appropriate modeling method
and how to evaluate the accuracy of prediction across
multiple releases in time. They evaluated the usefulness of
prediction based on experts’ opinions. They reported that
modules (subsystems) identified by experts as the most
defect prone are among the top four defect-prone modules
identified by the prediction model. They also reported that
the module prioritization result was actually used by a test
team to uncover additional defects in a module previously
considered to be low defect prone. Unfortunately, they
did not provide any quantitative information about the
effort required for additional testing and the number of
uncovered additional defects.

Mende and Koschke [18] and Kamei et al. [9] proposed
the effort-aware measure P, to evaluate the fault prediction
accuracy. While conventional evaluation measures such as
recall, precision, Alberg diagrams, and ROC curves ignore
the costs of quality assurance activities, their measure
assumes that testing or reviewing a module is roughly likely
to be proportional to the size. We used their measure to find
the lower bound of the required prediction accuracy needed
to discover as many faults as actual testing (Section 4.5).

3 MobDEL CONSTRUCTION

3.1 Fit/Test Dataset

Since the sample size of the fit dataset (for building a
prediction model) greatly affects the quality of prediction,
we decided to include all modules in releases 1 to 4 in the fit
dataset. That is, a total of 138 modules were included in the
fit dataset. On the other hand, the test dataset (for
evaluating the model) consisted of 36 modules of release 5.

3.2 Objective Variable

There are three candidates for the objective variable: 1) the
probability of having a fault, 2) the number of faults, or

1347

3) the fault density. Many researchers have chosen
candidate 1 to distinguish fault-prone modules (having at
least one fault) from fault-free modules (having no faults).
In this case, the number of faults (in fault-prone modules) is
ignored. In most datasets, only a small percentage of
modules have more than one fault [32]. On the other hand,
some practitioners have chosen candidate 2 because they
want to allocate quality assurance resources based on the
number of expected bugs that exist before testing [11], [17].
Also, some researchers have chosen candidate 3 rather than
candidate 1 or candidate 2 because larger files trivially have
more defects [14]. In summary, there is no clear consensus
about which variable should be predicted.

In this study, we predicted both the number of faults and
fault density, then found out which variable was preferable
based on the simulation of test effort allocation. On the
other hand, we did not predict the simple probability of
having a fault because in our study some modules had two
or more faults and such low quality modules should be
distinguished from modules having just one fault. Note
that we counted faults that we had needed to fix in
acceptance testing, while we ignored faults that were
reported but not fixed.

3.3 Predictor Variables

Metrics for each module (functionality) could be measured
from the design documents and source code as they were
available at the purchaser-side organization. To select a set
of metrics to be used as predictor variables, we needed to
balance the tradeoff between predictive power and the cost
of measurement because we needed to develop a measure-
ment tool for our scripting language, which was relatively
new and there was no existing measurement tool available.

Table 2 shows the metrics we decided to measure. Since
the target project was an enhancement project, and much
research has revealed that changes to existing code is the
most influential factor for fault injection [2], [6], [20], we
measured change metrics such as lines of code added/
deleted to the previous release. Also, as control flow metrics
are significant influential factors, we measured cyclomatic
complexity (VG) and nested block depth as well as their
change metrics. Data complexity is also important; how-
ever, because its measurement requires deeper code
analysis, we did not measure data-related metrics.

For design metrics, we measured natural language
documents and business flow diagrams, which are elements
of architectural design documents. As shown in Table 2, we
measured both base metrics and their change metrics.

As a result we employed 17 predictor variables, while the
sample size for model building is 138. We believe this is a
reasonable number because a rule of thumb is that five to 10
data points (= modules in this paper) are required for every
predictor variable in a typical prediction model [19], [29].

3.4 Prediction Models

Until now, various types of fault-prone module predictors
have been used, including the most commonly used linear
discriminant analysis [23], logistic regression analysis [21],
classification tree [10], support vector machine [8], and
random forest [16]. Since we need to predict a “number”
(the number of faults) rather than predicting a probability

1348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

TABLE 2
Measured Metrics

Type Name Definition
TLOC Source Lines of Codes
Base NBD Nested block depth
Metrics
VG Cyclomatic complexity
ADD # of added lines
Source
Code DEL # of deleted lines

Metrics Change CHG #of changed lines

Metrics | ANBD Increase of NBD from previous

release
AVG Incarease of VG from previous
release
PAGE # of pages
MOD # of workflow modules
Base # of cessine nodes i busi-
enies | PNOD o pranes.smD nodes in a busi
elrcs ness flow diagram
DNOD # of de.cision nodes in a business
flow diagram
Design REV # of revisions
Metrics APAGE Increase of PAGE from previous

rclcase

Change | AMOD Increase of MOD from previous

. release
Metrics . .
APNOD Increase of PNOD from previous
release
ADNOD Increase of DNOD from previ-

ous release

or conducting a classification, we decided to use random
forest, which can predict a number and is one of the
promising approaches in fault-prone module prediction
[16]. We also employed a linear regression model and
Classification and Regression Trees (CART), which are
commonly used modeling techniques in software engineer-
ing studies [9].

Since we need to predict both the number of faults and
fault density, there arises a question whether fault density
should be directly predicted or the number of faults
should be predicted first, then divided by the module size.
We try both approaches in this paper, and compare their
prediction performances.

4 ASSESSMENT METHOD

4.1 Effort Allocation Strategies

There are several possible strategies to assign test effort to
each module after prediction. This paper tests the following
seven strategies:

e [Al] Equal test effort to all modules
This is the most naive strategy, which we consider as
a baseline strategy.

o [A2] Test effort < module size
Given a module set (my,...,m,), the allocated test
effort ¢; for the ith module m; is defined as

ti = ttotal . Sz'/St,omh

where ¢, is total test effort of all modules, S; is
the size of the ith module, and S;,, is the total
size of all modules.

