
Patch Reviewer Recommendation in OSS Projects

John Boaz Lee

Information Systems and Computer Science Dept.
Ateneo de Manila University

Quezon City, Philippines
jlee@ateneo.edu

Akinori Ihara, Akito Monden, and Ken-ichi Matsumoto

Graduate School of Information Science
Nara Institute of Science and Technology

Ikoma City, Japan
{akinori-i, akito-m, matumoto}@is.naist.jp

Abstract—In an Open Source Software (OSS) project, many
developers contribute by submitting source code patches. To
maintain the quality of the code, certain experienced developers
review each patch before it can be applied or committed.
Ideally, within a short amount of time after its submission,
a patch is assigned to a reviewer and reviewed. In the real
world, however, many large and active OSS projects evolve at
a rapid pace and the core developers can get swamped with
a large number of patches to review. Furthermore, since these
core members may not always be available or may choose to
leave the project, it can be challenging, at times, to find a
good reviewer for a patch. In this paper, we propose a graph-
based method to automatically recommend the most suitable
reviewers for a patch. To evaluate our method, we conducted
experiments to predict the developers who will apply new
changes to the source code in the Eclipse project. Our method
achieved an average recall of 0.84 for top-5 predictions and a
recall of 0.94 for top-10 predictions.

Keywords-patch reviewer recommendation; CVS; random
walk; mining software repositories

I. INTRODUCTION

In OSS projects, a core group of developers are granted

certain privileges including the right to modify the source

code of the software. These individuals, also called “com-

mitters”, are usually responsible for the review of software

updates (patches) that other developers submit for inclusion

in the software [21] since they are seen as trusted members

of the community.

In large projects, committers usually have to review many

submitted patches [8]. Moreover, each review often takes a

non-trivial amount of time as the committer has to carefully

check the submitted code for bugs and compliance to coding

standards. For instance, in the PostgreSQL project , the

median time for a committer to review a patch is 508 minutes

which is roughly equivalent to a whole day’s work [9].

Because of this, “reviewers are usually overwhelmed with

the number of patches they have to review” [17] and at times

many patches in OSS development are even left unreviewed

[5], [21].

When a patch is submitted for review, it is not always

immediately clear to whom to assign it to for review. This

may be because the best candidate reviewer (the developer

with commit rights) is busy or may no longer be part of the

Figure 1. A graph can be used to represent a software project, committers
are linked to source codes they have worked on and similar source codes
can also be connected to one another.

project [6].

To help take some load off the developers’ backs, many

recent work have suggested methods to automate certain

parts of the software development process. Several papers

discuss methods that can automatically triage incoming bug

reports to developers with the skills to fix the bug [3],

[11], [15]. A text-based approach to identify the expertise

of developers for bug triaging is proposed in [15] while a

graph model is described in [11]. Similar work has also been

done to automatically detect the code that contains the bug

described in reports [25]. Many works have thoroughly

examined the patch review process. [17] notes that although

the reviewers are primarily responsible for patch reviews, the

process is only successful if there is adequate help from the

community. The mechanisms that defined an effective and

efficient peer review in certain OSS projects were studied in

[20] while [1], [4] studied the different types of commits.

Kagdi and Poshyvanyk introduced a method to recom-

mend a ranked list of developers to assist in performing soft-

ware changes [12]. It is not hard to imagine the use of their

method to recommend reviewers for a patch. Our method,

however, is different from [12] since we use a graph-based

approach in modeling commit history. We believe a graph,

containing developer and source code nodes as well as

their relations, can capture many important interactions in

a software project. Our contributions are as follows.

• A graph-based method for ranking/recommending po-

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.103

1

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.103

1

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.103

1

Figure 2. A namespace-based tree showing some packages and files in the
Eclipse project. The subtree is rooted at the package org.eclipse.debug.ui.

tential patch reviewers is proposed and tested.

• Experiments on data taken from a real world OSS

project demonstrate the efficiency of the proposed

method.