This is a basic strategy used in industry to assign
more test effort to larger modules. Arisholm et al. [1]
pointed out that the effort of testing or reviewing a
module is likely to be roughly proportional to the
size. Indeed, many companies use baseline values
for test case density; for example, one must run at
least “10 test cases per thousand lines of code” in
operational testing.

[A3] Test effort < new/modified size + 0.1 x reused size
Allocated test effort ¢; is defined as

tg, = ttOt(I,] * (S;Lcw + 0-1 X SZ'('CUSC(I)/
(Siogar + 0.1 x Spiet).
where 57" is the lines of new or modified code of the
ith module, S}5%, is the total lines of new or modified
code, Si»ed is the lines of reused code of the
ithmodule, and S;'s¢d is the total lines of reused code.
This strategy is an improvement of A2, which
distinguishes new/modified code and reused code.
Since reused code is much less faulty than new/
modified code, this strategy counts only 10 percent
of reused lines. (Although 10 percent may not be the
optimal value, this is often used in Japanese
software companies.)
[B1] Test effort o< # of predicted faults
Allocated test effort ¢; is defined as

t; = tiotal - ﬁ‘zﬁ/ﬁ‘t,otah

where Fj is the number of predicted faults in the
ith module and F},; is the total number of predicted
faults in all modules.

This strategy is a straightforward way to find
more faults by allocating more test effort where
more faults are predicted.

[B2] Test effort oc predicted fault density
Allocated test effort ¢; is defined as

ti = tooa - (F3/S)/ Y (Fi/Sh).
=1

Since if faults are evenly distributed larger modules
clearly have more faults, some researchers are more
interested in predicting fault density rather than
simply the number of faults [14]. This strategy
allocates more effort to modules with higher fault
density, reducing the effect of size.

[B3] Test effort < # of predicted faults x module size
Allocated test effort ¢; is defined as

ti = tiotar - Fi - Sif Z(E - S;).
=1
This strategy allocates more effort on larger modules
if they are likely to contain faults. This is a
combination of [A2] and [B1].
[B4] Test effort oc # of predicted faults x log(module size)
Allocated test effort ¢; is defined as

MONDEN ET AL.: ASSESSING THE COST EFFECTIVENESS OF FAULT PREDICTION IN ACCEPTANCE TESTING

b= tutar - F - 1og(S1) | Y (Fy - log(S1)).
i=1

Since strategy B3 allocates enormous effort to an
extremely large module, faults in small modules
might not be found if the total test effort is limited.
Strategy B4 tries to reduce the effect of such very
large modules, while still giving larger modules
additional effort.

4.2 Fault Discovery Model

This section proposes a fault discovery model that can
estimate the number of discoverable faults with respect to
the given test resources, the resource allocation strategy,
and the set of modules to be tested.

We extend the exponential Software Reliability Growth
Model (SRGM). The exponential SRGM is one of the
nonhomogeneous Poisson process (NHPP) models, and it
is also known as the Goel-Okumoto model [5]. We decided
to use this model because it is the simplest NHPP model
that has a constant fault detection rate (CFDR) per one fault
at an arbitrary testing time [33], which means parameter
estimation is much easier than other SRGMs. The exponen-
tial SRGM represents the relationship between testing time
(effort) and the cumulative number of detected faults as
shown in

H(t) = a[l — exp(—0bt)]. (1)
H(t): Expected value of the cumulative number of faults
detected by a given testing time (effort).
t : Testing time (effort).
b : Probability of detecting each fault per unit time.
a : The number of initial faults before testing.

In this model, b denotes the ease of finding a fault in
software. In our case, b must be individually defined for
each module since modules are different in size and
complexity. However, the estimation of b for every module
is practically impossible since we have 36 modules in the
test dataset and more than half of them contain no faults.
Alternatively, simply using the same b for all modules is
inadequate because some modules are much larger than
others, and thus the ease of finding a fault varies widely
among modules (e.g., a fault in 10 lines of code is much
easier to find than one in 1,000 lines of code).

As a feasible way to handle this problem, this study added
amodule size parameter to b so that the ease of finding a fault
became dependent on the size of the target module.

Equation (2) is our extended SRGM that computes
discoverable faults in the ith module based on the given
test effort and module size:

Hz(tl) = LLZ[]. - exp(—biti)], bL = bo/SL (2)
Hi(t;): Expected value of the cumulative number of
faults detected by a given testing time (effort) of
module m;.
t; : Testing time (effort) of module m;.
b; : Probability of detecting each fault per unit time
(effort).
a; : The number of initial faults in module m; before
testing.

1349

Hy(n)

i

i

Fig. 2. Example of fault discovery curves for different module sizes.

S; : Size of module m;.
bo : Constant.

In this model, the fault-detection rate is inversely
proportional to the module size. We assume that all
modules have the same parameter by, that is, given a
certain amount of test effort, the ease of finding a fault
becomes the same if the module size is the same. Similarly,
for example, a double size module requires twice the test
effort to find the same number of faults (Fig. 2).

Note that there is no direct relationship between the
predictor variables of fault prediction models and the fault
discovery model because these variables are used to express
“how faulty a module is” while the fault discovery model
expresses “how difficult it is to find a fault in a module.”

4.3 Parameter Estimation

Before using our extended model (2), we need to estimate a;
and by from the available data in acceptance testing.
Obviously, the true value of a; is unknown because we
will never be aware of faults remaining in software after
testing. (Note that there is no test that can find 100 percent
of defects.) This study assumes, for example, 0.5 faults per
KSLOC are still remaining in new/modified code, and 0.05
faults per kSLOC in reused (i.e., not modified) code after
testing. Since we have no evidence to say 0.5 and 0.05 are
correct, we conducted simulations with several different
percentages in Section 5. We refer to these percentages as
remaining fault rates R; (in new/modified code) and R; (in
reused code). Then, q; is estimated by the following:

Snew Sre11,(eed
;= H; + Ry — Ry 3
=it o0 T 000 ®)

where H; is the actually detected faults in the ith module,
St is the lines of new/modified code of the ith module,
and Srewsed s the lines of reused code of the ith module.

Next, we need to estimate by, which indicates the fault
detection rate per unit effort, from actually allocated test
effort and faults detected. Since the time series data of test
effort and detected faults were unavailable, this study
conducted a rough estimation of b. Specifically, from (2),
we consider the following equation holds for a collection
of modules:

Htotal = atotal[l - exp(f(bO/Stotal)ttoml)]7 (4)

1350

_ Fit dataset (release 1-4)
{ * Module metrics)
i+ # of faults found in
i acceptance testing

Build fault-prone
module prediction
models

* Module metrics
of faults found in
acceptance testing

i ¢ Actual effort 7, ...7,
!+ Actual detected faults
L H,..H,

' Module size S|, ...S,

* Remaining fault rates
R, R,

Estimate
a,,...,a,and b,

»

Compute Ay, ...
m,
by equation (2)

Fig. 3. Simulation procedure.

where Sy, is the total size of all modules, ¢, is the total
test effort, Hy., is the total number of detected faults, and
Atotal = Z?:l Q.

From (4), by is computed as follows:

bO = 7St0tal/ttotal : 10g(1 - Ht,ot,al/atotal)- (5)

4.4 Simulation Procedure

Fig. 3 shows our simulation procedure. In Step 1, we build
the fault-prone module prediction models from the fit data
set, followed by Step 2, which conducts prediction using the
test data set. Next, in Step 3, given the prediction results
and affordable (total) test effort, the allocated test effort for
each module is computed based on the given test effort
allocation strategy (in Section 4.1).

On the other side, Step 4 estimates parameters by, and
ai,...,a, of (2), and finally, in Step 5, the expected number
of discoverable faults in each module H; is computed based
on the allocated test effort ¢1,...,t, given from Step 3.

Our goal was to find a test effort allocation strategy that
maximized the total discoverable faults H,y (=30, H)
with respect to the affordable (total) test effort. Therefore,
we conducted Steps 1,...,5 for different effort allocation
strategies and total test effort levels. We also conducted the
procedure with different remaining fault rates R; and R
because the true values are unknown.

4.5 Evaluation Criteria of Fault Prediction

We need to evaluate the accuracy of fault prediction in
Step 3 since it greatly affects the simulation result.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10,

OCTOBER 2013

prediction
models

Conduct
prediction

« #of predicted

; faults m,,...m,

e Predicted fault

! densities d,,...d,

Compute testing
effort for each
module

» Test effort allocation
strategy
» Total testing effort

Allocated testing
effort #,,...1,

-

Obviously, if the prediction accuracy is very low, then test
strategies B1,...,B4 that rely on the prediction cannot
discover many faults.

Among various evaluation measures such as recall,
precision, F-value, Alberg diagram [23], and ROC curve
[16], we decided to use the normalized P, [9], [18] because
it can evaluate the prediction performance in terms of testing
effort. P, is defined as 1 — A,,, where A, is the area
between the LOC-based cumulative lift charts of the optimal
model and the prediction model (Fig. 4). In this chart, the
z-axis is considered as the required test effort and the y-axis
is the maximum number of discoverable faults by the

1.00 —

3
wn
|

Optimal (bug density
based module order)

o
th
1

—— Prediction Result

o
L

T T T T T 1
0 2 A 6 8 10
The ratio of cumulative SLOC to total SLOC

The ratio of cumulative faults to total faults
. " .
]

Fig. 4. Example of LOC-based cumulative lift chart (from [9]).

MONDEN ET AL.: ASSESSING THE COST EFFECTIVENESS OF FAULT PREDICTION IN ACCEPTANCE TESTING

100% - —_

4 —/
4
- /
90% ” 7/
80% ;7 ——
70% ’,’ -
) 0, Y] ‘ 7
) 60% / / r-: 7 === Optimal
2 50% |4—p— .
3) / P Linear Regression
& 40% H— 2 /
30% "7 // Random Forest
20% I /F —— - CART
10% |-
0% U
0% 20% 40% 60% 80% 100%
SLOC (%)

Fig. 5. LOC-based cumulative lift chart (fault density models).

assigned test effort. Since the x-axis indicates the cumulative
size of modules, test effort is assumed to be proportional to
the size in the LOC-based cumulative lift chart.

Then, the normalized P, is defined as

Popt — min(P,,pt)

Norm(Pop) = ’
orm(Popt) max(Pypy) — min(Popy)

(6)

where maxz(P,,) and min(F,,) are calculated on the LOC-
based cumulative lift chart in which all modules are
ordered by predicted fault density. Here, maxz(P,y) is
always 1 because A,,; =0 for an ideal curve. To compute
min(P,y), we consider the worst case of prediction,
i.e,, modules are ordered in the z-axis by the actual fault
density in the “increasing” order.

In contrast to Norm(P,,), other measures such as ROC
curves evaluate the prediction performance based on the
assumption that the test effort is the same across modules,
but this assumption is rarely true in many cases.

5 CAasE StuDY

5.1 Simulation Setting

5.1.1 Test Effort

In this study, we measured the test effort as the number of
test cases instead of person-hours. This implies that the test
cases are (approximately) equal in the sense that one
person-hour of test effort is equal to another person-hour of
test effort. However, we believe using the number of test
cases (as the unit for test effort) is preferable to represent the
real-world relationship between the test effort and the
probability of fault discovery because a fault is discovered
by executing a test case. Also, from the perspective of test
planning, the company demanded to know the number of
required test cases for each module rather than the effort
(person-hours) itself.

In our simulation, we used total test effort ¢;,;,; from zero
up to 200 percent of the actual effort (test cases) of this
project, and computed the total discoverable faults ﬁt,,mz
with respect to the prediction result and test effort
allocation strategy.

5.1.2 Remaining Fault Rates

In this case study, we examined three cases of remaining
faults rates: (R, Ry) =(1,0.1),(0.5,0.05),(0.3,0.03). The

1351
100% —— —————pr
90% s =
80% L /4. A
4
70% -7
< 0% £ / 7
L /] / / N === Optimal
2 50% — 4
3 . / . e inear Regression
£ 40% / 7
30% /7 Random Forest
20% e « CART
10%
0%
0% 20% 40% 60% 80% 100%
SLOC (%)

Fig. 6. LOC-based cumulative lift chart (fault count models).

estimated parameter b, for these cases are by = 45.2,64.0,
79.3, respectively.