The rest of the paper is structured as follows. In the next

section we talk about the proposed method. In section 3, we

introduce the dataset, describe the experiments and elaborate

on the experimental results. We then conclude the paper with

some suggestions for future work.

II. PROPOSED METHOD

A. Network Based on Commit History

A Content Versions System (CVS) is a system that can

keep a record of all the changes made to a set of files

and is used by developers to collaboratively maintain the

source code for the project. Once a patch has been reviewed

and approved, the reviewer can “commit” the changes to

the corresponding source code. Our idea is to “profile” the

different committers by analyzing their commit history on

the different source codes in the project. We can then create

a system to recommend candidate reviewers for a software

patch by checking committer profiles.

In general, a software project can be modeled as a graph

G = 〈V,E〉 comprised of a vertex set V with n types

of nodes and an edge set E that represents a maximum

of m = n2 relations. In other words, V = ∪n
i=1Vi, and

E = ∪m
i=1Ei.

In this particular paper, we create an undirected network

with V = Vc ∪ Vs where Vc is the set of committers and

Vs is the set of source codes. Furthermore, E = Ec ∪ Er,

where Ec = {〈i, j〉 | i ∈ Vc and j ∈ Vs or vice versa} is

the set of edges between committers and code denoting an i
“commits to” j relationship. Er = {〈i, j〉 | i, j ∈ Vs} is the

set of edges connecting two source code entities capturing

the relationship i “is related to” j. An illustration is shown

in Fig. 1.

The first kind of relationship, Ec, is actually quite straight-

forward and can be observed by analyzing the CVS commit

history of a software project. Er, however, is a little ambigu-

ous as many different measures can be proposed to capture

similarity between source code files.

Figure 3. The similarities of source codes in three related modules based
on commits by different developers.

Fig. 2 shows an example of a tree that can be created

based on the namespaces of files in a project. In our

work, we use a simple heuristic to measure relatedness,

the similarity of two source code files is simply the length

of the shortest path between them in the tree divided by

two. For instance, AbstractLaunchHistoryAction.java and

ToggleWatchpointActionDelegate.java have similarity of 1

while the the latter’s similarity with WorkingSetSource-
Container.java is 2. An edge can then be drawn between

two source code entities if their similarity is below some

threshold. It is not hard to imagine the use of measures

based on LSI [24], LDA [10], or common committers too

and an interesting area for future work would be to identify

the efficiency of various source code similarity measures on

different datasets.

B. Committer Recommendation in Commit History Network

Given, as input, the commit history graph G = 〈V,E〉,
a source code s ∈ Vs, and a positive integer k ∈ N, our

task is to return a sequence of committers (c1, ..., ck), where

ci ∈ Vc for 1 ≤ i ≤ k, that are most qualified to review and

commit a patch on the source code s.

To validate our method, we create G based on the CVS

commit history of an OSS project for some time period t
and predict the set of committers (c1, ..., ck) for source code

s where 〈ci, s〉 /∈ E but is expected to appear in some future

time period t′. In other words, we validate the efficiency of

our recommendation method by predicting future committers

to a source code based on the current commit history graph.

We chose to predict future committers, because as men-

tioned above, committers are also often tasked with the

job of reviewing new patches. Also, the act of committing

changes to a file can be viewed as a sign of a committer’s

suitability to review patches for the said file.

C. Edge Weighting Method

We now describe two simple ways to add weights to the

two kinds of edges described earlier.

222

1. Source-Developer Edge. Developers may have the right

to commit to a large set of source codes but may spend

majority of their time on a certain subset. This should be

reflected by adding weights to the edges between source

codes and committers. w(c, s) is the function that calculates

the weight of an edge between a committer node c and

a source code node s. In this work, w(c, s) is simply the

aggregate number of lines changed by the committer c when

committing patches to the source code c during the time

window t. If w(c, s) = 0, then no edge exists between c
and s; otherwise, an edge with weight w(c, s) can be found

between nodes c and s.

2. Source-Source Edge. Not all sources are equally related,

some may be more related than others. To capture this, we

define w′(s, s′) that measures the similarity of two source

codes s and s′. In this work w′(s, s′) = l(s,s′)
2 where l(s, s′)

is the length of the path from s to s′ on the namespace-based

tree in Fig. 2. Similarly, no edge exists between s and s′ if

w′(s, s′) = 0; otherwise, edge 〈s, s′〉 has weight w′(s, s′).
At this point, we would like to talk briefly about the

reason why we chose this simple weight function instead

of using a text-based method like LSI [24]. In the ex-

periments we conducted, we actually used LSI to weight

edges between source codes but contrary to our intuition it

actually decreased the accuracy of our method. This led us

to believe that committers in our test dataset (Eclipse) are

actually responsible for logical groups of code partitioned

by namespace (or packages in Java).

To evaluate this hypothesis, we represented each source

code as a vector v with the component vs,i containing the

aggregate lines added by developer i to source s. We then

used MDS [13] to reduce the dimensions to 2-d. Fig. 3 shows

the result of MDS on the source codes in three related mod-

ules: *ant.internal.ui.dtd.util, *.ant.internal.ui.editor.outline,

and *.ant.internal.ui.console. It is interesting to note that

even though these are all UI related modules, different sets

of developers seem to be working on the source files in the

three modules. We believe that this seems to indicate that

the area of responsibility of an OSS project committer may

be more module-based although further studies should be

made to verify this.

D. Random Walk Based Algorithm for Reviewer Recommen-
dation

To be able to run a random walk on a graph, the graph

must first be turned into a Markov Chain [22]. To do this

we create a stochastic matrix by normalizing the weights of

all edges. Since our graph G is a connected, non-bipartite,

and undirected graph, it can be shown that the markov chain

over it is irreducible and aperiodic [2]. Thus, by the Perron-

Frobenius theorem [7], it is clear that the random walk on

G will converge to a stationary state which corresponds to

the left eigenvector of the stochastic matrix.

The normalized edge weight W (c, s) of the edge 〈c, s〉

from a committer c to a source code s is defined as follows.

W (c, s) =
w(c, s)∑

s′∈Ncode(c)
w(c, s′)

where Ncode(c) is the set of all source codes that are directly

connected to c.
The normalized edge weight W (s, ·) of an edge 〈s, ·〉 from

a source code s to another node can be defined as follows.

W (s, s′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λw′(s,s′)∑
ŝ∈Ncode(s) w

′(s,ŝ) : if |Ncode(s)| > 0 and

|Ndev(s)| > 0;
w′(s,s′)∑

ŝ∈Ncode(s) w
′(s,ŝ) : if |Ncode(s)| > 0 and

|Ndev(s)| = 0;
0 : otherwise.

W (s, c) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1−λ)w(c,s)∑
c′∈Ndev(s) w(c′,s) : if |Ndev(s)| > 0 and

|Ncode(s)| > 0;
w(c,s)∑

c′∈Ndev(s) w(c′,s) : if |Ndev(s)| > 0 and

|Ncode(s)| = 0;
0 : otherwise.

where Ndev(s) is the set of committers that are neighbors

of source code s and λ = [0, 1] is a parameter that is used

to indicate how much priority is given to a certain kind of

link.

To perform reviewer recommendation for a patch to be

applied to a source file s, we use a random walk process

similar to the process described in [14]. The process is

started from a single query source code s and once the

random walk has converged, the stationary random walk

probabilities from s to the committer nodes in the network is

considered the likelihood of a link occurring between s and

the respective nodes in the future. The higher the random

walk probability from s to a committer c is, the more suitable

c is as a potential reviewer of a patch for s as c’s activities

relate it closely to s.