According to the IPA/SEC White Papers on Software
Development Projects in Japan [7], the average fault rate
found in six months after release (i.e., after acceptance
testing) is 0.967 per kSLOC in 2-tier client server systems
and 0.156 per kSLOC in enhancement projects. Therefore,
we consider our R; and R, values are close to realistic.

5.1.3 Model Construction and Prediction

As described in Section 3, three modeling techniques,
random forest, linear regression, and CART (regression
tree), were used to construct prediction models from the fit
data set of 138 modules. For each modeling technique, we
built two models that predicted the fault density and the
number of faults, respectively. Afterward, the prediction
was conducted using the test dataset of 36 modules.

To build prediction models, we used the statistical
computing and graphics toolkit R [25] and its MASS, rpart,
and randomForest libraries. In linear regression, forward-
backward variable selection based on AIC was applied. In
CART, to control the tree growth we used the default
parameter values of rpart library, which can be seen by
“help(rpart.control)” command in R. Details of how
parameter works can be seen in paper [30]. In random
forest, we also used the default parameter values of
randomForest library, for example, the number of trees to
grow ntree = 500, and the number of variables randomly
sampled as candidates as each split mtry = sqrt(p), where
p is the number of predictor variables.

5.2 Prediction Accuracy

Figs. 5 and 6 show the prediction accuracy as an LOC-based
cumulative lift chart. Fig. 5 shows the cases with fault
densities directly as predicted (we refer to these as fault
density models), and Fig. 6 shows the cases with the number
of faults as predicted, then divided by the module size (we
refer to these as fault count models). Table 3 shows the results
by the Norm(FP,,) measure.

Interestingly, the two types of prediction (fault density
and fault count) showed quite different results. The reason
is not totally clear, but this may have happened because
even the simple log-transformation of variables can lead to
different results [13]. Indeed, the fault density and the
fault count each have different value distributions, and

1352

TABLE 3
Prediction Accuracy by Norm(Py,)

Prediction type | Modeling technique Norm(Popt)

Random forest 831
Fault density Linear regression 633

CART 539

Random forest 781
Fault count Linear regression .818

CART 723

models are adjusted to minimize the mean squared error
of each distribution.

Among the fault density models (Fig. 5), the random
forest showed the best performance (Norm(P,,) = 0.831),
while the linear regression (0.633) and CART (0.539) were
far beyond it. On the other hand, among the fault count
models (Fig. 6), the linear regression showed the best (0.818)
and others also showed comparable performances (0.781
and 0.723).

We consider that the random forest’s Norm(P,,;) = 0.831
and 0.781 are comparable to past results. Kamei et al. [9]
evaluated the performance of package-level prediction for
three datasets, and showed that Norm(P,,) was 0.51 in the
worst case and 0.89 in the best case (average was 0.73) when
they conducted cross-release prediction using random
forest with package-level product and process metrics.
Our result with random forest is close to the best case of
Kamei et al.’s result [9].

In addition, it should be noticed that the prediction
accuracy of all models (random forest, linear regression,
and CART) may not be stable, i.e., it greatly depends on the
dataset (project) [9]. One possible way to handle such
instability is to conduct a pilot prediction using past release
data of a project to make sure reasonable prediction
accuracy can be expected in that project.

5.3 Results of Simulation

Here, we present the results of simulation with respect to
our research questions.

(RQ1) What is the appropriate strategy to allocate test effort to
each module after prediction?

Fig. 7 shows the simulation results that compare the
seven test allocation strategies when using the best fault
prediction model (random forest, Norm(P,,) = 0.831).
Figs. 7a, 7b, and 7c show results with different (R;, Rz). In
these figures, the z-axis shows the total test effort ¢, in
percentage where ¢,y = 100% means that test effort is
equal to the actual effort of this project. The y-axis shows the
total discoverable faults I:It,,m; in percentage where Hypur =
100% means that Hj. is equal to the actual discovered
faults Hyopq-

From Figs. 7a, 7b, and 7c, the following trends were
observed for each strategy:

o Strateqy Al (equal effort). This strategy worked well
only if the test effort is extremely limited (¢;01 < 10%).
o Strategy A2 (effort o« module size). This is a basic
strategy that can discover 100 percent faults by

g

Total Discoverable Faults /.. (

-

Total Discoverable Faults /7,,,,;(%)

Total Discoverable Faults /(%)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

140%
120% e
el ™"

;-"' e

100% gt a8 et

a"‘,*.
’ «" sy 355
80% ’ - ’?.97‘ ’ oAl
! TS
F yett, -
-y -
60% & T poe
ol
40% e o
v A -~ B2
P
20% - B3
I B4
o% 4 —
0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Total Testing Effort 7,,,,; (%)

(a) Simulation with (R, Rz) = (1, .1)

120%
I ¥ 7 & .
100% 21 e
v ’._..ol_., "
- .l ..f?-
80% A ent o
4 [] ¥
‘. ..',. i = A2
60% St
&f X A3
..0!'
N B1
0% %
7 B2
20% |44 - B3
» B4
0% +
0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Total Testing Effort 7,,,,; (%)

(b) Simulation with (R:, Rz) = (.5, .05)

120%
100% porert S RERTTTT —
a® '..¢°’: ,,,,,
2, .l'.o"'.“ -
80% S sy ~ Al
s
X = A2
i m gt
60% VA P
o8
40% | 42u 61
i . = B2
20% P B3
.‘. B4 |
0% # —
0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Total Testing Effort 7,,,,; (%)

(c) Simulation with (R:, Rz) = (.3, .03)

Fig. 7. Comparison of effort allocation strategies.