To calculate the random walk probabilities from a query

node s∗ to the rest of the nodes in the network, we iteratively

apply the following process.

r〈t〉s = (1− p)
∑

s′∈Ncode(s)

W (s′, s)r〈t−1〉
s′

+ (1− p)
∑

c′∈Ndev(s)

W (c′, s)r〈t−1〉
c′ + pr〈0〉s

r〈t〉c = (1− p)
∑

s′∈Ncode(c)

W (s′, c)r〈t−1〉
s′

where the vector components r
〈t〉
s and r

〈t〉
c hold the random

walk probabilities, after the tth iteration, from s∗ to source

code node s and committer node c, respectively. Before the

process is started, the vector r〈0〉 has all its components

333

initialized to zero except for r
〈0〉
s∗ which is set to 1. In

the succeeding time steps, the random walker then begins

to explore the graph. The parameter p here is the restart

probability and the higher its value the more likely the

random walker will restart at the query node which, in turn,

confines the random walk to a more local neighborhood

(relative to s∗).
Below is a short summary of the proposed method.

Algorithm 1 Random Walk Algorithm

1. Input: The network G = 〈V,E〉 based on CVS commit

history, a source code s∗ ∈ Vs, and parameters λ and p.

2. Assign weights to the edges in G and normalize values.

3. Create the random walk vector r and set r
〈0〉
s∗ = 1 and

r
〈0〉
s′ = 0. Set r

〈0〉
c = 0 for all committer nodes c ∈ Vc.

Iterate to update r until values have converged.

5. Select all committers c where c /∈ Ndev(s
∗) and order

the selected nodes by decreasing r
〈∗〉
c , where r

〈∗〉
c is the

stationary random walk probability from s∗ to c.
6. Output the sequence as the recommended set of review-

ers for a patch in source code s∗.

E. Some Advantages of Graph Approach

To the best of our knowledge, this is the first work that

explicitly tackles the problem of recommending reviewers

for a software patch. While one can certainly apply the

algorithms for assigning bug fixers to the problem we study

here, we argue that a graph approach also has its advantages.

Studies have shown that graph-based metrics can tell us

important things about a piece of software [18].

If a patch consists of changes to a single source file, it

is intuitive to identify the reviewer from among the past

reviewers assigned to the source file. However, as is the

case often, a patch consists of changes to multiple source

files and often times no single reviewer has had the chance

to review all the source files before.

In such a scenario, a graph approach is quite suitable. All

we would have to do is replace the query node s∗ with a set

of query nodes S, and distribute the starting random walk

probabilities among all si ∈ S, for 1 ≤ i ≤ |S|, such that∑|S|
i=1 r

〈0〉
si = 1. Our approach would then still be able to

identify the developers that are most suitable to review the

patch given all the affected source files. Note that S does

not necessarily have to contain a uniform distribution and

can depend on the importance of the affected source files.

Meneely et al. [16] discovered that a developer network

can be used as an estimate for developer collaboration. While

developer collaboration is important in reviewer recommen-

dation, an advantage of our graph approach is that the system

can be quickly extended to include other types of nodes to

allow for even richer analysis.

Figure 4. Average number of iterations for the random walk process to
reach the stationary state.

III. EXPERIMENTS AND RESULTS

A. Dataset

We gathered all commit logs for patches committed to the

Eclipse project between June 30, 2005 and June 29, 2006.

We chose this time-frame because it starts with a major

release of Eclipse and covers the time period until the next

major release. The total number of commits made to the

project was around 26,800. We also downloaded the entire

June 29, 2006 source code snapshot of the project. Over

the one year period, 56 different committers made changes

to 6,178 files found in the snapshot that we downloaded.

The graph that we built had around 10,500 edges and 6,234

nodes. An edge was drawn between two source files if they

were connected by a path of at most length 2 (meaning they

belonged to the same package).

Our snapshot of the Eclipse project contained source files

grouped into 608 packages, the largest package contained

203 source files. Each committer committed changes to

files in 29 different packages on average. A total of 26,794

commits were made during the time period and an average

of around 5 different committers committed patches to each

source file which shows that there is a substantial amount

of overlap in the activities of the developers.