100 percent test effort (note that this relationship can
be derived from (2) and (5)). This strategy showed
the best performance if a system requires extremely
high reliability and a huge test resource is available
(trotat = 200%). Strategies Bl and B4 also showed
comparable performance for ¢, = 200%; however,
from the point of view of cost effectiveness, Bl and
B4 should not be used because they require fault
prediction, while A2 does not. This implies that fault
prediction is useless when plenty of test resources
are available.

MONDEN ET AL.: ASSESSING THE COST EFFECTIVENESS OF FAULT PREDICTION IN ACCEPTANCE TESTING

o Strategy A3 (effort < new/modified size + 0.1 x reused
size). This strategy outperformed A2 when ¢y <
80%. In case of tiyq = 100%, this strategy still
outperformed A2 when (R1,R2) = (1,0.1), while it
underperformed A2 when (R1,R2)=(0.3,0.03).
This indicates that strategy A3 should be used
instead of A2 when strategy A2 overlooks many
faults in new/reused code.

e Strateqy B1 (effort o predicted faults). This strategy
outperformed strategies Al, A2, and A3 except for
the situation of a huge test resource (¢ = 200%).
This confirmed that the actual engineers’ strategy to
allocate quality assurance resources based on the
number of expected bugs is reasonable [17].

e Strategy B2 (effort o< fault density). This worked well
only if the test effort is very limited (¢ < 10%).
Otherwise, this is the worst strategy. From a further
analysis, we found that this strategy did not assign
enough effort to large modules; thus, faults in large
modules were not discovered. This happened
because large modules had much lower fault
densities than small modules, which corroborates
observations in past studies [3], [15].

e Strateqy B3 (effort o< predicted faults x module size).
This was not workable at all. This result is somewhat
surprising because this strategy is a combination of
A2 and B1, both of which performed much better.
From a further analysis, we found that there exists a
very small module (less than 50 SLOC) containing
four faults, and only a small amount of test effort
was assigned to the module because the prediction
model concluded there would be less than one fault.
This indicates that strategy B3 is too sensitive to
faulty prediction in small modules.

e Strategy B4 (predicted faults x log(module size)). This
showed slightly better performance than strategy Bl
when ¢, is larger than 60 percent. Therefore, if we
consider reducing the test effort up to 40 percent,
then B4 is the best strategy.

From these results, answers to RQ1 are as follows:

e Strategy Bl and B4 are the two best strategies that
can possibly reduce the test effort.

e In the case where there is plenty of test effort
available, the basic strategy A2, which does not
rely on the fault prediction, was the best. This
implies that for extremely high-reliability systems
such as aerospace systems, we should not rely on
fault prediction (because any prediction involves
prediction error, and the prediction itself requires a
significant amount of cost.) In addition, we should
not apply fault prediction to extremely low-
reliability systems. For example, if most of modules
contain faults, we do not need to predict which
module is faulty.

e In a case of extremely limited test effort, one can
consider using strategy B2 (or Al).

Note that these results use the high prediction accuracy
model (Norm(P,,) = 0.831). We will explore with different
accuracies next.
(RQ2) What is the required level of prediction accuracy?
Tables 4a, 4b, and 4c show the required test effort ;4 to
detect as many faults as the actually discovered faults for

1353

different (R, Ry). In all cases, strategy B4 showed better
performance than strategy Bl (as well as all other
strategies). Therefore, we concluded that B4 was the best
strategy in this case study. When using strategy B4,
the random forest model in fault density prediction
(Norm(P,p) = 0.831) showed the most stable results, which
saved 24 ~ 25 percent effort, regardless of the remaining
fault rates (Ry, Ra).

We see that the accuracy measure Norm(P,,) and the
required testing effort are not consistent, i.e., higher
Norm(P,,) does not necessarily mean lower testing effort.
For example, in the case of (R;,R:) = (0.5,0.05), the
Norm(P,,) = 0.539 case performed better than the
Norm(F,p) = 0.633 case when using strategy Bl or B4. Also,
for some models, required testing effort became extremely
large as the remaining fault rates (R;, R;) became smaller.
Typically, the linear regression model in fault count
prediction (Norm(P,,) = 0.818) with strategy B4 saved
26 percent effort when (R, Ry) = (1,0.1), but this model
even increased the effort when (R, Ry) = (0.3,0.03). These
results imply that we cannot rely on the measure Norm(P,,;)
solely because the required testing effort depends on not
only the prediction accuracy, but also the prediction type,
the modeling technique, the test strategy, and the remaining
fault rates (Ri, Rs). This means simulation of test effort
allocation is definitely needed before applying any test
strategy based on the fault prediction.

However, to answer RQ2, we could consider the fact
that there was no chance to save testing effort when
Norm(P,y) < 0.781 for any cases (Ri,Ry)=(0.3,0.03),
(5.0,0.05), or (1,0.1). As an answer to RQ2, we suggest
around Norm(P,,) = 0.78 as the lower bound to consider
using the prediction result. At the same time, we also warn
that Norm(P,,) > 0.781 does not mean there is always a
chance to save testing effort, as we see the linear regression
model (of Norm(P,,) = 0.818) could not save effort at all
when (R;,Ry) = (0.3,0.03). Therefore, we warn that the
suggested required accuracy Norm(P,y) =2 0.78 is just a
rough idea and is not the true lower bound. Also, note that
this is basically a preliminary example which needs to be
repeated on other systems to assess its general validity.

(RQ3) How much is the test effort reduced by the prediction?
And, how much effort is needed to conduct prediction?

As shown in Table 4, the maximum test effort we could
save in this simulation was 25 percent when we employed
the most stable model (the defect density model of random
forest) and strategy B4.

Regarding the effort needed to conduct prediction, the
company required about 6 percent of the total test effort
for metrics collection, data cleansing, and modeling. (Note
that this 6 percent does not include the cost required to
develop the source code measurement tool.)

Therefore, 25% — 6% = 19% effort could be saved with
our best prediction model.