B. Experimental Results
We use the proposed method to recommend the top-k

candidate reviewers for all source codes in the data set and

used precision and recall to measure the relevance of the

recommendations. Prec@k = 1
|S|

∑
s∈S

Pk(s)
k where S is

the set of source codes and Pk(s) is the set of committer

nodes that the algorithm recommended correctly, i.e. these

committers did indeed commit changes to the source code s
in some future time interval. Precision captures the number

of correct recommendations out of all k recommendations.

Recall, on the other hand, can be defined as rec@k =
1
|S|

∑
s∈S

Pk(s)
R(s) where R(s) is the entire set of committers

that eventually committed to the source code s; this captures

the number of correct recommendations over all possible

444

Prec@5 Rec@5 Prec@10 Rec@10
Sep 2005 (1) 0.227/0.241 0.943 0.116/0.120 0.954
Oct 2005 (2) 0.211/0.228 0.932 0.110/0.114 0.963
Nov 2005 (1) 0.172/0.213 0.801 0.089/0.107 0.828
Dec 2005 (1) 0.194/0.228 0.768 0.106/0.114 0.837
Jan 2006 (5) 0.167/0.211 0.797 0.089/0.106 0.841
Feb 2006 (4) 0.167/0/219 0.756 0.104/0.109 0.951
Mar 2006 (4) 0.164/0.212 0.773 0.100/0.106 0.945
Apr 2006 (1) 0.197/0.212 0.911 0.103/0.106 0.960
May 2006 (1) 0.191/0.206 0.930 0.102/0.103 0.992
Jun 2006 (2) 0.195/0.216 0.900 0.107/0.108 0.991

Weighted Ave 0.183/0.215 0.843 0.101/0.107 0.937

Table I
PRECISION AND RECALL FOR RECOMMENDED COMMITTERS IN

DIFFERENT MONTHS. NUMBER OF PREVIOUS MONTHS USED TO BUILD

THE GRAPH IS IN PARENTHESES. MAXIMUM POSSIBLE PRECISION,
WHICH IS THE PRECISION SCORE IN THE OPTIMAL CASE, IS ALSO

SHOWN FOR COMPARISON.

correct recommendations. We use precision and recall

in lieu of accuracy because, in this case, true negatives

outnumber true positives substantially. An example of an

inefficient method with high accuracy is one that predicts

zero new committers for all source files since there is only

a small number of new committers for each source file.

We attempted to predict all new committers to the source

codes for each month from September 2005 to June 2006.

We did not do the experiment for the months of July and

August because there was insufficient prior data to build the

graph. For each month, we built a graph based on commit

history from the previous months and used the proposed

method to predict committers to each of the source code in

the current month. Predicted committers for a source code

are those who have never committed to it in the commit

history of the previous months which we use to build the

graph.

Table 1 displays the precision and recall for the top-k

recommendations for each month. Note that in most cases,

we only use commit history from the last 1 or 2 months to

build the graph for recommendation. This may seem counter

intuitive at first as less information about past activities could

affect our prediction of future activities. However, in the

Eclipse dataset, we have found that using the most recent

history actually improves the recommendation. This may be

because it captures the current profile of the committers. This

seems to show that the area of responbility of developers in

the project tend to evolve over time.

It is interesting to note that the method already predicts

around 84% of all committers correctly in the top-5 rec-

ommendations, this is further increased to 94% for top-10

recommendations.

As expected, precision is rather low since, on average,

only one new committer changes each source file. For top-

5 predictions, the average number of true positives is 1.

Even though around 80% of all recommended developers

are considered false positives since they did not edit the

code during the test period, their activities are actually quite

similar to real committers. In fact, 33% of all the false

positives in September committed to the source code much

later. On the other hand, true negatives account for 77%

of all non-recommended reviewers which shows the strong

negative predictive value of the model.