5.4 Analysis

This section tries to clarify the important metrics in our
fault prediction model. We analyze the impact of the
metrics by IncNodePurity, which is the mean decrease in
node impurity of a random forest model [4]. A higher

1354

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39,

NO. 10, OCTOBER 2013

TABLE 4
Required Test Effort to Discover 100 Percent Faults

(a) Simulation with (R, Rz) = (1, .1)

Prediction type | Modeling technique | Normi (P o) Required testing effort fror (%)
Al A2 A3 Bl B2 B3 B4
Random forest 0.831 [163%| 100%| 91%| 77%]| 232%| 193%| 75%
Fault density |Linear regression 0.633 | 163%]| 100%]| 91%| 139%|[919%| 110%]| 119%
CART 0.539 | 163%| 100%| 91%| 124%| 614%| 147%| 108%
Random forest 0.781 [163%| 100%| 91%| 99%| 470%| 112%| 88%
Fault count Linear regression 0.818 | 163%| 100%| 91%| 80%| 274%| 167%| 74%
CART 0.723 | 163%| 100%| 91%| 110%| 358%| 146%| 102%
(b) Simulation with (Ry, R,) = (.5, .05)
Prediction type | Modeling technique | Norm (P op) Required testing effort fiorar (%)
Al A2 A3 Bl B2 B3 B4
Random forest 0.831] 199%] 100%]| 99%| 78%| 266%)]| 255%)]| 75%
Fault density |Linear regression 0.633] 199%)] 100%] 99%| 195%[1669%]| 131%]| 160%
CART 0.539 1 199%] 100%] 99%| 129%| 750%]| 162%]| 112%
Random forest 0.781] 199%)] 100%] 99%| 105%| 577%)]| 119%] 92%
Fault count Linear regression 0.818 | 199%| 100%] 99%| 96%| 470%)| 248%| 87%
CART 0.723 1 199%)] 100%] 99%| 121%]| 458%]| 160%]| 111%
(c) Simulation with (Ry, Ry) = (.3, .03)
Prediction type | Modeling technique | Norm(P o) Required testing effort /1o (%)
Al A2 A3 Bl B2 B3 B4
Random forest 0.831] 229%]| 100%| 105%| 80%)]| 295%]| 298%| 76%
Fault density |Linear regression 0.633 | 229%]| 100%| 105%| 375%]3213%]| 253%| 311%
CART 0.539 | 229%| 100%| 105%| 132%]| 863%]| 171%| 115%
Random forest 0.781 | 229%]| 100%| 105%| 108%]| 667%]| 124%| 95%
Fault count Linear regression 0.818] 229%| 100%]| 105%| 139%]| 767%)| 383%]| 124%
CART 0.723 | 229%)| 100%| 105%| 127%]| 528%]| 167%| 117%

IncNodePurity indicates that a variable plays a more
important role in a prediction model.

Fig. 8 shows IncNodePurity assigned by the fault density
model of random forest (our best fault density model.)
Abbreviations in Fig. 8 are explained in Table 2. In this case
study, two design metrics, PNOD and APNOD, which are
related to processing nodes in a business flow diagram,
were the most influential factors. Interestingly, the code
churn metrics ADD, DEL, and CHG did not contribute so
much in our case. This suggests that practitioners who want
to reduce the acceptance test effort based on fault prediction
should measure design documents as well as source code.

Table 5 shows the selected (or important) variables in
each model. For random forest, the top five important
variables (in terms of IncNodePurity) are shown. For linear
regression, selected and statistically significant (p < 0.05)
variables are shown. For CART, selected variables are
shown. As shown in Table 5, fault density models and
fault count models showed quite different results. In fault
density models, only PNOD is the common important
variable among three models. On the other hand, in
fault count models, REV and MOD are commonly im-
portant. Four variables AMOD, PAGE, NBD, and VG were
not selected in all models; however, their related variables
MOD, APAGE, ANBD, and AVG were all selected in one
of the models. These results indicate that practitioners who
want to conduct fault prediction should not reduce the

number of variables because a variable that is not useful in
some model could be useful in other models. It is important
future work to investigate why the selected variables are so
different among the models.

5.5 Threats to Validity

In this section, we discuss the threats to the validity of our
work. The results of this study rely on the fault discovery
model, which we extended from the conventional exponential
SRGM. Since the model is a simple abstraction of real-world

AMOD
PAGE
REV
MOD
NBD
CHG
ADD
AVG

i
DEL |

APAGE
ADNOD
VG
DNOD
TLOC
ANBD
APNOD
PNOD

0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04

Fig. 8. IncNodePurity metrics for each metric in the fault density model of
random forest.

MONDEN ET AL.: ASSESSING THE COST EFFECTIVENESS OF FAULT PREDICTION IN ACCEPTANCE TESTING

1355

TABLE 5
Selected or Important Variables in Each Model
Prediction type| Modeling technique Selected or important variables
Random forest PNOD APNOD |ANBD TLOC DNOD
Fault density |Linear regression ADNOD |CHG DEL PNOD DNOD APAGE
CART DEL TLOC PNOD
Random forest REV AVG CHG MOD DEL
Fault count Linear regression REV ADNOD |APAGE |MOD PNOD DNOD
CART CHG REV MOD ADD

testing, our estimation might be too simplified to match the
actual testing situation. However, because this is the first
attempt to estimate the reduction of test effort by fault
prediction, we expect further research to improve the model
to be more realistic. For example, we might consider using
complexity metrics (e.g., cyclomatic complexity) instead of
module size S; in (2) because more test effort is needed to
discover a fault in a more complex module. But still, we also
believe we will have a very similar result because the
cyclomatic complexity is highly correlated with the module
size (in our case, correlation coefficient = 0.966).

This paper used datasets collected from five releases of
one software project. We need to conduct case studies with
other projects to generalize our results.

This paper compared seven strategies to allocate test
effort to each module. However, these seven are by no
means complete. We need to conduct simulations with
other strategies to find better strategies in the future.