In lieu of precision, one good measure of efficiency in this

case is search length which can be defined as the average

rank of each successfully recommended committer. A good

algorithm would have search length close to 1 (in this case)

which means the true positives were ranked highly in the

recommendation. Our method had a search length of 2.11

and 2.66 for k = 5 and k = 10, respectively. This shows

that most true positives were ranked high in the system’s

recommendations.

In our experiments, we found the ideal value for the restart

probability c to be between 0.7 and 0.95 which suggests

that the local neighborhood is more important in predicting

future committers. We also found the ideal value for λ
to be from 0.7 to 0.9 which shows that in our case the

links connecting source files are more important than the

edges between developers and source files. We arrived at

the optimal values by testing the proposed method on all

possible combinations of c and λ from the range (0.0, 1.0)
using 0.5 intervals.

C. Random Walk Convergence

Fig. 4 shows the average number of iterations needed for

the random walk to converge. It can be observed that an

average of around 35 iterations is needed for the random

walk with restart probability c = 0.1 to converge while this

number drops to around just 5 iterations for higher values

of c.
On our test machine which had a 2.67GHz Intel Core

i5 processor and 4GB of RAM, an implementation of the

proposed algorithm predicted the future committers for all

6,178 source files in less than 3 seconds on average. From

this, we can intuit that the method should be able to scale

to graphs with a few million nodes. On larger graphs, one

can always use the method described in [23] to increase the

speed of the random walk process.

IV. CONCLUSION AND FUTURE WORK

In this paper, we perform a preliminary study for the

problem of recommending patches to reviewers in an OSS

project. We use data from the Eclipse project and built a

simple model to predict future committers to source codes

in the project. We have found that the model can already

correctly predict 84% of all committers given its top-5

recommendations.

In the future, we would like to improve the model further

by studying the actual text content of each patch committed

by developers to identify the “topics” that each committer

555

is interested in. This will allow us to identify the expertise

of each committer and can be used not only for reviewer

recommendation but also for bug triaging since we can link

the topics found in a bug report to developers with matching

experience. By studying the textual information, we can also

assess the importance of each patch. For instance, a general

patch applied to multiple source files should be deemed less

important than another that contains an implementation of a

complex algorithm committed to a single source file.

In the current graph, only committers are included, future

studies should also include patch submitters as well as

it would be useful too to recommend some of them as

reviewers.

Furthermore, we would like to refine the method in order

to predict the actual developer who committed each patch. In

our current approach, we simply predict whether a developer

will commit to a source file in the future or not. Also, at the

moment, there is no way to determine whether a developer

is committing code written personally or code submitted as

a patch by somebody else; this is something we’d like to

address in future work.

Another thing we plan to do is to design more complex

measures that can better capture the similarity between nodes

in a commit history graph. In particular, we would like

to investigate process metrics as these stay robust even as

the codebase evolves [19]. We also plan to test the model

on more software systems, including proprietary projects.

Finally, a possible next step is to indicate the probability of

a reviewer committing a mistake when assigned to review a

certain patch.

It should be noted that in this preliminary study the

graph modeling an OSS project is quite simplistic. However,

one can easily imagine a graph containing other entities

like topics, language, and even additional relationships like

developer-developer links. Even then, we believe the general

approach that we have discussed here should still be suitable

for graphs that describe more complex relationships in OSS

projects.

ACKNOWLEDGMENT

J.B. Lee would like to thank NAIST for sponsoring his

visit to the Software Engineering Lab. We thank Satoshi

Uchigaki for help with data gathering. This research is

conducted as part of Grant-in-Aid for Young Scientists (B)

25730045, and for Scientific Research (B) 23300009 by the

Japan Society for the Promotion of Science (JSPS). It is also

supported in part by the Ateneo de Manila University.

REFERENCES

[1] A. Alali, H. Kagdi, and J.I. Maletic. What’s a Typical Commit?
A Characterization of Open Source Software Repositories. In
Proc. of ICPC’08, pp. 182-191, 2008.

[2] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin. Non-
backtracking random walks mix faster. Commun. Contemp.
Math., 9:585-603, 2007.

[3] J. Anvik, L. Hiew, and G.C. Murphy. Who should fix this bug?
In Proc. of ICSE’06, pp. 361 - 370, 2006.

[4] O. Arafat and D. Riehle. The Commit Size Distribution of
Open Source Software. In Proc. of HICSS’09, pp. 1-8, 2009.

[5] C. Bird, A. Gourley, and P.T. Devanbu. Detecting Patch Sub-
mission and Acceptance in OSS Projects. In Proc. of MSR’07,
pp. 26-29, 2007.

[6] C. Bird, A. Gourley, P.T. Devanbu, A. Swaminathan, and G.
Hsu. Open Borders? Immigration in Open Source Projects. In
Proc. of MSR’07, pp. 6, 2007.

[7] P. Blanchard and D. Volchenkov. Random Walks and Dif-
fusions on Graphs and Databases: An Introduction. Springer
(2011).

[8] G. Canfora and L. Cerulo. Supporting change request assign-
ment in open source development. In Proc. of SAC’06, pp.
301-310, 2010.

[9] S. Fujita, M. Ohira, A. Ihara, and K. Matsumoto. An Analysis
of Committers Toward Improving the Patch Review Process in
OSS Development. In Proc. of ISSRE’10, pp. 369-374, 2010.

[10] T. Hofmann. Probabilistic Latent Semantic Analysis. In Proc.
of SIGIR’99, pp. 50 - 57, 1999.

[11] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage
with bug tossing graphs. In Proc. of ESEC/FSE’09, pp. 111-
120, 2009.

[12] H. Kagdi and D. Poshyvanyk. Who Can Help Me with this
Change Request? In Proc. of ICPC’09, pp. 273-277, 2009.

[13] J.B. Kruskal. Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika, 29(1):
1-27, 1964.

[14] J.B. Lee and H. Adorna. Link Prediction in a Modified Het-
erogeneous Bibliographic Network. In Proc. of ASONAM’12,
2012.

[15] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning Bug Re-
ports using a Vocabulary-Based Expertise Model of Develop-
ers. In Proc. of MSR’09, pp. 131-140, 2009.

[16] A. Meneely, M. Corcoran, and L. Williams. Improving De-
veloper Activity Metrics with Issue Tracking Annotations. In
Proc. of ICSE’10, pp. 75-80, 2010.

[17] M. Nurolahzade, S.M. Nasehi, S.H. Khandkar, and S. Rawal.
The Role of Patch Review in Software Evolution: An Analysis
of the Mozilla Firefox. In Proc. of IWPSE-Evol’09, pp. 9-18,
2009.

[18] M. Pinzger, N. Nagappan, and B. Murphy. Can Developer-
Module Networks Predict Failures? In Proc. of FSE’08, pp.
2-12, 2008.

[19] F. Rahman and P.T. Devanbu. How, and why, process metrics
are better. In Proc. of ICSE’13, pp. 432-441, 2013.

[20] P.C. Rigby, D.M. German, and M.-A. Storey. Open source
software peer review practices: a case study of the apache
server. In Proc. of ICSE’08, pp. 541-550, 2008.

[21] P.C. Rigby and M.-A. Storey. Understanding Broadcast Based
Peer Review on Open Source Software Projects. In Proc. of
ICSE’11, pp. 541-550, 2011.

[22] F. Spitzer. Principles of Random Walk. Springer, 2001.
[23] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with

restart and its applications. In Proc. of ICDM’06, pp. 613-622,
2006.

[24] Q. Wang, J. Xu, H. Li, and N. Craswell. Regularized Latent
Semantic Indexing. In Proc. of SIGIR’11, pp. 685-694, 2011.

[25] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be
fixed? More accurate information retrieval-based bug localiza-
tion based on bug reports. In Proc. of ICSE’12, pp. 14-24,
2012.

666