This paper did not consider the severity or the potential
impact of the defect. We found that the severity ratings of
defects are very often subjective and inaccurate; thus, many
researchers do not use the severity in their fault prediction
studies [19]. However, severity is generally important in
prioritizing the test effort; thus, it is our future work to
assess the severity ratings in the simulation model. One
possible suggestion is to build different predictor models
for high-severity defects and low-severity defects, then
conduct simulation for each prediction model.

6 CONCLUSION

To evaluate the cost effectiveness of fault prediction, this
paper compared seven test effort allocation strategies
using the proposed simulation model. Our findings from
a case study in the telecommunication industry include
the following:

e Strategy Bl (test effort o« predicted faults) and B4
(test effort oc predicted faults x log(module size))
were the two best strategies that could possibly
reduce the test effort.

o When there was plenty of test effort available, the
basic strategy A2, with test effort proportional to the
module size (i.e., not relying on fault prediction),
detected the largest number of faults.

e Strategy B2 (test effort oc fault density) worked well
only if the test resource was extremely limited.
Strategy Al (equal test effort to all modules) is also
workable in this situation.

e By using strategy B4 with our best fault prediction
model, it showed that the test effort could be
reduced by 25 percent to detect as many faults as
actual discovered faults, while the company
required about 6 percent of the test effort for
metrics collection, data cleansing, and modeling.

e We suggest around Norm(P,,) = 0.78 as the lower
bound to consider using the prediction results
because there was no chance to save testing effort
when Norm(P,,) < 0.781 for any cases. However,
we also found that Norm(F,,;) is not a reliable
measure, and it should be considered a very rough
idea of the required accuracy.

These results suggest that reduction of the test effort is
achieved only if the appropriate test strategy is employed
with a sufficiently high fault-prediction accuracy. However,
where sufficient data are available to fit a prediction model
and develop good fault prediction accuracy, the appro-
priate test strategy can significantly reduce the necessary
level of test effort while still maintaining the same level of
fault detection or provide a higher level of fault detection
with the same test effort.

While considerable future work is needed to confirm
these results and generalize them, it seems clear that fault
prediction models provide another tool for practitioners to
use in reducing the costs of testing or increasing the quality
produced by testing. Such models help pinpoint where
testing will be most effective in finding and removing
faults. That means the test effort is applied where it can do
the most good, as if the testers had a map showing where
the faults were most likely to be found.

ACKNOWLEDGMENTS

This work was conducted in part in the StagE Project, the
Development of Next Generation IT Infrastructure, sup-
ported by Ministry of Education, Culture, Sports, Science
and Technology, Japan. Also, part of this work was
conducted under Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research (C) (22500028).

REFERENCES

[1] E. Arisholm, L.C. Briand, and E.B. Johannessen, “A Systematic
and Comprehensive Investigation of Methods to Build and
Evaluate Fault Prediction Models,” . Systems and Software,
vol. 83, no. 1, pp. 2-17, 2010.

M. D’Ambros, M. Lanza, and R. Robbes, “An Extensive
Comparison of Bug Prediction Approaches,” Proc. Seventh IEEE
Working Conf. Mining Software Repositories, pp. 31-41, 2010.

V.R. Basili and B.T. Perricone, “Software Errors and Complexity:
An Empirical Investigation,” Comm. ACM, vol. 27, pp. 42-52, 1984.

(2]

B3]

1356

(4]
(5]

(o]

(]

(8]

]

(10]

(1]

[12]

(13]

[14]

(15]

[16]

(171

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(23]

[20]

(27]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 10, OCTOBER 2013

A.S. Foulkes, Applied Statistical Genetics with R. Springer, 2009.
A.L. Goel and K. Okumoto, “Time-Dependent Error-Detection
Rate Model for Software Reliability and Other Performance
Measures,” IEEE Trans. Reliability, vol. 28, no. 3, pp. 206-211,
Aug. 1979.

T.L. Graves, A.F. Karr,].5. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Trans. Software
Eng., vol. 26, no. 7, pp. 653-661, July 2000.
“Information-Technology Promotion Agency, Japan (IPA) Soft-
ware Engineering Center (SEC) ed.,” White Papers on Software
Development Projects in Japan, 2010-2011 Ed., 2010.

Y. Kamei, A. Monden, and K. Matsumoto, “Empirical Evaluation
of SVM-Based Software Reliability Model,” Proc. Fifth ACM/IEEE
Int’l Symp. Empirical Software Eng., vol. 2, pp. 39-41, 2006.

Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams,
and A.E. Hassan, “Revisiting Common Bug Prediction Findings
Using Effort Aware Models,” Proc. IEEE Int’l Conf. Software
Maintenance, pp. 1-10, 2010.

T.M. Khoshgoftaar and E.B. Allen, “Modeling Software Quality
with Classification Trees,” Recent Advances in Reliability and
Quality Engineering, pp. 247-270, World Scientific, 1999.

T.M. Khoshgoftaar, A. Pandya, and D. Lanning, “Application of
Neural Networks for Predicting Program Fault,” Annals of Software
Eng., vol. 1, pp. 141-154, 1995.

S. Kim, E.J. Whitehead Jr., and Y. Zhang, “Classifying Software
Changes: Clean or Buggy?” IEEE Trans. Software Eng., vol. 34,
no. 2, pp. 181-196, Mar./Apr. 2008.

B. Kitchenham and E. Mendes, “Why Comparative Effort
Prediction Studies May Be Invalid,” Proc. Fifth Int’l Conf. Predictor
Models in Software Eng., article 4, 2009.

P. Knab, M. Pinzger, and A. Bernstein, “Predicitng Defect
Densities in Source Code Files with Decision Tree Learners,”
Proc. Third Working Conf. Mining Software Repositories, pp. 119-125,
2006.

A.G. Koru, D. Zhang, K. El Emam, and H. Liu, “An Investigation
into the Functional Form of the Size-Defect Relationship for
Software Modules,” IEEE Trans. Software Eng., vol. 35, no. 2,
pp- 293-304, Mar./Apr. 2009.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Software Eng.,
vol. 34, no. 4, pp. 485-496, July/Aug. 2008.

P.L. Li,]. Herbsleb, M. Shaw, and B. Robinson, “Experiences and
Results from Initiating Field Defect Prediction and Product Test
Prioritization Efforts at ABB Inc.,” Proc. 28th Int’l Conf. Software
Eng., pp. 413-422, 2006.

T. Mende and R. Koschke, “Revisiting the Evaluation of Defect
Prediction Models,” Proc. Int’l Conf. Predictor Models Software Eng.,
pp- 1-10, 2009.

T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum, “Stable
Rankings for Different Effort Models,” Automated Software Eng.,
vol. 17, no. 4, pp. 409-437, 2010.

R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of
the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction,” Proc. 30th Int’l Conf. Software Eng., pp. 181-190,
2008.

J.C. Munson and T.M. Khoshgoftaar, “The Detection of Fault-
Prone Programs,” IEEE Trans. Software Eng., vol. 18, no. 5, pp. 423-
433, May 1992.

N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proc. 28th Int’l Conf. Software Eng., pp. 452-
461, 2006.

N. Ohlsson and H. Alberg, “Predicting Fault-Prone Software
Modules in Telephone Switches,” IEEE Trans. Software Eng.,
vol. 22, no. 12, pp- 886-894, Dec. 1996.

T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Predicting the Location
and Number of Faults in Large Software Systems,” IEEE Trans.
Software Eng., vol. 31, no. 4, pp. 340-355, Apr. 2005.

R. “The R Project for Statistical Computing,” http://www.
r-project.org/, 2013.

E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A.E. Hassan,
“High-Impact Defects: A Study of Breakage and Surprise
Defects,” Proc. ACM SIGSOFT Symp. Foundations Software Eng.,
pp; 300-310, 2011.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes
Induce Fixes?” Proc. Int’l Conf. Mining Software Repositories, pp. 1-5,
2005.

(28]

(29]

(30]

(31]

(32]

(33]

(34]

A. Schroter, T. Zimmermann, and A. Zeller, “Predicting Compo-
nent Failures at Design Time,” Proc. ACM/IEEE Int'l Symp.
Empirical Software Eng. , pp. 18-27, 2006.

H.B. Tan, Y. Zhao, and H. Zhang, “Conceptual Data Model-Based
Software Size Estimation for Information Systems,” ACM Trans.
Software Eng. Methodologies, vol. 19, no. 2, pp. 1-37, Oct. 2009.
T.M. Therneau, E.J. Atkinson, and M. Foundation, “An Introduc-
tion to Recursive Partitioning Using the RPART Routines,”
http://cran.r-project.org/web/packages/rpart/vignettes/
longintro.pdf, 2012.

A. Tosun, B. Turhan, and A. Bener, “Practical Considerations in
Deploying Al for Defect Prediction: A Case Study within the
Turkish Telecommunication Industry,” Proc. Fifth Int’l Conf.
Predictor Models in Software Eng., pp. 1-9, 2009.

B. Turhan, T. Menzies, A. Bener, and J. Distefano, “On the Relative
Value of Cross-Company and Within-Company Data for Defect
Prediction,” Empirical Software Eng., vol. 14, no. 5, pp. 540-578,
2009.

S. Yamada and S. Osaki, “Software Reliability Growth Modeling:
Models and Applications,” IEEE Trans. Software Eng., vol. 11,
no. 12, pp. 1431-1437, Dec. 1985.

T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects for
Eclipse,” Proc. Third Int’l Workshop Predictor Models Software Eng.,
2007.

Akito Monden received the BE degree in 1994
in electrical engineering from Nagoya Univer-
sity, and the ME and DE degrees in 1996 and
1998 in information science from NAIST. He is
an associate professor in the Graduate School
of Information Science at the Nara Institute of
Science and Technology (NAIST), Japan. He
was a honorary research fellow at the Uni-
y versity of Auckland, New Zealand (2003-2004).
* He is a member of the IEEE, ACM, IEICE,

IPSJ, and JSSST.

Takuma Hayashi received the BE degree in
information science from the Okayama Prefec-
ture University (OPU), Japan, in 2007, and the
ME degree in information science from the Nara
Institute of Science and Technology (NAIST),
Japan, in 2009. He is a member of the staff of
the Nippon Telegraph and Telephone West
(NTT West) corporation, Japan.

Shoji Shinoda received the BE and ME
degrees from Osaka University in 1996 and
1998, respectively. He is currently with NTT
West R&D Center.

Kumiko Shirai graduated from Keio University,
Japan, in 1998. She is a researcher at the R&D
Center, NTT West. She received the best
presentation award of the 62nd National Con-
vention of IPSJ in 2001, and the Young
Researcher Award of the 10th IPSJ Special
Interest Groups (SIG) on Distributed Processing
System (DPS) Workshop in 2002.

MONDEN ET AL.: ASSESSING THE COST EFFECTIVENESS OF FAULT PREDICTION IN ACCEPTANCE TESTING 1357

Junichi Yoshida received the BE and ME
degrees from Ehime University in 1994 and
1996, respectively. He is an engineer at the NTT
West R&D Center at Osaka, Japan. He joined
the NTT Network Service System Laboratories,
Tokyo, Japan, in 1998, where he was engaged
in the development of a ATM switching system
and a 10-Gb/s firewall system for network
security in Photonib Era. He is currently en-
gaged in development of client application with
the NTT West R&D Center.

Mike Barker is a professor in the Graduate
School of Information Science at the Nara
Institute of Science and Technology, Japan.
His career has been in software development
and project management, with almost two
decades spent in higher education at MIT and
NAIST. He is a long-term member of the ACM,
the IEEE, and is a PMP-certified member of PMI.

Kenichi Matsumoto received the PhD degree
in information and computer sciences from
Osaka University. He is a professor in the
Graduate School of Information Science at yjr
Nara Institute of Science and Technology,
Japan. His research interests include software
measurement and software process. He is a
senior member of the IEEE, and a member of
the ACM, the IEICE, and the IPSJ.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

